Building scheme for SFH and SFN

1. Periodic Building Unit – 2. Connection mode – 3. Projections of the unit cell content
4. Channels and/or cages – 5. Supplementary information

1. Periodic Building Unit:

SFH and SFN can be built using the zigzag (zz) chain (bold in Fig. 1(a); left) running parallel to \(z \). The repeat distance along the zigzag chain is about 5.2 Å. The repeat unit consists of 2 T atoms. Eight zz chains are connected into an infinite building unit (Figure 1(a); left). The repeat unit of this building unit is composed of two 5-3 units (bold in Fig. 1(a), right; see Alternative description). A two-dimensional Periodic Building Unit (PerBU) is obtained when infinite building units, related by a translation of \(\frac{1}{2}(x + z) \), are connected along \(z \) through 4-rings as shown in Figure 1(b). [Compare this PerBU with the PerBUs in MTT, MTW, SFE, SSY and TON]

Figure 1. (a): Infinite building unit constructed from eight zigzag chains (left) and from T16-units (right); (b): PerBU obtained when infinite building units are connected along \(x \).

2. Connection mode: See next page.
2. Connection mode:

Neighboring PerBUs can be connected along y through 6-rings in two different ways:
(1): neighboring PerBUs are related by pure translations along y;
(2): neighboring PerBUs are related by a rotation of 180° about y.

Figure 2. (a): Perspective view along z of the connection mode (1) in SFN (top) and parallel projection of the unit cell content along b and along c (middle and bottom). Only two repeat units of the PerBUs are drawn for clarity. [Figure 2 is continued on next page]
3. Projections of the unit cell content:

Pure SFN and SFH are obtained when neighboring PerBUs are exclusively related by translations along \(c \) (in SFN) and by 2-fold rotations along \(b \) (in SFH), respectively, as shown in Figure 2.
4. Channels and/or cages:

The one-dimensional non-interconnecting 14-ring channels in SFN and SFH are depicted in Figure 3. The **pore descriptor**, equal for both cavities, is added.

\[\{1[4^66^14^{2/2}]\ [010] \text{(14-ring)}\}\]

Figure 3. Channel in SFN in perspective view along \(b \) (top left) and along \(c \) (top right) and channel in SFH in perspective view along \(a \) (bottom left), and along \(c \) (bottom right).

\[\{1[4^66^14^{2/2}]\ [100] \text{(14-ring)}\}\]

5. Supplementary information:

In several framework types at least one of the unit cell dimensions is about \(n \times 5.2 \, \text{Å} \) (where \(n = 1, 2, 3, \text{etc.} \)). In many cases this indicates the presence of zigzag chains.

In the **INTRO** pages links are given to detailed descriptions of framework types containing zigzag chains (choose: **Zigzag chains**). There is also a link to a summary of the PerBUs used in the building schemes of these framework types (choose: **Appendix; Figure 1**).

Alternative description using (modified) 5-rings

Several framework types, like SFH and SFN, can be constructed using (modified) 5-rings. In the **INTRO** pages links are given to detailed descriptions of these framework types (choose: **5-Rings**). There is also a link provided to a summary of the Periodic Building Units used in the building schemes of these framework types (choose: **Appendix; Figure 6**).