1. Periodic Building Unit - 2. Connection mode - 3. Projections of the unit cell content 4. Channels and/or cages - 5. Supplementary information

1. Periodic Building Unit:

The two-dimensional Periodic Building Unit (PerBU) of MAR consists of an hexagonal array of non-connected planar 6-rings (bold in Figure 1), which are related by pure translations along \boldsymbol{a} and \boldsymbol{b}. The 6 -rings are centered at $(0,0)$ in the $\boldsymbol{a b}$ layer. This position is usually called the A position.

Figure 1: PerBU in MAR (left) and definition of 6-ring positions with respect to each other (right).

2. Connection mode:

The distance between two neighboring PerBUs is about $2.55 \AA$. Neighboring PerBUs can be connected through tilted 4 -rings along $+[001]$ in three different ways:
(1) the next layer (second layer) is shifted by $+(2 / 3 \boldsymbol{a}+1 / 3 \boldsymbol{b})$ before connecting it to the first layer. The 6 -rings in the second layer are centered at $(2 / 3,1 / 3)$. This position is usually denoted as the B position as illustrated in Figure 1. The same connection mode can be repeated: a third PerBU is shifted with respect to the second layer by (again) $+(2 / 3 \boldsymbol{a}+1 / 3 \boldsymbol{b})$. The 6 -rings are now centered at $(4 / 3,2 / 3)$ [or, equivalently, at $(1 / 3,2 / 3)]$. This position is called the C position. Adding a fourth layer with the same connection mode gives a shift with respect to the first layer of $(2 \boldsymbol{a}+\boldsymbol{b})$ [or zero] and an A position of the 6-rings is again obtained. The resulting stacking sequences, exhibiting the same connection mode, are denoted as AB, BC and CA, respectively (see Fig. 2(a) on next page).
(2) the added layers are shifted by $-(2 / 3 \boldsymbol{a}+1 / 3 \boldsymbol{b})$ before connecting them along $+[001]$ to the previous layer. The resulting stacking sequences AC, CB and BA are obtained (see Fig. 2(b) on next page).
(3) the added layer has a zero lateral shift along \boldsymbol{a} and \boldsymbol{b}. This connection mode leads to an AA, BB or CC stacking sequence depending on whether the added layer is connected to a layer with 6-rings in the A, B or C position, respectively (see Fig. 2(c) on next page).

(a)

(b)

(c)

Figure 2. (a): Connection mode (1) viewed down [001] (left), nearly along [010] (top right), and along [010] (right bottom); (b): Connection mode (2) viewed as in (a); (c): Idem for connection mode (3). In MAR all three connection modes between the PerBUs are observed.

3. Projections of the unit cell content:

Figure 3. Perspective drawing (left) and projection of the unit cell content (right) along \boldsymbol{b}. The stacking sequence is given. In the perspective drawing each PerBU is represented by one 6-ring.

4. Channels and/or cages:

The three types of cages in MAR are depicted in Figure 4. The fusion of cages through common 4and 6 -rings is illustrated in Figure 5. Apertures of the "channels" are formed by 6-rings only.

Figure 5. Connection of afg cages (left), of sod and can cages (middle) and fusion of the three types of cages (right) seen approximately along $\langle 120\rangle$. The Figurre also illustrates that MAR can also be built from 4-rings. [Compare the fusion of cages with those in AFG and LIO]

5. Supplementary information:

Other framework types containing a hexagonal array of non-connected 6-rings

A large number of framework types can be constructed using the hexagonal PerBU described in Section 1. They all belong to the ABC-6 family. In these framework types the unit cell dimension along the hexagonal axis is $\approx\left(n^{*}\right) 2.55 \AA$ where n is equal to the number of PerBUs that are connected along the hexagonal axis.
In the INTRO-pages links are given to detailed descriptions of framework types belonging to the ABC-6 family (choose: ABC-6 family).

