1. Periodic Building Unit:

CON and IWR can be built using chains parallel to c constructed from units of 14 T atoms (bold in Figure 1) that are related by pure translations along c. The two-dimensional Periodic Building Unit (PerBU) is equal to the bc layer composed of parallel chains, related by a 180º rotation about b (or c), depicted in Figure 2.[Compare this PerBU with those in the Beta-like framework types]

Figure 1. T14-units (one in bold), consisting of two 1-5-1 units (see Alternative description) and related by pure translations along c, are connected into chains. The chain at the right is rotated over 90º about c with respect to the left one.

Figure 2. (a): PerBU, constructed from chains, viewed along a (one T14-unit in bold); (b) and (c): PerBU viewed along b. The PerBUs, depicted in (b) and (c) are identical and related by a rotation of 180º about b (or by a mirror operation perpendicular to the plane normal; or by an origin shift of $\frac{1}{2}b$); (d): PerBU viewed along c.
2. Connection mode:

Neighboring PerBUs, related by a mirror operation perpendicular to the plane normal n, can be connected along n through 4-rings in two different ways:

(1): the lateral shift of neighboring layers along c is zero;

(2): the lateral shift of neighboring layers along c is $+1/3c$, as illustrated in Figure 3.

Figure 3: Connection mode (1) in IWR (top) and connection mode (2) in CON (bottom) viewed along b. Fused 4-6-6 ring sequences and fused 5-5-6 ring sequences are formed in connection mode (1) and (2), respectively. The parallel projections are shown at the right. [Compare these connection modes with the ones in *BEA and BEC]

3. Projections of the unit cell content:

Pure IWR and CON are obtained when neighboring PerBUs, related by a mirror operation perpendicular to the plane normal n, are connected along n by applying a lateral shift along c of zero or $1/3c$, respectively, as shown in Figure 4 on next page. There is no difference in the projection of the structure of IWR and CON along c.

Figure 4: Cell content of IWR (top) and CON (bottom) viewed in perspective along \(b \) (left) and in projection along \(b \) (middle) and along \(c \) (right). The projection along \(c \) is the same for both framework types.

4. Channels and/or cages:

10-Ring channels are parallel to \(b \) and 12-ring channels are parallel to \(c \). The channels are depicted in Figure 4 on next page together with their pore descriptor. The 12-ring channels in CON and IWR parallel to \(c \) are topologically equivalent to those in *BEA and BEC, respectively [Compare the present Figure 5(a) with Figure 4 in *BEA and BEC]. The 10-ring channels parallel to \(b \) are equivalent in CON and IWR. The fusion of channels is illustrated in Figure 6. Diffusion along the 12-ring channel parallel to \(a \) is obstructed as can be seen from the drawings of the (fused) channels at the bottom of Figure 5 and Figure 6 on next pages.
Figure 5. (a): 12-Ring channel in CON (left) and IWR (right) viewed along c (top), b (middle) and a (bottom); (b): 10-Ring channel in both framework types viewed along b (top left), c (top right) and along a (bottom). [Figure 6 is on next page]
Figure 6. Fusion of channels in CON (left) and in IWR (right) viewed along c (top), along b (middle) and along a (bottom).
5. Supplementary information:

Beta-like framework types
Beta-like framework types can be constructed using two types of chains. In the INTRO pages links are given to a description of the framework types that contain these chains (choose: Beta-family). There is also a link provided to a summary of the chains and PerBUs used in the building schemes of the framework types (choose: Appendix; Figure 9).

Alternative description using (modified) 5-rings
Several framework types, like CON and IWR, can be constructed using (modified) 5-rings. In the INTRO pages links are given to detailed descriptions of these framework types (choose: 5-Rings). There is also a link provided to a summary of the Periodic Building Units used in the building schemes of these framework types (choose: Appendix; Figure 6).