Building scheme for KFI and SAV

1. Periodic Building Unit - 2. Connection mode - 3. Projections of the unit cell content
2. Channels and/or cages - 5. Supplementary information

1. Periodic Building Unit:

The two-dimensional Periodic Building Unit (PerBU) in KFI and SAV is the double 6-ring layer depicted in Figure 1. Double 6-rings (D6Rs; one in bold, built from two 6-rings, three 4-rings or two $4-2$ units), related by rotations of 180° about \mathbf{x} and \mathbf{y}, are connected into the $\mathbf{x y}$ layer through 4-rings (see also alternative description of PerBU in SAV).

Figure 1. PerBU viewed along \mathbf{z} (left) and along \mathbf{x} (right). The layers, depicted top right and bottom right, are identical and related by a rotation of 180° about \mathbf{z}.

2. Connection mode:

Neighboring PerBUs can be connected along the plane normal \mathbf{z} through 4-rings in two different ways: (1): neighboring PerBUs are related by a pure translation along the plane normal;
(2): neighboring PerBUs are related by a rotation of 180° about the plane normal.

Figure 2. Connection mode (1) in SAV (left) and connection mode (2) in KFI viewed along \mathbf{x}.

3. Projections of the unit cell content:

Pure SAV and KFI are obtained when neighboring PerBUs are exclusively related along the plane normal \mathbf{z} by translation or by a rotation (over 180°), respectively. The projections of the unit cell content are shown in Figure 3.

Figure 3. Unit cell content in KFI (left) and in SAV (right) projected along \boldsymbol{b}.

4. Channels and/or cages:

There are 8-ring channels parallel to the cell axes. The channel intersections, the merl- and α-cavities in KFI and the type 1 and type 2 cavities in SAV, are depicted in Figure 4. A three-dimensional channel system is obtained by connecting the cavities through common 8 -rings, double 6 -rings and 4 rings as illustrated in Figure 5.

Intersection 1 in SAV:
Pore descriptor
$\left\{3\right.$ [$\left.4^{12} 8^{6}\right]<100>$ (8-ring),
[001] (8-ring) $\}$
intersection 2 in SAV:
Pore descriptor
$\left\{3\left[4^{12} 6^{4} 8^{6}\right]<100>\right.$ (8-ring),
[001] (8-ring)\}

Figure 4. Two types of intersections of channels in SAV viewed along \boldsymbol{c} (left) and along \boldsymbol{b} (right). The pore descriptor is added. [Figure 4 is continued on next page]

Figure 4 [Cont'd]. Intersection of channels in cubic KFI. merl-Cavity viewed along cefl) and along \boldsymbol{b} (right) and α-cavity (composed of six 8 -rings) viewed along \boldsymbol{c}.

Figure5. Fusion of cavities in cubic KFI. The $\boldsymbol{a} \boldsymbol{b}$ plane (top left); 8-ring channel(s) viewed along \boldsymbol{b} (bottom left); and fusion of α-cavities along \boldsymbol{c} viewed along \boldsymbol{c}; $\boldsymbol{m e r l}$ cavities are formed (top right). From this drawing it can be seen that KFI can as well be built using complete α-cavities (See Alternative description of $\mathbf{K F I}$) or (more difficult to see) using 6-2 units. [Figure 5 is continued on next page]

Figure5 [Cont'd]. Fusion of cavities in tetragonal SAV: the $\boldsymbol{a c}$ plane (top left); two types of 8-ring channels viewed along \boldsymbol{c} (bottom left); 8-ring channels viewed along \boldsymbol{a} (bottom right), and fusion of cavities along \boldsymbol{b} viewed along \boldsymbol{b} (top right).

5. Supplementary information:

Other framework types containing (modified) double 6-rings (D6Rs)
Several other framework types can be built using (modified) D6Rs.
In the INTRO-pages links are given to descriptions of other framework types containing (modified) D6Rs (choose: Double 6-rings). There is also a link provided to a summary of the Periodic Building Units used in the building schemes of these framework types (choose: Appendix; Figure 7).

Alternative description of KFI using (modified) cavities

Several framework types, like KFI, can be built using (modified) cavities (see Figure 4).
In the INTRO pages links are given to a detailed description of a sub-set of framework types that contain (modified) cavities (choose: Cages). There is also a link provided to a summary of the PerBUs used in the building schemes of these framework types (choose: Appendix; Figure 11).

Alternative description of SAV using another PerBU of double 6-rings

The alternative PerBU (see Figure 6 on next page) is identical to a (a,c) layer in the SAV framework. The D6Rs in the layer are related by a rotation of 180° about \boldsymbol{a}, and by pure translations along \boldsymbol{c}. This PerBU is equal to the ($\boldsymbol{c},[\mathbf{1 1 0}]$)-layer in AEI. The framework types AEI and SAV can be obtained when neighboring PerBUs are exclusively related by translation along the plane normal \boldsymbol{b} (AEI) or by a rotation of 180° about this plane normal (SAV) as shown in Figure 6 on next page.

Figure 6. (a): PerBU in AEI and SAV seen along the plane normal b; (b): The two PerBUs, viewed along c in perspective view (top) and in parallel projection (bottom), are identical and are related by a rotation of 180° about \boldsymbol{b}; (c): Projections of the cell content in SAV and AEI.

