Collection of Simulated XRD Powder Patterns for Zeolites

Editors:

M.M.J. Treacy and J.B. Higgins

Published on behalf of the Stucture Commision of the International Zeolite Association Fourth Revised Edition

2001

Amsterdam - London - New York - Oxford - Paris - Shannon - Tokyo

TABLE OF CONTENTS

Preface	3
Explanatory Notes	5
Powder Pattern Identification Table	9
Powder Patterns	17
Powder Pattern Simulations of Disordered Intergrowths	375
Atomic Coordinates	383

PREFACE

The synthesis and characterization of new zeolite materials continues unabated. The IZA Structure Commission has recognized thirty-five new topologies since the 3rd edition of this *Collection* was prepared in 1995. The total number of zeolite structure refinements has surpassed 3000 with over 1000 new refinements since 1995. Not surprisingly, the most scrutinized framework topology is that of faujasite, **FAU**, with about 600 structural studies. Probably no other inorganic host structure has received such attention. With these numbers it is apparent that this *Collection* is not comprehensive. The scope of the *Collection* has been broadly defined to include materials of interest to zeolite scientists, following the policies established at recent IZA conferences. We have attempted to be as inclusive as possible to give the users of this publication the maximum information. The structures of the porous solids that we considered comprise corner-sharing tetrahedra, and are not limited to a specific chemical composition. Materials such as metal phosphates and silica polymorphs are included.

The present *Collection* serves as a source of reference patterns for pure zeolite phases. The data will be helpful in establishing the structural purity of experimental phases and in indexing their diffraction patterns. The data will also aid in the determination of changes in the lattice parameters with changing composition, assessing preferred orientation effects, background evaluation, and line broadening. We have also included diffraction patterns of several common dense silicate phases to facilitate their detection in mixed phase syntheses.

The numerical data comprises 2θ values for CuK α radiation ($\lambda = 1.5418$ Å), *d*-spacings, relative intensities, *hkl* Miller indices and multiplicity, M_{hkl} . Data representing 133 framework topologies have been included in this *Collection*. In most cases, X-ray or neutron refinements of hydrated or as-synthesized forms are used.

This edition differs significantly from the 1996 3rd edition which included atomic coordinates. Because of space constraints coordinate data has not been included in this edition, but are available in electronic form, along with the complete contents of this edition, at:

http://www.iza-structure.org/databases/

This web site also contains an interactive powder pattern calculator that allows the user to change the input and variables for a powder pattern calculation.

This book was typeset using LATEX with the standard computer modern typeface. The LATEX file, and associated postscript plots, were generated using a C program written by M. M. J. Treacy.

We wish to acknowledge the assistance and collaboration of the members of the IZA Structure Commission in proofreading the manuscript and for providing additional information. We are indebted to our companies (NEC Research Institute, Inc., and Air Products and Chemicals, Inc.) for support of this project. We are grateful to Peggy Bisher for keeping the reference data files impeccably organized. Finally, we acknowledge the patience and support of our wives Laura and Carol.

Michael M. J. Treacy, Princeton, NJ John B. Higgins, Bad Dog Ridge, PA January 2001

STRUCTURE COMMISSION

MEMBERS

Duncan Akporiaye Gilberto Artioli Christian Baerlocher Werner H. Baur Ann M. Chippindale Hermann Gies Ralf W. Grosse-Kuntsleve John B. Higgins Richard M. Kirchner Raul F. Lobo Lynne B. McCusker Wilfried M. Mortier Joseph V. Smith Michael M. J. Treacy Henk van Koningsveld Paul A. Wright

Additional IZA publications:

Atlas of Zeolite Framework Types, 5th revised edition (2001), Ch. Baerlocher, W. M. Meier and D. H. Olson.

Compilation of Extra Framework Sites in Zeolites (1982), W. J. Mortier. (out of print)

Verified Syntheses of Zeolitic Materials, 2nd revised edition (2001), H. Robson, editor; and K. P. Lillerud, XRD patterns.

See also: http://www.iza-online.org/

EXPLANATORY NOTES

The numerical data and the simulated powder patterns presented in this *Collection* are to a great extent self-explanatory. In order to facilitate the use of these reference patterns some pertinent remarks regarding the keywords used in the data section are summarized below. The input structural data have been deposited on the worldwide web at:

http://www.iza-structure.org/databases/

This *Collection*, including updates, will be accessible at the above address.

ZEOLITE FRAMEWORK TYPES

The three-letter framework type codes, recognized by the IUPAC Commission on Zeolite Nomenclature, have been used to organize the entries in this publication. The powder diffraction data and simulated patterns for the reference structures are listed alphabetically according to the respective framework type code. An index of material names, and associated three-letter codes, is included in the companion volume, the *Atlas of Zeolite Framework Types* (Baerlocher, Meier and Olson (2001)).

COMPOSITION

Compositions are expressed in terms of the full unit cell content. Two compositions are provided. The CHEMICAL COMPOSITION is the nominal material composition provided in the original reference, and is usually obtained from chemical analysis. The REFINED COMPOSITION is derived from the structure refinement. Because of the complexities of structure refinements, the chemical and refined compositions do not always concur. When available, refinements of hydrated zeolites were used to calculate the patterns. For synthetic zeolites, if the zeolite had been synthesized in the presence of organic material, those refinements of the uncalcined products that contained the occluded organic molecules were chosen. The sample locality is given in the case of natural zeolites.

CRYSTAL DATA

Crystal data includes lattice parameters and space group information from the International Tables for Crystallography, 4th revised edition 1995, and incorporates the new e 'double-glide' plane. Consequently, some space group symbols will differ from those listed in the original references. Two entries in this *Collection* are affected by this change; EU-1 (**EUO**) which has space group symbol *Cmme* (formerly *Cmma*), and gottardiite (**NES**) which has space group symbol *Cmce* (formerly *Cmca*). The type of refinement, along with the final *R*-values, is listed with the unit cell parameters.

REFERENCE

Reference cites the literature from which the crystal data, atomic coordinates, and temperature factors were obtained. In many cases there are multiple refinements of the same zeolitic material, but because of space limitations not all refinements could be included. We would be appreciative if authors and users would inform us of any errors or omissions. A listing of the references for isotypic species can be found in the *Atlas of Zeolite Framework Types* (Baerlocher, Meier and Olson (2001)). A list of references to structure analyses of zeolites with different cations, up to 1982, is given in the *Compilation of Extra Framework Sites in Zeolites*, W. J. Mortier (1982).

POWDER PATTERN IDENTIFICATION TABLE

A table is provided to assist in the identification of powder patterns of unknown materials. The 2θ (°) values of the three most pronounced low-angle reflections are listed. Usually, these reflections are simply the three strongest peaks. In many instances, a pronounced low-angle reflection will be included, even if it is not among the most intense. In the 3rd edition (1996) of the *Collection* this table was assembled by visual inspection of the computed powder patterns. For this fourth edition (2001) of the *Collection*, the table was generated automatically from the computed diffraction patterns. To achieve good correspondence with the hand-generated table of the 3rd (1996) edition of the *Collection*, a peak intensity weighting function $W(2\theta)$ was used

$$W(2\theta) = 1 + A \exp\left[-(2\theta)^2/2\sigma^2\right].$$
(1)

The parameters were set to A = 10, and $\sigma = 7^{\circ}$. This function is strongly weighted towards the low angle peaks, particularly those below about 10°, which, even if relatively weak, tend to offer a more characteristic fingerprint of a material compared to the abundance of strong peaks that tend to cluster around 25° in most zeolitic materials.

The data for all the materials presented in this work are sorted by increasing 2θ value in the table. To identify an unknown material, measure the 2θ values of the three most pronounced peaks (assigning strong weighting to any pronounced low-angle peaks, particularly those below about 10°) and find those materials with corresponding reflections at those values. This provides a starting point for a more detailed comparison of the experimental and calculated patterns.

CALCULATED POWDER DIFFRACTION DATA

The powder diffraction data include the 2θ -values for CuK α radiation, *d*-spacings, relative intensities $I_{\rm rel}$, Miller indices hkl and multiplicity M_{hkl} , for the strongest 135 reflections with an integrated intensity $I_{\rm rel}$ greater than 0.1. The strongest reflection is set to $I_{\rm rel} = 100$. The scattering factors used for the framework T- and O-atoms in the structure factor computations were those selected by the authors of the original work. If none had been specified, we chose atomic (neutral) scattering factors. No adsorption corrections were applied to the data, and anisotropic temperature factors were converted to isotropic temperature factors $B_{\rm iso}$ (Å²) using equations reported by W. C. Hamilton, *Acta Cryst.*, **12** 609–610 (1959).

Materials with the same framework type code (i.e. framework topology) may have very different diffraction patterns, so for some framework type codes several different reference materials have been included. Examples listed under FAU, GIS, MFI and NAT illustrate the extent of the differences observed in the diffraction patterns of materials with identical framework topologies but

variations in composition and/or symmetry.

SIMULATED POWDER PATTERNS

The powder patterns for $\text{CuK}\alpha$ radiation are reproduced from 0° to 50° 2 θ . The patterns, and associated tables, were calculated using a custom C program written by M. M. J. Treacy. The intensity scale is kept variable to accommodate extreme situations. The intensity range is usually plotted between 0 and $I_{\text{max}} = 100$. If only one or a few peaks are very intense, and the rest of the pattern consists of low-intensity reflections, I_{max} is set at a lower value (see ordinate) to show sufficient detail in the low-intensity region of the pattern. The scale of the ordinate is always calibrated in percent relative intensity of the maximum peak height. Frequently, the peak intensities in the plots will not be identical to the integrated intensities listed in the corresponding tables, because of the possibility of overlapping diffraction peaks. A Lorentzian profile was assumed for the calculation of the pattern. The full width at half maximum (FWHM) of all peaks was set to be 0.08° 2θ . Many real samples will in general give diffraction patterns with broader lines due to instrumental broadening, disorder, or small crystallite size. However, synchrotron powder diffraction data of some zeolite materials exhibit FWHM of less than 0.04° 2θ .

Because hydrated forms of natural zeolites or as-synthesized forms were used whenever refined atomic parameters were available, the plots should be easily comparable to experimental patterns. In some cases, only structure refinements of dehydrated or calcined forms were available. Significant differences in the intensities of low-angle peaks may be found when comparing the calculated pattern to experimental patterns of hydrated or as-synthesized materials.

Finally, a note of caution. The patterns are useful in helping to establish the structural purity of a zeolite phase, yet they may not always allow one to readily and unambiguously determine the framework type of the sample. This assignment is often not straightforward and may require more sophisticated analyses. W. J. Rohrbaugh and E. W. Wu review the factors affecting the diffraction characteristics of zeolite materials (ACS Symposium Series **411** 279–302 (1989)).

POWDER PATTERN SIMULATIONS OF DISORDERED INTERGROWTHS

A number of zeolitic materials crystallize as disordered planar intergrowths of "end-member" frameworks. Two of the better-studied series are the FAU/EMT intergrowths (such as ZSM-2, ZSM-3, ZSM-20, ECR-30, CSZ-1 and CSZ-3) and the intergrown zeolite beta and its natural analog tschernichite. Powder patterns for five of the more commonly observed coherently intergrown series were calculated using the DIFFaX computer program (M. M. J. Treacy, J. M. Newsam and M. W. Deem, *Proc. R. Soc. Lond.* A **433** 499–520 (1991)). Random stacking faults are assumed. The five series are; the beta family; SSZ-33/SSZ-26; FAU/EMT; MFI/MEL; and OFF/ERI. The stacking fault probability is incremented from 0 to 1 in steps of 0.1. Stacking fault probabilities of 0 and 1 represent the unfaulted end-members.

Additional information on disordered intergrowths can be found in the *Catalog of Disordered Zeolite Structures*, which is available electronically at http://www.iza-structure.org/databases/.

CHANGES SINCE THE THIRD REVISED EDITION

• 35 new framework types have been approved since the third revised edition, and are included in this fourth revised edition. The new framework types are:

ACO	AEN	AFN	\mathbf{ASV}	AWO	\mathbf{CFI}	\mathbf{CGF}
\mathbf{CGS}	CZP	\mathbf{DFT}	DON	\mathbf{ESV}	FRA	GON
IFR	\mathbf{ISV}	ITE	\mathbf{MSO}	MTF	MWW	OSI
OSO	SAO	SAS	SAT	\mathbf{SAV}	SBE	\mathbf{SBS}
\mathbf{SBT}	SFE	SFF	\mathbf{STF}	\mathbf{STT}	TER	\mathbf{TSC}

• Due to space constraints, the refined structure coordinates are not listed in the printed version of this *Collection*. An electronic PDF version of this *Collection*, complete with coordinates, can be found at:

http://www.iza-structure.org/databases/

- Errors in the space group settings of Maricopaite (**MOR**) and chiavennite (-**CHI**) have been fixed. These corrections change the diffraction patterns and the listed peak intensities.
- The distance least squares refinement of liottite (LIO), given in the third revised edition, has been replaced by a single crystal x-ray refinement.
- The entry for Na-exchanged K-F (**EDI**) has been removed due to inconsistencies in the refinement.
- A typographic error in the published coordinates for perlialite (**LTL**) has been corrected. This correction has changed the diffraction pattern noticeably.
- An error in the cation occupancies for the mineral faujasite (**FAU**) has been corrected. This correction has changed the diffraction pattern noticeably.
- The refinements of MAPO-39 (ATN) and offretite (OFF) have been replaced.
- A refinement for low silica zeolite-X (FAU) has been added.
- A small number of typographic errors in atom coordinates have been corrected.

POWDER PATTERN IDENTIFICATION TABLE

Powder Pattern Identification Table

$2 heta^\circ$	Material	Code
3.33	Franzinite	FRA
3.42	Cloverite	-CLO
3.56	Paulingite	\mathbf{PAU}
4.14	NaZ-21	LTN
4.56	Decamethonium DAF-1	DFO
4 80	VPI-9	VNI
4.83	Cloverite	-CLO
1.00	Tschörtnerite	TSC
4.04 5.04	Paulingite	
5.31	AIPO_8	AET
5 38	VPI 5	VFI
5.50	Porlialito	UTL.
5 55	Lindo Typo L	
5 55	Maggito	
5.55	Tachörtnorite	TSC
5.69	LICED SCo	SDE
5.05	Chievennite	
5.04	UCSP 6CaCa	SDS
5.72 E 76	MCM 25	
5.70 F 97	MOM-30 EMC 9. Coloimed	
5.87	EMC-2, Calcined	EMT
5.87	EMC-2, Partially Denydrated	EMT
5.92	Cloverite	-CLO
5.96	LI-LSX	FAU
6.02	UCSB-10GaZn	SBT
6.04	UTD-1	DON
6.10	Na-X, Dehydrated	FAU
6.12	Na-X, Hydrated	FAU
6.19	Faujasite	FAU
6.23	EMC-2, Partially Dehydrated	\mathbf{EMT}
6.24	EMC-2, Calcined	\mathbf{EMT}
6.31	Na-Y, Siliceous	\mathbf{FAU}
6.32	UCSB-10GaZn	\mathbf{SBT}
6.33	Ultrastable Y, Dehydrated Dealuminated	\mathbf{FAU}
6.39	Maricopaite	MOR
6.41	UCSB-8Co	\mathbf{SBE}
6.48	1-aminoadamantane Deca-Dodecasil $3R$	\mathbf{DDR}
6.50	UCSB-6GaCo	\mathbf{SBS}
6.51	Mordenite	MOR
6.57	AlPO-8	AET
6.57	Di-n-propylamine MAPSO–46	AFS
6.58	UCSB-6GaCo	\mathbf{SBS}
6.58	SSZ–48, Calcined	\mathbf{SFE}
6.65	EMC-2, Calcined	\mathbf{EMT}
6.65	EMC-2, Partially Dehydrated	\mathbf{EMT}
6.69	(Cs,K) ZK5, Dehydrated	KFI
6.77	NaZ-21	LTN
6.78	VPI-8	VET
6.82	UiO-6. Calcined	OSI
6.82	Roggianite	-RON
6.85	AlPO-41. Calcined	AFO
6.88	ITQ-7. Siliceous, Calcined	ISV
6.93	CIT-5	CFI
6.96	GUS-1	GON
6.98	Beta, Polymorph A SiO ₂ Framework	*BEA
7.01	ITO-7 Siliceous Calcined	ISV
7.04	UCSB-10GaZn	SBT
7.04	NIL-87	NES
7.00	ITO-1 Calcined (Silicoous MCM 22)	MWW
7 10	Bervllonhospheto H	RDH
7 1 2	ITO 1 Calcined (Siliceous MCM 22)	
1.10	11×1 , Oalemen (Sinceous MOM-22)	TAT AA AA

$2\theta^{\circ}$	Material	Code
7.18	Linde Type A, Hydrated	LTA
7.20	Linde Type A, Dehydrated	LTA
7.33	CIT-5	CFI
7.40	Terranovaite	TER
7.41	N ₂ , Piperidine Dodecasil 1H	DOH
7.42	SAPO-56	AFX
7 49	Gmolinito	CME
7.42 7.43	Bogggito	BOC
7.40	Tetuconal and the Flooride AIDO F	AEI
7.43	Tetrapropylaminonium Fluoride AIPO-5	
7.47	ZSM-12, Calcined	MTW
7.49	MCM-61	MSO
7.55	UTD-1	DON
7.61	Tetrapropylammonium SAPO–40	\mathbf{AFR}
7.63	ZSM-12, Calcined	\mathbf{MTW}
7.66	Offretite	OFF
7.66	CIT-1	CON
7.67	STA-1, Magnesium Aluminophosphate	SAO
7.68	1-aminoadamantane Deca-Dodecasil 3R	DDR
7.69	Erionite	ERI
7.71	Bellbergite	EAB
7.71	Piperidine AlPO-17	ERI
7 72	ITO-7 Siliceous Calcined	ISV
7 72	Di-n-propylamine MAPSO-46	AFS
7.72	SSZ 44 Calcined	SFF
7.12	FBS 7 Fromowork	FSV
7.73	Pote Dolymouth A SiO Framework	
7.75	ZCM 18 C:O Enomorrow	MEI
7.73	$\Sigma_{\text{SIVI-10}}$, SIO_2 Framework	
1.18	Ferrierite	FER
7.80	Gottardite	NES
7.82	$ZSM-57, SiO_2$ Framework	MFS
7.84	Boggsite	BOG
7.84	CIT-1	CON
7.88	MAPO–36, Calcined	\mathbf{ATS}
7.89	Dodecasil 3C	\mathbf{MTN}
7.90	NU-87	NES
7.91	Decamethonium DAF-1	DFO
7.92	EU-1, Calcined, Rehydrated	\mathbf{EUO}
7.93	ZSM-11, Calcined	MEL
7.94	NaZ-21	\mathbf{LTN}
7.94	ZSM-5, Calcined	MFI
7.94	Ammonium Fluoride ZSM-23	MTT
7.95	Tetrapropylammonium ZSM-5	MFI
7.95	2-aminopentane Nonasil	NON
7.99	SSZ-35. Calcined	STF
8.01	ZSM-5. Calcined	MFI
8.01	Di-n-propylamine CoAPO-50	AFY
8.01	ITO-1 Calcined (Siliceous MCM-22)	MWW
8.02	AlPO-52 Calcined Rehydrated	AFT
8.06	Tetrapropularmonium SAPO-40	AFR
8.00 8.06	SSZ 44 Calainad	SEE
8.00	SSZ-44, Calcined	SFF
0.07	SSZ-46, Calcined	SFE
8.09	Di Li MADO 11	SIF
8.09	DI-Isopropylamine MnAPO-11	AEL
8.10	AIPO-11, Calcined	AEL
8.11	ERS-7 Framework	ESV
8.11	SSZ-23	STT
8.11	Beryllophosphate-H	BPH
8.15	Decamethonium DAF-1	DFO
8.15	ITQ-4, Calcined	\mathbf{IFR}
8.15	Diethylamine Theta-1 (Silica ZSM-22)	TON

$2 heta^{\circ}$	Material	Code
8.17	STA-1, Magnesium Aluminophosphate	SAO
8.20	Cobalt Gallium Phosphate-6	\mathbf{CGS}
8.20	MAPO–36, Calcined	ATS
8.21	Partheite	-PAR
8.22	Ammonium Fluoride ZSM-23	MTT
8.32	Gottardiite	NES
8.32	Rho, Hydrated	RHO
8.37	NU-87	NES
8.49	Di-n-propylamine SAPO–31	ATO
8.56	Levvne	LEV
8.58	ITQ-3, Calcined	ITE
8.62	Terranovaite	TER
8.64	SAPO-56	AFX
8.64	RUB-13	RTH
8.68	1-aminoadamantane NU-3	LEV
8.71	SSZ-44, Calcined	SFF
8.72	RUB-17	RSN
8.73	STA-6	SAS
8.75	EU-1. Calcined. Rehydrated	EUO
8.81	Terranovaite	TER
8.81	ZSM-11, Calcined	MEL
8.82	GUS-1	GON
8.84	Tetrapropylammonium ZSM-5	MFI
8.87	VPI-7	VSV
8.88	Tetrapropylammonium ZSM-5	MFI
8.90	ZSM-5. Calcined	MFI
8.91	ZSM-12. Calcined	MTW
8.93	Bho Deuterated Bervlloarsenate	RHO
8.94	Lovdarite	LOV
8.95	Ammonium Fluoride ZSM-23	MTT
8.98	Maricopaite	MOR
9.01	ITO-3 Calcined	ITE
9.01	1-aminoadamantane Sigma-2	SGT
9.05	RUB-13	RTH
9.07	Pahasapaite	RHO
9.08	AlPO-14. Calcined	AFN
9.10	CIT-1	CON
9.14	AlPO-C Hydrated	APC
9.16	BUB-3	BTE
9.18	Quinuclidine AlPO-22	AWW
9.10	Ferrierite	FEB
9.23	Cobalt Gallonhosphate	
9.20	Laumontite	
9.21	UCSB-8Co	SBE
9.30	Tetramethylammonium OH AlPO-12	
9.36	Magnesium STA-7	SAV
9.30	$\Delta PO=25$	
0.38	Leonhardite	
9.00	Chabazite	
0.49	7SM 57 SiO ₂ Framework	MFS
9.42	Magnosium STA 7	SAV
9.42 0.43	SS7_48 Calcinod	SFE
9.49 9.45	Ferrierite Siliceous	FEB
9.49 9.45	Di-isopropylamine MnAPO_11	ΔEI
0.40	$M \Delta P O = 30$	ΔΤΝ
9.41 0.17	(Cs K) ZK5 Dobydratod	KEI
0.±1 0./8	Methylbutylamine $SAPO_{-47}$	CHA
0.40 0.40	AIPO-18 Calcined	ΔEI
0.49 0.40	Rollhorgite	EVB
9.49 9.50	SSZ_93	STT
9.00	002-20	DIT

$2 heta^\circ$	Material	Code
9.54	AlPO–52, Calcined, Rehydrated	AFT
9.54	Perlialite	\mathbf{LTL}
9.55	ZSM-18, SiO_2 Framework	MEI
9.57	AlPO–11, Calcined	AEL
9.59	VPI-8	VET
9.61	2-aminopentane Nonasil	NON
0.62	Mazzite	MAZ
0.64	(Na. Totramothylammonium) E	EAR
0.65	UiO 6. Calcined	OSI
9.05	Demienite	DON
9.00		-RUN
9.68	Erionite	ERI *DDA
9.68	Beta, Polymorph A SiO ₂ Framework	*BEA
9.69	Tschortnerite	TSC
9.69	ITQ-4, Calcined	IFR
9.70	Stilbite	\mathbf{STI}
9.71	Stellerite	\mathbf{STI}
9.72	Barrerite	\mathbf{STI}
9.72	AlPO–41, Calcined	AFO
9.73	SSZ-35, Calcined	\mathbf{STF}
9.74	Li-LSX	FAU
9.75	MCM-35	MTF
9.75	Chiral Sodium Zincophosphate, $P6_{1}22$	CZP
9.77	Mordenite	MOR
9.77	Piperidine AlPO–17	ERI
9.81	Chiral Sodium Zincophosphate, P6,22	CZP
9.81	Di-n-propylamine CoAPO-50	AFY
9.82	EBS-7 Framework	ESV
9.85	Heulandite	HEU
0.88	Clinoptilolite	HEU
9.00	Stellerite	STI
0.01	Barrerite	STI
0.05	Dashiandita	
9.95	Stillito	STI
9.90	Eniotilhito	EDI STI
9.97	No V Debudgeted	
9.97	Alpo e	rau Aet
9.99		ALI
10.00	Cobalt Gallium Phosphate-5	CGF
10.00	Na-X, Hydrated	FAU
10.06	RUB-10, SiO ₂ Framework	RUT
10.06	ITQ-3, Calcined	TTE
10.07	ASU-7	ASV
10.08	Tetramethylammonium ZAPO-M1	ZON
10.10	AlPO–21	AWO
10.12	OSB-1	oso
10.14	Alpo-en3	AEN
10.16	VPI-9	VNI
10.16	Diethylamine Theta-1 (Silica ZSM-22)	TON
10.17	Linde Type A, Hydrated	LTA
10.18	RUB-13	RTH
10.19	Linde Type A, Dehydrated	LTA
10.27	MCM-61	\mathbf{MSO}
10.31	Na-Y, Siliceous	FAU
10.34	Ultrastable Y, Dehydrated Dealuminated	FAU
10.47	AlPO – H2	AHT
10.48	Magnesium STA-7	SAV
10.50	STA-6	SAS
10.58	SSZ-23	STT
10.61	AlPO-18, Calcined	AEI
10.70	Paulingite	PAU
10.75	Nepheline Hydrate	JBW

$2 heta^\circ$	Material	Code
10.77	RUB-10, SiO ₂ Framework	RUT
10.77	VPI-5	VFI
10.85	Levyne	\mathbf{LEV}
10.90	Harmotome	PHI
10.90	Partheite	-PAR
11.07	Heulandite	HEU
11.01	1-aminoadamantane NU-3	LEV
11.00	Mazzite	MAZ
11.11 11 17	ZSM-18 SiOo Framework	MEI
11.11	Clinoptilolito	HEII
11.10 11.20	Bikitaita	BIK
11.29	Chiavonnito	-CHI
11.30	Cobalt Callium Phosphate 5	CCF
11.30	Chiral Sodium Zincophosphate P6-22	
11.00 11.41	Chiral Sodium Zincophosphate, P6, 22	
11.41 11.49	i i i sv	
11.42 11.49	Di-LOA Denium Chlonosluminosilieste	FAU MED
11.40	Quinualidina AIDO 16	AGT
11.40	Quinucidine AIPO-10	ASI
11.49	Cobalt Gallium Phosphate-6	CGS
11.52	Gmelinite	GME
11.53	Levyne	
11.54		LUS
11.57	AIPO-14, Calcined	AFN
11.57	SAPO-56	AFX
11.64	AIPO-52, Calcined, Rehydrated	AF'T OPP
11.65	Offretite	OFF
11.67	Quinuclidinium fluoride octadecasil	AST
11.69	Na-X, Dehydrated	FAU
11.73	Na-X, Hydrated	FAU
11.77	Linde Type L	
11.79	Nepheline Hydrate	JBW
11.86	Faujasite	FAU
11.86	Wenkite	-WEN
11.95	Magnesium Phosphate UiO-20	DFT
12.10	Na-Y, Siliceous	FAU
12.13	Amicite	GIS
12.14	Ultrastable Y, Dehydrated Dealuminated	\mathbf{FAU}
12.15	Gismondine	GIS
12.22	AlPO–21	AWO
12.22	ACP-1	ACO
12.32	Cobalt Gallium Phosphate-6	\mathbf{CGS}
12.35	Gobbinsite	GIS
12.36	Phillipsite	\mathbf{PHI}
12.38	Garronite	GIS
12.38	Di-n-propylamine MAPO–43	GIS
12.40	Harmotome	\mathbf{PHI}
12.41	Goosecreekite	GOO
12.42	Tetrapropylammonium SAPO–40	AFR
12.44	Merlinoite	MER
12.44	Tetramethylammonium ZAPO-M1	ZON
12.46	Na-P1	GIS
12.46	Linde Type A, Hydrated	LTA
12.48	Phillipsite	PHI
12.49	Linde Type A, Dehydrated	LTA
12.54	Merlinoite	MER
12.55	AlPO–C, Dehydrated	APC
12.57	Gobbinsite	GIS
12.58	Ferrierite, Siliceous	FER
12.59	Goosecreekite	GOO
12.60	ACP-1	ACO

$2 heta^{\circ}$	Material	Code
12.65	Tetramethylammonium OH AlPO–12	ATT
12.71	Laumontite	\mathbf{LAU}
12.73	MCM-61	\mathbf{MSO}
12.76	Franzinite	\mathbf{FRA}
12.78	ZSM-57, SiO_2 Framework	MFS
12.78	Dachiardite	DAC
12.80	Maricopaite	MOR
12.83	Ferrierite, Siliceous	FER
12.84	Epistilbite	EPI
12.88	RUB-17	RSN
12.89	Methylbutylamine SAPO-47	CHA
12.00 12.90	AlPO-C Hydrated	APC
12.00 12.91	Dodecasil 3C	MTN
12.01		
12.01 12.01	AlPO-18 Calcined	AFI
12.91 12.00	AIDO EN2	AEN
12.33	Loonhardito	
13.00 13.07	Browstorite	BBE
19.07	AIDO 14 Calainad	AEN
13.10 19.1c	AIPO-14, Calcilled	AFN
13.10 19.17	Di a anamira MADEO 46	
13.17	(Na Tatawa athalawa ariwa) E	AFS
13.33	(Na, Tetrametnylammonium)-E	EAB
13.34	Erionite	ERI
13.37	Scolecite	NAT
13.38	Piperidine AIPO-17	ERI
13.39	Thomsonite	THO
13.41	Montesommaite	MON
13.41	MAPO-39	ATN
13.41	Gonnardite	NAT
13.44	Mesolite	NAT
13.45	Mordenite	MOR
13.50	Bellbergite	\mathbf{EAB}
13.56	Natrolite	NAT
13.60	Edingtonite	\mathbf{EDI}
13.64	AlPO–C, Hydrated	APC
13.72	ITQ-4, Calcined	\mathbf{IFR}
13.72	Losod	\mathbf{LOS}
13.73	AlPO–41, Calcined	AFO
13.76	Tetramethylammonium ZAPO-M1	ZON
13.80	Li-ABW	\mathbf{ABW}
13.88	RUB-17	\mathbf{RSN}
13.89	STA-1, Magnesium Aluminophosphate	SAO
13.89	VPI-7	\mathbf{VSV}
13.90	Harmotome	PHI
14.00	AlPO–C, Dehydrated	APC
14.02	Cancrinite	CAN
14.02	Brewsterite	BRE
14.14	RUB-3	RTE
14.16	Sodalite Octahydrate	SOD
14.31	Tugtupite	SOD
14.41	RUB-10, SiO ₂ Framework	BUT
14.50	Roggianite	-RON
14.56	Partheite	-PAR
14.71	Linde Type L	LTL
14 74	Melanophlogite	MEP
14.80	AIPO-21	AWO
14.00	Gonnardite	ΝΔΤ
14 06	AIPO-25	
14 07	Weinebeneite	WEI
15.00	(Cs K) ZK5 Dehydrated	KEI
10.00	(co,ii) dito, bonyuranou	

$2 heta^\circ$	Material	Code
15.04	Natrolite	NAT
15.10	Scolecite	NAT
15.10	N ₂ , Piperidine Dodecasil 1H	DOH
15.11	Mesolite	NAT
15.14	Dodecasil 3C	MTN
15.20	Chiavennite	-CHI
15.23	Ferrierite	FER
15.20	Chiral Sodium Zincophosphate P6-22	CZP
15.20 15.27	Chiral Sodium Zincophosphate, P6, 22	CZP
15.21	Vugawaralite	VIIC
15.00 15.42	OSB 1	050
15.42 15.45	Weinebeneite	WEI
15.40 15.61	Faujasito	FAII
15.01	Analoimo	ANA
16.16	Melenenblogite	MED
16.10	STA 6	SAS
16.24	STA 9	SAS
16.49	STA-2	SAI
10.42	SIA-2 Monlingite	SAI MED
10.07	Merimone N. Diversi dive Dedese il 111	DOU
10.84	N_2 , Piperidine Dodecasii IH	
17.13	1-aminoadamantane Deca-Dodecasil 3R	DDR
17.35	Amicite	GIS
17.65	Gmelinite	GME
17.82	Lovdarite	LOV
17.87	RUB-3	RTE
17.87	Garronite	GIS
17.90	AIPO–C, Dehydrated	APC
18.04	Gismondine	GIS
18.35	Liottite	LIO
18.40	Afghanite	AFG
18.54	Quinuclidine AIPO–22	AWW
18.61	Losod	LOS
18.67	Rho, Hydrated	RHO
18.75	Quinuclidine AlPO–16	\mathbf{AST}
18.89	Edingtonite	\mathbf{EDI}
19.06	MAPO–36, Calcined	ATS
19.15	Cancrinite	\mathbf{CAN}
19.16	Yugawaralite	YUG
19.21	Thomsonite	\mathbf{THO}
19.56	1-aminoadamantane Sigma-2	\mathbf{SGT}
19.76	1-aminoadamantane Sigma-2	\mathbf{SGT}
19.82	Goosecreekite	\mathbf{GOO}
20.01	Moganite	-
20.08	CIT-5	CFI
20.09	VPI-8	VET
20.18	Di-n-propylamine SAPO–31	ATO
20.34	Gottardiite	NES
20.36	Diethylamine Theta-1 (Silica ZSM-22)	TON
20.45	Chabazite	CHA
20.52	Tridymite	-
20.53	EU-1, Calcined, Rehydrated	EUO
20.58	Tridymite	_
20.61	Quinuclidine AlPO–22	AWW
20.62	2-aminopentane Nonasil	NON
20.62	AlPO-D	APD
20.62	Methylbutylamine SAPO-47	CHA
20.64	UiO-6, Calcined	OSI
20.66	GUS-1	GON
20.71	AlPO-D	APD
20.82	Gismondine	GIS

$2 heta^\circ$	Material	Code
20.86	Alpha Quartz	_
20.96	UTD-1	DON
20.97	Tetrapropylammonium Fluoride AlPO-5	AFI
21.03	Amicite	GIS
21.04	Di-isopropylamine MnAPO–11	AEL
21.10	Barium Chloroaluminosilicate	MER
21.13	AlPO-25	ATV
21.18	Cobalt Gallophosphate	\mathbf{LAU}
21.22	Bikitaite	BIK
21.23	AlPO–11, Calcined	AEL
21.52	Di-n-propylamine MAPO–43	GIS
21.52	STA-2	SAT
21.57	Gobbinsite	GIS
21.60	Cs-Aluminosilicate	\mathbf{CAS}
21.67	Na-P1	GIS
21.68	Tridymite	-
21.87	AlPO – H2	AHT
21.89	Stilbite	\mathbf{STI}
21.90	Stellerite	\mathbf{STI}
21.92	Barrerite	\mathbf{STI}
22.00	Alpha Cristobalite	—
22.03	1-aminoadamantane NU-3	\mathbf{LEV}
22.03	Quinuclidine AlPO–16	\mathbf{AST}
22.13	Quinuclidinium fluoride octadecasil	AST
22.22	Heulandite	HEU
22.38	Tetrapropylammonium Fluoride AlPO-5	AFI
22.49	Clinoptilolite	HEU
22.52	Perlialite	LTL
22.58	Di-n-propylamine SAPO–31	ATO
22.59	MAPO-39	ATN
22.60	VPI-5 Osimuli dinimu fluori da esta da esti	VFI
22.02	Quinuciidinium nuoride octadecasii	ASI
22.05	ASU-7 Enistilbito	ASV FDI
22.90 23.05	Boggsite	BOC
23.00 23.11	Cobalt Callium Phosphate-5	CCF
20.11 23.13	ZSM-11 Calcined	MEL
23.10 23.24	Magnesium Phosphate UiO-20	DFT
23.48	ASU-7	ASV
23.53	Offretite	OFF
23.57	(Na. Tetramethylammonium)-E	EAB
23.78	Rho, Deuterated Berylloarsenate	RHO
23.86	Keatite	_
23.86	Franzinite	FRA
23.95	Liottite	LIO
23.96	AlPO-EN3	AEN
24.08	Afghanite	AFG
24.16	Pahasapaite	RHO
24.18	Di-n-propylamine CoAPO–50	AFY
24.65	Sodalite Octahydrate	SOD
24.68	Cs-Aluminosilicate	\mathbf{CAS}
24.71	Bicchulite	SOD
24.79	Edingtonite	EDI
24.79	Melanophlogite	MEP
24.80	Tugtupite	SOD
24.83	Cs-Aluminosilicate	CAS
25.14	Tugtupite	SOD
25.14	Kno, Hydrated	кно
25.18	Laumontite	
25.19	Cobalt Gallophosphate	LAU

$2 heta^\circ$	Material	Code
25.37	Leonhardite	\mathbf{LAU}
25.42	Thomsonite	THO
25.59	MCM-35	MTF
25.73	Dachiardite	DAC
25.76	Bikitaite	BIK
25.77	Wenkite	-WEN
25.96	Analcime	ANA
26.03	Keatite	-
26.07	Magnesium Phosphate UiO-20	\mathbf{DFT}
26.10	Nepheline Hydrate	\mathbf{JBW}
26.29	Moganite	_
26.49	Tiptopite	CAN
26.65	Alpha Quartz	_
26.73	Moganite	_
26.73	Keatite	_
26.91	Liottite	LIO
27.01	Montesommaite	MON
27.02	Afghanite	AFG
27.02	Rho, Deuterated Berylloarsenate	RHO
27.43	VPI-7	\mathbf{VSV}
27.46	Pahasapaite	RHO
27.54	Tetramethylammonium OH AlPO–12	ATT
27.66	Di-n-propylamine MAPO–43	GIS
27.72	ACP-1	ACO
27.74	Cancrinite	CAN
27.89	Phillipsite	PHI
28.10	Na-P1	GIS

$2 heta^\circ$	Mat	erial	Code
28.15	Li-ABW		ABW
28.33	Garronite		GIS
28.37	Wenkite		-WEN
28.42	Montesommaite		MON
29.03	AlPO – H2		AHT
29.10	VPI-9		VNI
29.29	Yugawaralite		YUG
29.36	OSB-1		OSO
29.50	Li-ABW		ABW
30.19	Tiptopite		CAN
30.40	Chabazite		CHA
30.50	Brewsterite		BRE
30.54	Analcime		ANA
30.96	Scolecite		NAT
30.98	Mesolite		NAT
31.01	Gonnardite		NAT
31.22	Natrolite		NAT
31.44	Alpha Cristobalite		-
31.99	Sodalite Octahydrat	e	SOD
32.07	Bicchulite		SOD
32.08	Beryllophosphate-H		BPH
32.32	Barium Chloroalumi	nosilicate	MER
35.58	Tiptopite		CAN
35.73	Weinebeneite		WEI
36.15	Alpha Cristobalite		_
39.49	Alpha Quartz		_
43.51	Bicchulite		SOD

POWDER PATTERNS

CHEMICAL COMPOSITION: $|Li_4(H_2O)_4|$ [Si₄Al₄O₁₆]

REFINED COMPOSITION: $|Li_4(H_2O)_4|$ [Si₄Al₄O₁₆]

CRYSTAL DATA: $Pna2_1$ (No. 33)

 $\begin{array}{ll} a = 10.313 \text{ \AA} & b = 8.194 \text{ \AA} & c = 4.993 \text{ \AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement, } R_{\rm w} = 0.081 \end{array}$

REFERENCE:

E. Krogh Andersen and G. Ploug-Sørensen, Z. Kristallogr. **176** 67–73 (1986).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	13.80	6.416	4	88.5	0	0	2	35.97	2.497	2	34.7	3	3	0	42.26	2.139	4	0.5
2	0	0	17.20	5.156	2	20.6	4	1	0	36.53	2.459	4	3.3	1	2	2	43.34	2.088	8	0.7
2	1	0	20.35	4.364	4	17.5	2	3	0	37.25	2.414	4	0.1	0	4	0	44.21	2.049	2	6.6
0	1	1	20.83	4.264	4	59.3	0	3	1	37.53	2.396	4	9.0	1	4	0	45.12	2.009	4	0.4
0	2	0	21.69	4.097	2	4.3	1	3	1	38.57	2.334	8	5.5	5	1	0	45.34	2.000	4	1.9
2	1	1	27.14	3.286	8	5.9	3	2	1	38.65	2.329	8	11.3	4	2	1	45.36	2.000	8	0.4
2	2	0	27.81	3.208	4	0.1	1	1	2	38.70	2.327	8	6.0	2	2	2	46.07	1.970	8	0.2
3	1	0	28.15	3.170	4	94.6	4	0	1	39.33	2.291	4	0.3	3	3	1	46.18	1.966	8	2.2
1	2	1	29.50	3.028	8	100.0	2	0	2	40.13	2.247	4	5.0	3	1	2	46.29	1.961	8	9.3
2	2	1	33.19	2.699	8	2.7	4	1	1	40.90	2.206	8	3.7	2	4	0	47.77	1.904	4	0.7
3	1	1	33.48	2.676	8	0.5	4	2	0	41.38	2.182	4	2.5	4	3	0	48.56	1.875	4	1.2
1	3	0	33.95	2.640	4	4.1	2	3	1	41.56	2.173	8	7.9	1	4	1	48.86	1.864	8	0.9
3	2	0	34.04	2.633	4	1.1	2	1	2	41.68	2.167	8	1.3	5	2	0	49.47	1.842	4	1.3

CH	EM	IC	AL CO	MPOS	SITI	ON:	$ (\mathrm{NH}_2(\mathrm{CH})) $	$[H_2]_{2}$) ₂ N NH	$(\mathrm{H}_2)_4(H$	$\left \mathbf{I}_{2}\mathbf{O} \right)_{2} \right $	[Al ₀ diam	. ₈₈ Co ₇ iine	. ₁₂ P ₈ O ₃	2]					
R	EF	INF	ED CO	MPOS	ITIO	ON:	$ C_8N_8O_2 $	2 [(Co_8	P ₈ O ₃₂]										
			CRY F	'STAL REFER	DA'	TA: CE:	$I\overline{4}2m \text{ (N}$ $a = 10.2$ $\alpha = 90.0$ X-ray sin P. Feng, Nature :	fo. 40)° ngle X. 388	121 Å e cr Bu 73	b = 1 $\beta = 1$ $\beta =$	10.240 90.0° efinem G. D. S (1997)	Å ent, tuck	$c = 9$ $\gamma = 7$ $R_{\rm p} = 7$ $y,$	9.652 Å 90.0° 0.0775						
h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	12 22	$7\ 241$	4	43 6	1	0	3	29.09	3 069	8	26.4	4	0	2	39.86	2.262	8	0.3
1	0	1	12.60	7.024	8	100.0	2	$\overset{\circ}{2}$	2	30.88	2.896	8	10.6	3	3	2	41.85	2.159	8	2.0
2	0	0	17.32	5.120	4	15.6	3	2	1	32.87	2.725	16	8.4	3	2	3	42.45	2.129	16	2.9
0	0	2	18.38	4.826	2	7.4	3	1	2	33.32	2.689	16	8.7	4	2	2	43.76	2.069	16	0.4
2	1	1	21.48	4.137	16	0.2	2	1	3	34.06	2.633	16	14.7	2	2	4	45.16	2.008	8	0.5
1	1	2	22.14	4.016	8	16.5	4	0	0	35.05	2.560	4	1.0	4	3	1	45.26	2.003	16	2.8
2	2	0	24.59	3.620	4	1.1	3	3	0	37.25	2.414	4	7.1	4	1	3	46.17	1.966	16	4.8
2	0	2	25.36	3.512	8	6.6	4	1	1	37.39	2.405	16	4.5	3	1	4	46.96	1.935	16	3.5
3	1	0	27.54	3.238	8	36.4	3	0	3	38.45	2.341	8	5.2	5	2	1	48.81	1.866	16	1.1
3	0	1	27.72	3.218	8	46.5	1	1	4	39.36	2.289	8	1.0	5	1	2	49.14	1.854	16	2.3

CHEMICAL COMPOSITION: [Al₂₄P₂₄O₉₆]

REFINED COMPOSITION: [Al₂₄P₂₄O₉₆]

CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 13.7114 Å b = 12.7315 Å c = 18.5706 Å $\alpha = 90^{\circ}$ $\beta = 90.01^{\circ}$ $\gamma = 90^{\circ}$ X-ray Rietveld refinement, $R_{exp} = 0.047$, $R_{wp} = 0.108$, $R_{F} = 0.032$

REFERENCE: A. Simmen, L. B. McCusker, Ch. Baerlocher and W. M. Meier, Zeolites 11 654–661 (1991). Ch. Baerlocher, Private communication.

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	9.48	9.330	4	100.0	0	2	5	27.81	3.208	4	5.9	-3	3	5	37.72	2.385	4	0.2
0	0	2	9.52	9.285	2	57.9	0	4	0	28.03	3.183	2	0.8	4	4	0	38.60	2.332	4	0.3
-1	1	1	10.61	8.337	4	13.5	-1	3	4	29.24	3.054	4	0.6	0	0	8	38.79	2.321	2	0.3
1	1	1	10.61	8.336	4	14.6	1	3	4	29.25	3.054	4	0.5	-4	4	1	38.91	2.314	4	0.3
2	0	0	12.91	6.856	2	13.5	4	2	0	29.60	3.018	4	1.0	4	4	1	38.92	2.314	4	0.2
-1	1	2	13.45	6.582	4	2.4	0	4	2	29.67	3.011	4	0.4	-2	2	7	39.06	2.306	4	0.5
1	1	2	13.45	6.581	4	2.8	-4	2	1	29.99	2.979	4	1.4	5	3	0	39.11	2.303	4	0.3
0	2	0	13.91	6.366	2	1.9	4	2	1	30.00	2.979	4	2.2	-5	3	1	39.42	2.286	4	0.5
0	2	1	14.71	6.022	4	0.4	-3	3	2	30.31	2.949	4	1.4	5	3	1	39.42	2.286	4	0.3
-2	0	2	16.07	5.516	2	6.5	3	3	2	30.31	2.949	4	0.6	-5	3	2	40.34	2.236	4	0.2
2	0	2	16.07	5.515	2	6.0	-1	1	6	30.43	2.938	4	1.3	5	3	2	40.35	2.235	4	0.2
0	2	2	16.89	5.250	4	19.2	1	1	6	30.43	2.938	4	1.9	-3	3	6	41.14	2.194	4	0.4
-1	1	3	17.19	5.158	4	9.3	-2	2	5	30.77	2.906	4	1.5	3	3	6	41.15	2.194	4	0.6
1	1	3	17.19	5.158	4	9.5	2	2	5	30.77	2.905	4	1.2	0	2	8	41.40	2.181	4	1.0
2	2	0	19.02	4.665	4	3.0	2	4	0	30.98	2.887	4	2.6	-4	2	6	41.80	2.161	4	0.2
0	0	4	19.12	4.643	2	0.9	-4	2	2	31.16	2.870	4	5.1	2	4	6	42.84	2.111	4	0.2
-2	2	1	19.62	4.524	4	1.6	4	2	2	31.16	2.870	4	3.7	0	6	1	42.90	2.108	4	0.4
2	2	1	19.62	4.524	4	2.0	2	4	1	31.36	2.853	4	0.2	-6	2	2	43.17	2.095	4	0.5
0	2	3	20.01	4.438	4	6.6	0	4	3	31.61	2.831	4	1.8	-3	5	3	43.22	2.093	4	0.7
3	1	0	20.65	4.302	4	11.8	2	0	6	31.72	2.821	2	0.4	3	5	3	43.22	2.093	4	0.5
3	1	1	21.20	4.191	4	3.0	0	2	6	32.16	2.784	4	4.2	1	5	5	43.60	2.076	4	0.3
-2	2	2	21.31	4.169	4	0.9	-3	3	3	32.21	2.779	4	1.0	5	3	4	43.88	2.063	4	0.2
2	2	2	21.32	4.168	4	5.6	3	3	3	32.21	2.779	4	0.9	-3	1	8	44.34	2.043	4	0.3
-1	1	4	21.38	4.157	4	4.2	-4	0	4	32.46	2.758	2	0.5	3	1	8	44.34	2.043	4	0.2
1	1	4	21.38	4.156	4	0.5	4	0	4	32.47	2.757	2	0.4	5	1	6	44.72	2.026	4	0.2
1	3	0	21.92	4.054	4	0.7	-2	4	2	32.48	2.757	4	0.5	1	3	8	45.00	2.014	4	0.2
1	3	1	22.45	3.961	4	0.4	2	4	2	32.48	2.757	4	0.5	-5	3	5	46.38	1.958	4	0.2
-3	1	2	22.78	3.903	4	0.3	-1	3	5	32.70	2.739	4	1.7	5	3	5	46.39	1.957	4	0.2
-2	0	4	23.14	3.844	2	1.5	1	3	5	32.70	2.739	4	2.5	-6	2	4	46.53	1.952	4	0.2
0	2	4	23.72	3.751	4	1.2	-4	2	3	33.02	2.713	4	0.9	7	1	0	46.93	1.936	4	0.2
-2	2	3	23.88	3.726	4	4.4	4	2	3	33.02	2.713	4	0.9	7	1	1	47.20	1.926	4	0.3
2	2	3	23.89	3.725	4	4.6	-5	1	1	33.78	2.653	4	0.5	7	1	2	48.00	1.895	4	0.2
-1	3	2	23.95	3.715	4	1.6	5	1	1	33.78	2.653	4	0.5	5	5	0	48.80	1.866	4	0.9
1	3	2	23.95	3.715	4	3.6	-2	4	3	34.27	2.616	4	0.4	4	4	6	48.90	1.863	4	0.5
-3	1	3	25.21	3.533	4	0.4	2	4	3	34.27	2.616	4	0.2	-3	3	8	48.96	1.860	4	0.2
3	1	3	25.21	3.532	4	0.9	3	3	4	34.72	2.584	4	0.4	0	0	10	49.05	1.857	2	1.1
-1	1	5	25.82	3.451	4	1.2	-2	2	6	34.78	2.579	4	0.3	-5	5	1	49.07	1.857	4	0.4
1	1	5	25.82	3.451	4	0.9	5	1	2	34.83	2.575	4	0.4	5	5	1	49.07	1.857	4	0.5
4	0	0	25.99	3.428	2	3.8	-4	2	4	35.47	2.531	4	0.4	-5	3	6	49.31	1.848	4	0.4
-1	3	3	26.28	3.392	4	3.3	1	5	0	35.87	2.503	4	0.9	-7	1	3	49.32	1.848	4	0.3
1	3	3	26.28	3.391	4	2.8	-1	5	1	36.20	2.481	4	0.2	7	1	3	49.32	1.848	4	0.3
-2	2	4	27.10	3.291	4	0.4	1	5	1	36.20	2.481	4	0.3	5	3	6	49.32	1.848	4	0.2
2	2	4	27.10	3.290	4	0.4	-5	1	3	36.52	2.460	4	0.5	0	6	5	49.47	1.842	4	0.3
-4	0	2	27.74	3.216	2	0.2	5	1	3	36.53	2.460	4	0.5	-5	5	2	49.84	1.829	4	0.2
4	0	2	27.74	3.216	2	0.4	0	2	7	36.70	2.449	4	0.3	5	5	2	49.85	1.829	4	0.4

CHEMICAL COMPOSITION: [Al₂₀P₂₀O₈₀]

REFINED COMPOSITION: [Al₂₀P₂₀O₈₀]

CRYSTAL DATA: *Ibm*2 (No. 46) **ba** \overline{c} setting a = 13.5336 Å b = 18.4821 Å c = 8.3703 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ Neutron Rietveld refinement, $R_{\rm wp} = 0.027$, $R_{\rm F^2} = 0.058$

REFERENCE: J. W. Richardson, Jr., J. J. Pluth and J. V. Smith, Acta Cryst. **B44** 367–373 (1988).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	8.10	10.919	4	100.0	3	5	0	31.28	2.859	4	0.5	6	1	1	41.76	2.163	8	0.7
0	2	0	9.57	9.241	2	82.1	1	6	1	31.65	2.827	8	1.2	4	1	3	42.27	2.138	8	0.8
2	0	0	13.08	6.767	2	18.9	2	4	2	31.73	2.820	8	5.6	3	4	3	42.84	2.111	8	0.8
1	3	0	15.80	5.607	4	35.6	2	6	0	31.92	2.804	4	0.9	0	0	4	43.23	2.093	2	3.0
2	2	0	16.23	5.460	4	1.3	4	3	1	32.02	2.795	8	0.6	1	1	4	44.06	2.055	8	0.1
0	4	0	19.21	4.621	2	0.6	3	3	2	32.60	2.746	8	0.2	1	6	3	44.31	2.044	8	0.7
3	1	0	20.26	4.383	4	17.7	4	4	0	32.81	2.730	4	10.6	0	2	4	44.39	2.041	4	0.4
0	0	2	21.23	4.185	2	71.4	4	0	2	34.07	2.631	4	2.6	6	4	0	44.71	2.027	4	2.3
2	3	1	22.22	4.001	8	26.2	1	7	0	34.61	2.591	4	4.6	4	7	1	44.87	2.020	8	2.0
3	0	1	22.39	3.971	4	18.9	5	0	1	34.83	2.575	4	0.1	3	7	2	45.31	2.001	8	0.3
1	1	2	22.75	3.908	8	5.0	4	2	2	35.47	2.531	8	0.8	4	6	2	45.33	2.001	8	1.0
1	4	1	22.95	3.876	8	23.9	0	6	2	36.21	2.481	4	1.8	2	0	4	45.36	1.999	4	0.1
2	4	0	23.31	3.816	4	26.6	5	3	0	36.25	2.478	4	4.3	3	8	1	45.42	1.997	8	0.6
0	2	2	23.33	3.812	4	6.2	3	6	1	36.93	2.434	8	0.7	6	0	2	45.69	1.986	4	0.5
3	2	1	24.40	3.649	8	1.7	4	5	1	37.61	2.392	8	0.1	1	3	4	46.31	1.960	8	0.4
3	3	0	24.46	3.640	4	1.7	2	3	3	37.81	2.379	8	4.8	5	0	3	46.76	1.943	4	0.1
1	5	0	24.97	3.566	4	0.9	3	0	3	37.92	2.373	4	4.5	5	5	2	46.93	1.936	8	0.4
2	0	2	25.02	3.559	4	1.9	3	5	2	38.12	2.361	8	0.1	5	2	3	47.84	1.901	8	0.1
4	0	0	26.34	3.383	2	11.3	2	7	1	38.13	2.360	8	0.9	5	7	0	48.14	1.890	4	0.3
1	3	2	26.58	3.354	8	5.9	1	4	3	38.26	2.352	8	5.7	3	1	4	48.19	1.888	8	0.1
2	2	2	26.84	3.322	8	0.2	3	2	3	39.20	2.298	8	0.4	7	0	1	48.31	1.884	4	1.2
4	2	0	28.08	3.177	4	2.0	4	4	2	39.41	2.286	8	2.8	3	6	3	48.42	1.880	8	0.3
0	4	2	28.78	3.102	4	0.2	3	7	0	39.55	2.279	4	0.6	6	5	1	48.51	1.876	8	0.1
4	1	1	28.87	3.093	8	2.3	4	6	0	39.56	2.278	4	0.8	3	9	0	48.72	1.869	4	0.3
0	6	0	28.99	3.080	2	7.0	6	0	0	39.97	2.256	2	0.2	7	2	1	49.37	1.846	8	0.1
3	1	2	29.51	3.027	8	2.7	5	4	1	40.08	2.250	8	0.2	2	7	3	49.39	1.845	8	1.0
2	5	1	29.53	3.025	8	0.3	1	7	2	40.96	2.203	8	0.3	7	3	0	49.41	1.845	4	0.6
3	4	1	29.66	3.012	8	1.2	5	5	0	41.34	2.184	4	0.3	2	4	4	49.69	1.835	8	0.3

CHEMICAL COMPOSITION:	$\begin{array}{l} (C_6H_{16}N)_2 ~[Mn_2Al_{18}P_{20}O_{80}] \\ C_6H_{16}N = di\text{-isopropylamine} \end{array}$
REFINED COMPOSITION:	$ C_{15.5}N_{2.58} $ [Al _{20.54} P _{18.22} O ₈₀]
CRYSTAL DATA:	$\begin{array}{ll} Ibm2 \mbox{ (No. 46) } \mathbf{ba\overline{c}} \mbox{ setting} \\ a = 13.472 \mbox{ \AA } b = 18.712 \mbox{ \AA } c = 8.4431 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \mbox{ X-ray single crystal refinement, } R_{\rm w} = 0.042 \end{array}$

REFERENCE: J. J. Pluth, J. V. Smith and J. W. Richardson, Jr., J. Phys. Chem. **92** 2734–2738 (1988).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	8.09	10.933	4	29.6	4	3	1	32.01	2.796	8	0.6	0	0	4	42.84	2.111	2	4.7
0	2	0	9.45	9.356	2	41.6	3	3	2	32.45	2.759	8	0.1	1	1	4	43.67	2.073	8	0.1
2	0	0	13.14	6.736	2	14.9	4	4	0	32.76	2.733	4	17.1	1	6	3	43.85	2.065	8	0.7
1	3	0	15.66	5.660	4	31.0	5	1	0	33.60	2.667	4	1.0	0	2	4	43.97	2.059	4	0.3
2	2	0	16.21	5.467	4	3.7	4	0	2	34.05	2.633	4	2.8	0	8	2	44.27	2.046	4	0.4
2	1	1	17.50	5.069	8	0.2	1	7	0	34.20	2.622	4	6.4	4	3	3	44.39	2.041	8	0.3
0	4	0	18.97	4.678	2	5.2	5	0	1	34.95	2.567	4	0.3	4	$\overline{7}$	1	44.58	2.032	8	3.0
3	1	0	20.34	4.367	4	36.2	4	2	2	35.42	2.534	8	1.5	6	4	0	44.77	2.024	4	3.1
0	0	2	21.04	4.222	2	100.0	0	6	2	35.80	2.508	4	2.1	3	7	2	44.92	2.018	8	0.6
2	3	1	22.09	4.024	8	44.4	5	2	1	36.29	2.475	8	0.1	3	8	1	45.00	2.015	8	0.6
3	0	1	22.42	3.965	4	31.6	5	3	0	36.32	2.473	4	6.0	2	0	4	45.01	2.014	4	0.1
1	1	2	22.58	3.938	8	11.8	3	6	1	36.66	2.451	8	1.1	4	6	2	45.06	2.012	8	0.6
1	4	1	22.71	3.915	8	41.0	4	5	1	37.47	2.400	8	0.5	6	0	2	45.77	1.982	4	1.2
0	2	2	23.11	3.848	4	12.5	2	3	3	37.52	2.397	8	9.8	1	3	4	45.88	1.978	8	0.4
2	4	0	23.15	3.842	4	60.4	3	0	3	37.72	2.385	4	6.5	2	8	2	46.38	1.958	8	0.1
3	2	1	24.38	3.651	8	3.2	2	7	1	37.74	2.384	8	2.0	5	0	3	46.67	1.946	4	0.1
3	3	0	24.42	3.644	4	0.7	1	4	3	37.90	2.374	8	8.9	5	5	2	46.79	1.942	8	0.9
1	5	0	24.69	3.606	4	7.3	2	6	2	38.29	2.351	8	0.2	6	2	2	46.85	1.939	8	0.1
2	0	2	24.89	3.577	4	4.0	0	8	0	38.49	2.339	2	0.3	2	9	1	46.99	1.934	8	0.2
1	3	2	26.34	3.384	8	14.2	3	2	3	38.97	2.311	8	0.9	3	1	4	47.86	1.900	8	0.2
4	0	0	26.46	3.368	2	16.5	3	7	0	39.22	2.297	4	0.6	5	7	0	47.94	1.898	4	0.5
2	2	2	26.68	3.341	8	0.3	4	4	2	39.27	2.294	8	2.4	3	6	3	48.03	1.894	8	0.6
4	2	0	28.16	3.169	4	2.8	4	6	0	39.37	2.288	4	0.3	3	9	0	48.23	1.887	4	0.1
0	4	2	28.48	3.134	4	0.2	5	4	1	40.07	2.250	8	0.1	6	5	1	48.49	1.877	8	0.3
0	6	0	28.62	3.119	2	13.7	6	0	0	40.16	2.245	2	0.2	7	0	1	48.51	1.876	4	1.8
4	1	1	28.94	3.085	8	3.2	1	7	2	40.50	2.227	8	0.9	0	10	0	48.66	1.871	2	0.1
2	5	1	29.28	3.050	8	0.5	1	8	1	40.58	2.223	8	0.5	4	5	3	48.68	1.871	8	0.2
3	1	2	29.43	3.035	8	6.4	2	8	0	40.84	2.210	4	0.4	2	7	3	48.90	1.863	8	1.3
3	4	1	29.53	3.025	8	1.3	5	5	0	41.29	2.187	4	0.3	2	4	4	49.25	1.850	8	0.5
3	5	0	31.11	2.875	4	0.4	6	1	1	41.91	2.155	8	1.0	7	2	1	49.54	1.840	8	0.2
1	6	1	31.29	2.859	8	0.9	4	1	3	42.12	2.145	8	0.9	7	3	0	49.57	1.839	4	0.9
2	4	2	31.48	2.842	8	7.8	2	5	3	42.36	2.134	8	0.2	6	4	2	49.97	1.825	8	0.7
2	6	0	31.61	2.830	4	0.4	3	4	3	42.55	2.125	8	0.5							

CHEMICAL COMPOSITION:	$ (C_2H_8N_2)_4(H_2O)_{16} [Al_{24}P_{24}O_{96}]$
	$C_2H_8N_2 = ethylene diamine$

REFINED COMPOSITION: $|(C_8N_8O_8)(H_2O_8)| [P_{24}Al_{24}O_{96}]$

CRYSTAL DATA: $P2_12_12_1$ (No. 19)

 $\begin{array}{l} a = 10.321 \text{ Å} \quad b = 13.631 \text{ Å} \quad c = 17.454 \text{ Å} \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement.} \quad R_{\rm p} = 0.140, \, R_{\rm wp} = 0.182, \, R_{\rm F^2} = 0.103 \end{array}$

REFERENCE: R. M. Kirchner, R. W. Grosse-Kunstleve, J. J. Pluth, S. T. Wilson, R. W. Broach and J. V. Smith,

Microporous and Mesoporous Materials 39 319–332 (2000).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	1	1	8.23	10.743	4	0.5	3	1	3	30.90	2.894	8	16.5	4	3	2	41.56	2.173	8	0.6
0	0	2	10.14	8.727	2	100.0	0	1	6	31.44	2.845	4	0.6	1	4	6	41.75	2.163	8	0.9
1	1	0	10.75	8.228	4	2.0	2	1	5	31.63	2.828	8	4.2	1	3	$\overline{7}$	42.26	2.138	8	5.0
1	1	1	11.89	7.443	8	14.8	2	4	1	31.88	2.807	8	1.1	3	5	1	42.63	2.121	8	4.2
0	1	2	12.04	7.350	4	1.3	1	1	6	32.65	2.743	8	5.9	3	4	4	42.71	2.117	8	1.2
0	2	0	12.99	6.815	2	49.0	3	3	1	33.06	2.710	8	1.7	4	2	4	42.82	2.112	8	2.5
1	1	2	14.80	5.987	8	1.2	2	3	4	33.35	2.687	8	2.3	1	1	8	42.88	2.109	8	2.3
1	2	0	15.58	5.687	4	13.0	0	4	4	33.36	2.686	4	1.0	3	5	2	43.61	2.075	8	0.4
1	2	1	16.39	5.408	8	1.1	0	2	6	33.49	2.675	4	2.8	1	6	3	43.66	2.073	8	0.5
0	2	2	16.50	5.372	4	11.3	2	2	5	33.67	2.662	8	0.9	4	1	5	44.15	2.051	8	1.7
2	0	0	17.18	5.161	2	4.6	3	1	4	33.82	2.650	8	10.4	1	2	8	44.48	2.037	8	2.9
1	2	2	18.62	4.765	8	22.1	1	5	0	34.01	2.636	4	0.3	2	4	6	44.56	2.033	8	0.4
1	1	3	18.68	4.750	8	16.3	3	3	2	34.27	2.617	8	1.0	5	1	1	44.70	2.027	8	3.8
2	1	1	19.08	4.652	8	68.2	1	4	4	34.51	2.599	8	1.0	2	6	2	44.81	2.023	8	0.7
2	0	2	19.99	4.442	4	2.1	1	2	6	34.63	2.590	8	10.2	0	6	4	44.99	2.015	4	3.1
0	0	4	20.35	4.364	2	0.5	4	0	0	34.77	2.580	2	16.1	2	3	$\overline{7}$	45.04	2.013	8	1.1
0	1	4	21.38	4.156	4	0.7	2	4	3	35.12	2.555	8	0.3	3	5	3	45.21	2.006	8	0.4
0	3	2	22.06	4.030	4	2.7	4	0	1	35.16	2.553	4	0.9	4	4	2	45.29	2.002	8	4.9
2	2	1	22.20	4.004	8	4.2	3	2	4	35.75	2.512	8	0.3	3	1	$\overline{7}$	45.41	1.997	8	1.1
2	0	3	23.04	3.861	4	10.6	4	1	1	35.79	2.509	8	0.6	3	4	5	45.60	1.989	8	1.0
1	1	4	23.07	3.855	8	1.2	2	1	6	36.05	2.491	8	0.5	0	5	6	45.60	1.989	4	0.3
1	3	2	23.70	3.754	8	0.9	4	0	2	36.31	2.474	4	3.3	2	1	8	45.63	1.988	8	0.6
2	2	2	23.91	3.721	8	3.3	2	3	5	36.85	2.439	8	6.7	5	1	2	45.65	1.987	8	2.3
2	1	3	23.96	3.715	8	98.8	3	1	5	37.28	2.412	8	1.8	4	2	5	45.71	1.985	8	0.4
0	2	4	24.22	3.675	4	35.8	1	5	3	37.46	2.401	8	0.4	2	5	5	45.74	1.984	8	2.5
1	2	4	25.73	3.462	8	1.8	4	2	1	37.63	2.390	8	1.2	1	6	4	45.88	1.978	8	3.3
0	4	0	26.15	3.408	2	44.7	2	5	1	37.67	2.388	8	3.5	5	2	1	46.25	1.963	8	0.4
1	3	3	26.34	3.383	8	10.2	1	1	$\overline{7}$	37.70	2.386	8	8.4	1	5	6	46.49	1.953	8	1.3
2	2	3	26.53	3.359	8	0.9	2	2	6	37.88	2.375	8	3.0	3	2	$\overline{7}$	46.94	1.936	8	0.5
2	3	1	26.63	3.347	8	23.2	1	4	5	37.91	2.373	8	0.7	4	0	6	47.08	1.930	4	1.6
3	1	1	27.22	3.276	8	3.1	2	5	2	38.75	2.324	8	0.9	2	2	8	47.15	1.927	8	0.8
2	1	4	27.56	3.237	8	0.4	3	3	4	38.78	2.322	8	1.8	5	2	2	47.17	1.927	8	1.7
1	4	0	27.56	3.236	4	3.5	3	2	5	39.06	2.306	8	1.1	5	1	3	47.19	1.926	8	2.4
1	1	5	27.76	3.214	8	30.0	0	6	0	39.67	2.272	2	0.5	3	5	4	47.37	1.919	8	0.5
1	4	1	28.04	3.182	8	4.4	1	5	4	39.96	2.256	8	0.8	1	7	1	47.82	1.902	8	1.6
0	4	2	28.11	3.174	4	47.5	4	2	3	40.47	2.229	8	0.3	1	1	9	48.21	1.888	8	3.0
3	1	2	28.65	3.116	8	4.2	2	5	3	40.51	2.227	8	4.4	4	3	5	48.21	1.887	8	0.8
3	2	0	29.07	3.071	4	4.9	4	3	1	40.54	2.225	8	1.6	2	6	4	48.50	1.877	8	1.0
1	4	2	29.44	3.034	8	26.7	4	0	4	40.62	2.221	4	0.7	1	6	5	48.62	1.873	8	1.2
3	2	1	29.53	3.025	8	0.5	1	6	0	40.66	2.219	4	1.9	3	4	6	48.95	1.861	8	2.3
1	3	4	29.68	3.010	8	1.4	2	1	$\overline{7}$	40.73	2.215	8	0.9	4	4	4	48.95	1.861	8	3.2
1	2	5	30.04	2.975	8	2.9	2	3	6	40.77	2.213	8	1.3	4	2	6	49.05	1.857	8	1.9
2	3	3	30.38	2.942	8	2.6	0	4	6	40.78	2.212	4	1.8	3	6	2	49.18	1.853	8	0.3
0	0	6	30.73	2.909	2	0.8	1	6	1	41.01	2.201	8	0.6	0	4	8	49.61	1.837	4	1.2
3	2	2	30.86	2.897	8	5.3	0	6	2	41.05	2.199	4	0.8	1	2	9	49.67	1.836	8	0.8

CHEMICAL COMPOSITION: [Al₃₆P₃₆O₁₄₄]

REFINED COMPOSITION: [Si₇₂O₁₄₄]

CRYSTAL DATA: Cmcm (No. 63) a = 33.2900 Å b = 14.7036 Å c = 8.3863 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ Neutron Rietveld refinement, $R_{wp} = 0.043$, $R_{F^2} = 0.077$

REFERENCE:

J. W. Richardson, Jr. and E. T. C. Vogt, *Zeolites* **12** 13–19 (1992).

 2θ d 2θ dM $I_{\rm rel}$ Mhkl M $I_{\rm rel}$ hkl hkl 2θ d $I_{\rm rel}$ $\mathbf{2}$ 0 0 5.3116.645 $\mathbf{2}$ 100.0 6 4 0 29.143.0644 2.5151 0 41.132.1944 0.11 1 0 13.450494.7 $\mathbf{6}$ $\mathbf{2}$ $\mathbf{2}$ 29.333.0458 1.3133 41.202.1918 0.36.571 10 $\mathbf{2}$ 73 3 3 1 0 9.998.857 17.10 29.453.0334 3.041.772.1638 4 1.0 $\mathbf{2}$ 0 $\mathbf{2}$ 11 1 0 2.9640.2131 $\mathbf{2}$ 41.792.1620 12.047.3520.230.154 8 0.1 $\mathbf{2}$ 0 $\mathbf{2}$ $\mathbf{2}$ 0 8 2.95443 42.032.15013.166.7254 0.130.264 0.44 8 0.13 1 14.556.090 8 $\mathbf{6}$ 41 31.072.8788 0.31241 42.212.1410.21 0.18 $\mathbf{5}$ 50 31.47 2.8432.16 42.822.1121 0 14.606.06546.93 48 0 40.12.795 $\mathbf{2}$ $\mathbf{6}$ 0 0 15.975.54820.5111 1 32.028 0.2 $\mathbf{6}$ $\mathbf{2}$ 43.102.0990.28 4 $\mathbf{2}$ 16.091200 32.272.7740.80 0 43.152.0970 5.5107.6 $\mathbf{2}$ 4 $\mathbf{2}$ 1.74 1 3 0 18.304.8490 4 $\mathbf{2}$ 32.39 2.7640.81600 43.492.0810.34 4.74 2 $\mathbf{2}$ 1 19.271 3 32.722.73743.692.0724 4.6058 0.31 8 0.11 1 4 8 0.4 $\overline{7}$ 1 0 19.624.52542.99 1 $\mathbf{2}$ 32.86 2.7268 1.4 $\mathbf{3}$ $\overline{7}$ 0 43.872.06440.2 $\mathbf{2}$ $\mathbf{6}$ 0 20.054.42946.03 51 33.282.6928 0.24 $\mathbf{6}$ $\mathbf{2}$ 44.172.0518 0.33 1 21.16 $\mathbf{5}$ 50 33.312.690 $\mathbf{5}$ 1 44.28 2.0451 4.1988 4.341.011 8 0.10 0 $\mathbf{2}$ 21.194.193 $\mathbf{2}$ 27.94 4 $\mathbf{2}$ 34.182.6238 0.63 1 4 44.40 2.0408 0.10 $\mathbf{2}$ 8 4 9 $\mathbf{5}$ $\mathbf{2}$ 8 0 21.354.1611 34.262.6178 0.344.922.0188 0.20.5 $\mathbf{2}$ 0 $\mathbf{2}$ 21.8610 0 $\mathbf{2}$ 34.402.607 $\mathbf{5}$ $\overline{7}$ 0 45.274.06642.6 $\mathbf{4}$ 0.62.00340.31 $\mathbf{2}$ 22.218 $\mathbf{2}$ $\mathbf{2}$ 3 34.752.5818 0.2133 $\mathbf{2}$ 45.441.996 8 1 4.0035.00.8 $\overline{7}$ 22.328 1 6 $\mathbf{2}$ 45.901 1 3.9825.7130 35.592.52341.5 $\mathbf{6}$ 1.9778 0.43 3 1 22.49 8 750 35.902.5010.2153 1 46.191.9650.23.9547.348 53 0 22.533.947 $\mathbf{4}$ 0.26 4236.312.4748 0.78 43 46.271.9628 0.26 $\mathbf{2}$ 1 22.713.9168 10 4 0 36.412.4680.4124 $\mathbf{2}$ 46.371.95810.1 $\mathbf{4}$ 8 0.43 1 $\mathbf{2}$ 23.473.7908 10 $\mathbf{2}$ $\mathbf{2}$ 36.572.4578 0.816 $\mathbf{2}$ 1 46.641.9470.30.98 0 40 24.21 $\mathbf{2}$ 0 60 36.672.451 $\mathbf{2}$ 0.641 46.771.9420.23.6764.4148 0 $\mathbf{2}$ $\mathbf{2}$ 24.443.64240.2 $\mathbf{2}$ 6 0 37.082.4244 0.7171 0 46.801.94140.38 20 24.583.621 $\mathbf{4}$ 0.81 3 3 37.122.4228 1.213 $\mathbf{5}$ 0 47.051.93140.89 1 0 24.823.58745.9751 37.522.3978 0.21 3 447.231.9248 0.1 $\mathbf{5}$ 3 1 24.933.5718 0.27 1 3 37.83 2.3788 1.67 7 0 47.311.9214 0.1 $\mathbf{2}$ 2 $\mathbf{2}$ 25.033.5588 0.13 3 3 37.93 2.3728 1.910 $\mathbf{6}$ 1 47.321.9218 0.1 $\mathbf{5}$ 1 $\mathbf{2}$ 25.838 0.71041 38.012.3678 0.271 447.811.9028 0.13.4490 41 0.26 $\mathbf{2}$ 3 38.072.3648 7 726.473.3674 1.61 48.611.8738 0.4440 26.513.3634 3.73 5238.252.3538 0.3131 3 48.611.873 8 0.14 2 $\mathbf{2}$ 26.723.337 8 1.20 $\mathbf{6}$ 1 38.262.35240.27 53 48.861.864 8 0.2100 0 26.783.329 $\mathbf{2}$ 0.49 50 39.132.3020.1160 $\mathbf{2}$ 48.861.8644 0.34 8 21 26.813.3258 0.45 $\mathbf{3}$ 3 39.502.2818 0.63 7 $\mathbf{2}$ 49.201.8528 0.13.298 $\mathbf{3}$ 2.2709 1 1 27.038 0.3130 39.714 0.3104 3 49.261.8508 0.31 3 $\mathbf{2}$ 28.133.1728 55 $\mathbf{2}$ 39.812.2648 0.20 $\mathbf{6}$ 3 49.461.8430.31.14 73 1 28.233.1618 0.7 $\mathbf{6}$ 60 40.232.2424 0.212 $\mathbf{6}$ 0 49.641.8374 0.34 4 1 28.603.1218 0.20 4 3 40.542.2254 0.271 $\mathbf{2}$ 29.033.0768 0.89 1 3 40.932.2058 0.7

CHEMICAL COMPOSITION:	$ (Na_{17.28}K_{4.72}Ca_{10})(SO_4)_6Cl_{5.8}F_{0.2} $ [Si ₂₄ Al ₂₄ O ₉₆] Pitigliano, Tuscany, Italy
REFINED COMPOSITION:	$ (\mathrm{Na}_{10.134}\mathrm{K}_{5.304}\mathrm{Ca}_{9.332})((\mathrm{SO}_4)_6\mathrm{Cl}_{5.8}\mathrm{F}_{0.18}) \;[\mathrm{Si}_{24}\mathrm{Al}_{24}\mathrm{O}_{96}]$
CRYSTAL DATA:	$\begin{array}{ll} P31c \mbox{ (No. 159)} \\ a = 12.801 \mbox{ \AA } b = 12.801 \mbox{ \AA } c = 21.412 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 120^{\circ} \\ \mbox{X-ray single crystal refinement, } R_{\rm p} = 0.045, R_{\rm wp} = 0.102 \end{array}$
REFERENCE:	P. Ballirano, E. Bonaccorsi, A. Maras and S. Merlino, <i>Eur. J. Mineral.</i> 9 21–30 (1997).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	0	2	8.26	10.706	2	2.1	1	0	7	30.31	2.949	12	5.6	2	0	9	41.29	2.186	12	0.2
1	0	1	8.98	9.845	12	5.5	4	-1	3	31.69	2.824	12	3.1	3	1	7	41.65	2.169	12	1.5
1	0	2	11.49	7.701	12	1.3	3	1	3	31.69	2.824	12	2.9	4	-1	7	41.65	2.169	12	1.6
1	1	0	13.84	6.400	6	0.1	3	0	5	31.99	2.798	12	2.3	3	0	8	41.67	2.168	12	1.8
1	0	3	14.76	6.001	12	9.3	4	0	0	32.30	2.771	6	6.7	0	0	10	42.20	2.141	2	0.4
2	-1	2	16.13	5.494	6	0.2	4	0	1	32.58	2.749	12	8.1	3	3	0	42.36	2.133	6	26.5
1	1	2	16.13	5.494	6	0.2	4	-2	4	32.60	2.747	6	1.4	5	0	3	42.70	2.117	12	0.1
2	0	1	16.52	5.366	12	2.4	2	2	4	32.60	2.747	6	1.1	1	0	10	43.02	2.102	12	0.2
0	0	4	16.56	5.353	2	1.7	3	-1	6	32.97	2.717	12	0.1	4	2	0	43.18	2.095	12	1.4
2	0	2	18.02	4.922	12	0.7	2	1	6	32.97	2.717	12	0.1	3	-1	9	43.75	2.069	12	0.5
1	0	4	18.40	4.820	12	48.5	2	0	7	33.46	2.678	12	0.2	2	1	9	43.75	2.069	12	0.5
2	0	3	20.28	4.378	12	1.1	0	0	8	33.48	2.677	2	26.0	6	-2	2	44.04	2.056	12	0.2
2	1	0	21.20	4.190	12	2.6	3	1	4	33.61	2.666	12	4.7	4	2	2	44.04	2.056	12	0.1
3	-1	1	21.61	4.112	12	2.1	4	-1	4	33.61	2.666	12	4.6	4	0	7	44.09	2.054	12	2.9
2	1	1	21.61	4.112	12	2.2	1	0	8	34.47	2.602	12	3.1	4	-2	8	44.11	2.053	6	3.4
2	-1	4	21.64	4.106	6	1.2	4	0	3	34.72	2.584	12	7.7	2	2	8	44.11	2.053	6	3.2
1	1	4	21.64	4.106	6	1.4	3	0	6	34.95	2.567	12	0.1	5	0	4	44.21	2.048	12	0.2
1	0	5	22.25	3.995	12	26.1	4	-1	5	35.96	2.498	12	3.2	1	1	10	44.62	2.031	6	0.2
2	1	2	22.79	3.902	12	0.5	3	1	5	35.96	2.498	12	3.1	2	-1	10	44.62	2.031	6	0.2
3	-1	2	22.79	3.902	12	0.5	1	1	8	36.38	2.469	6	0.6	3	1	8	44.90	2.019	12	0.1
2	0	4	23.10	3.851	12	4.4	2	-1	8	36.38	2.469	6	0.5	2	0	10	45.41	1.997	12	0.3
3	0	0	24.08	3.695	6	100.0	4	0	4	36.51	2.461	12	18.3	5	1	0	45.56	1.991	12	0.9
3	0	1	24.44	3.641	12	0.6	4	1	0	37.16	2.419	12	6.3	3	3	4	45.78	1.982	6	0.2
3	-1	3	24.64	3.613	12	2.2	2	0	8	37.31	2.410	12	0.3	6	-3	4	45.78	1.982	6	0.2
2	1	3	24.64	3.613	12	2.2	3	0	7	38.19	2.356	12	0.7	5	0	5	46.10	1.969	12	0.3
2	0	5	26.30	3.389	12	1.9	4	-1	6	38.65	2.329	12	0.1	3	2	7	46.43	1.956	12	0.2
3	-1	4	27.02	3.299	12	36.4	4	0	5	38.70	2.327	12	4.6	5	-2	7	46.43	1.956	12	0.1
2	1	4	27.02	3.299	12	35.7	1	0	9	38.71	2.326	12	1.1	4	2	4	46.55	1.951	12	0.5
3	0	3	27.17	3.282	12	1.0	5	-2	4	39.22	2.297	12	0.3	6	-2	4	46.55	1.951	12	0.5
2	2	0	27.88	3.200	6	1.5	3	2	4	39.22	2.297	12	0.2	4	0	8	47.21	1.925	12	7.4
2	-1	6	28.64	3.117	6	0.5	5	-1	3	39.32	2.291	12	0.3	1	0	11	47.42	1.917	12	0.4
1	1	6	28.64	3.117	6	0.5	4	1	3	39.32	2.291	12	0.4	4	2	5	48.36	1.882	12	0.1
3	1	0	29.04	3.075	12	0.2	2	1	8	39.97	2.256	12	0.1	3	1	9	48.37	1.882	12	0.5
4	-2	2	29.12	3.066	6	0.2	3	-1	8	39.97	2.256	12	0.1	4	-1	9	48.37	1.882	12	0.5
2	2	2	29.12	3.066	6	0.1	5	0	0	40.69	2.217	6	0.8	5	1	4	48.80	1.866	12	2.0
3	1	1	29.35	3.043	12	2.6	5	0	1	40.92	2.205	12	0.4	6	-1	4	48.80	1.866	12	2.3
4	-1	1	29.35	3.043	12	2.7	4	0	6	41.24	2.189	12	0.2	3	0	10	49.18	1.853	12	0.2
3	0	4	29.37	3.041	12	1.7	5	-2	5	41.28	2.187	12	0.3	6	0	0	49.32	1.848	6	1.3
2	0	6	29.77	3.001	12	0.3	3	2	5	41.28	2.187	12	0.3	6	0	1	49.52	1.841	12	0.3

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	0	0	7.43	11.899	6	100.0	4	0	0	30.04	2.975	6	11.4	5	1	0	42.29	2.137	12	1.9
1	1	0	12.89	6.870	6	6.3	2	2	2	33.59	2.668	12	3.7	0	0	4	42.68	2.118	2	3.0
2	0	0	14.89	5.950	6	20.6	3	1	2	34.45	2.604	24	0.4	1	0	4	43.38	2.086	12	0.6
2	1	0	19.74	4.497	12	42.4	3	2	1	34.52	2.598	24	1.0	5	0	2	43.62	2.075	12	1.8
0	0	2	20.97	4.237	2	45.3	4	1	0	34.54	2.597	12	10.3	5	1	1	43.68	2.072	24	0.2
1	0	2	22.27	3.992	12	12.5	4	1	1	36.18	2.483	24	0.2	1	1	4	44.77	2.024	12	0.2
2	1	1	22.38	3.973	24	55.3	4	0	2	36.92	2.435	12	2.8	3	3	2	45.00	2.015	12	1.5
3	0	0	22.41	3.966	6	1.3	2	1	3	37.60	2.392	24	12.1	6	0	0	45.75	1.983	6	0.8
1	1	2	24.69	3.606	12	2.5	5	0	0	37.80	2.380	6	0.2	3	2	3	46.25	1.963	24	0.6
2	0	2	25.81	3.451	12	0.5	3	3	0	39.34	2.290	6	0.2	2	1	4	47.44	1.917	24	0.8
2	2	0	25.94	3.435	6	19.6	4	1	2	40.75	2.214	24	0.8	5	1	2	47.66	1.908	24	0.4
2	1	2	28.95	3.084	24	8.2	4	2	1	41.55	2.174	24	2.6	4	3	1	47.71	1.906	24	2.4
3	1	1	29.04	3.075	24	5.6	3	1	3	42.11	2.146	24	1.9	5	2	0	47.73	1.905	12	2.4

CHEMICAL COMPOSITION: [Al₈P₈O₃₂]

REFINED COMPOSITION: [Al₈P₈O₃₂]

CRYSTAL DATA: $P\overline{1}$ (No. 2) a = 9.7041 Å b = 9.7361 Å c = 10.202 Å $\alpha = 77.811^{\circ}$ $\beta = 77.504^{\circ}$ $\gamma = 87.691^{\circ}$ X-ray Rietveld refinement, $R_{\rm F} = 0.059$, $R_{\rm P} = 0.114$, $R_{\rm wP} = 0.135$

REFERENCE: R. W. Broach, S. T. Wilson and R. M. Kirchner, in *Proceedings of the 12th International Zeolite Conference*, Ed. by M. M. J. Treacy, B. K. Marcus, J. B. Higgins and M. E. Bisher (Materials Research Society: Warrendale) vol. **III** 1715–1722 (1999).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	0	1	9.08	9.744	2	100.0	0	3	1	27.71	3.219	2	0.9	-3	1	2	37.27	2.413	2	0.9
1	0	0	9.33	9.474	2	4.9	3	0	1	27.78	3.211	2	0.4	1	4	1	37.78	2.381	2	1.2
1	0	1	11.56	7.655	2	36.1	0	3	0	28.13	3.172	2	1.2	4	1	1	37.90	2.374	2	0.6
0	1	1	11.57	7.647	2	53.6	3	0	0	28.26	3.158	2	2.2	2	-2	3	38.43	2.343	2	0.8
1	-1	0	13.15	6.733	2	66.3	3	1	1	28.78	3.102	2	1.1	0	4	2	38.51	2.338	2	0.4
1	1	0	13.22	6.695	2	2.5	1	2	3	29.58	3.020	2	0.4	-2	2	3	38.60	2.332	2	0.7
1	1	1	13.65	6.488	2	37.5	1	-3	0	29.65	3.013	2	0.4	4	1	2	38.85	2.318	2	0.4
0	-1	1	14.30	6.196	2	7.1	1	3	0	29.75	3.003	2	6.8	3	3	2	39.10	2.304	2	1.6
-1	0	1	14.36	6.168	2	6.5	3	1	0	29.86	2.992	2	2.7	-1	1	4	39.39	2.287	2	0.9
1	-1	1	15.97	5.551	2	13.0	$\tilde{2}$	0	3	29.86	2.992	2	1.0	2	-3	2	39.67	2.272	2	0.9
-1	1	1	16.03	5.528	2	1.7	-1	3	1	29.88	2.990	2	15.3	-3	$\tilde{2}$	2	39.87	2.261	$\frac{-}{2}$	1.1
0	0	2	18 21	4 872	2	26.7	3	-1	1	29.92	2.987	2	6.7	-1	4	2	40.63	2220	2	0.7
1	õ	$\overline{2}$	18.62	4 764	2	3.0	0	2	3	29.92	2.001 2.987	2	0.8	4	-1	2	40.65	2.220	$\frac{1}{2}$	1.2
Ō	2	õ	18.62	4 758	2	1.8	Ő	3	2	30.26	2.001 2.953	2	1.8	2	-1	4	40.85	2.209	$\frac{1}{2}$	0.5
õ	1	2	18.66	4 755	2	4.5	3	Ő	2	30.20	2.000 2.952	2	0.5	1	-4	1	41 49	2.200 2.176	2	0.0
2	¹	õ	18.00	4.737	$\frac{2}{2}$	0.4	1	-1	3	30.50	2.002	$\frac{2}{2}$	3.0	3	0	4	41 73	2.170 2 164	2	0.1
õ	2	1	18.98	4 675	$\frac{2}{2}$	12.8	1	3	2	30.57	2.000 2.924	$\frac{2}{2}$	4.0	2	-4	0	42 42	2.101 2 131	2	0.0
2	õ	1	19.01	4.669	$\frac{2}{2}$	9.2	3	1	$\frac{1}{2}$	30.61	2.021 2.921	$\frac{2}{2}$	1.0	4	-2	Ő	42.12	2.101 2.125	2	0.1
2	1	1	20.39	4 356	2	0.9	-1	1	3	30.61	2.021	2	3.0	_2	4	1	42.61	2.120 2.122	2	1.2
1	2	Ō	20.00 20.94	4.242	$\frac{2}{2}$	6.3	-2	-2	1	30.70	2.520 2.912	$\frac{2}{2}$	5.2	2	4	Ō	42.01	2.122	2	0.4
2	1	ň	20.54 21.00	1.242	2	71	-2	_1	3	30.88	2.312	2	1.1	1	_2	1	42.02	2.121 2 120	2	0.4
2	_1	1	21.00 21.08	4.044	2	28.1	_1	-1	3	30.00	2.050 2.880	2	0.4	-1	-2	1	42.04	2.120 2.008	2	1.0
_1	2	1	21.00 22.00	4.041	2	8.0	-1	0	1	31 50	2.005	2	0.4	-1	-1	3	13.12	2.050 2.058	2	0.4
-1	_1	2	22.00 22.16	4.041	2	6.6	-0	_2	2	31.65	2.830 2.830	2	0.4	_2	_2	3	40.99	2.000 2.047	2	3.4
1	-1	2	22.10	4.012	2	4.8	-1	-2	2	20.01	2.030 2.770	2	12	-2	-2	1	44.24	2.047 2.047	2	15
-1	2	1	22.22	3 064	2	4.0	2	2	1	32.21	2.119 2 746	2	2.0	-5	-0	5	44.24	2.047	2	2.0
1	-2	1 9	22.43	3.904	2	1.0	2	ວ າ	1	32.00	2.740 2.743	2	3.9 3.9	2	2	ວ ຈ	44.40	2.040 2.025	2	2.0
1	-1	2	22.40 22.57	3.900	2	12.0	1	2	2	32.05	2.745	2	0.2 1.8	-J 9	ວ ົ	2 1	44.02	2.035 1.078	2	0.4
-1	1	2	22.07	0.909 9 090	2	10.2	-1	1	2	02.00 22.00	2.720 9.719	2	1.0	2	-2	4	40.00	1.970	2	0.0
0	0	2	23.24	3.824	2	2.9	2 1	-1	ວ ຈ	33.02 33.14	2.712 2.703	2	2.0	ວ ຈ	4	1	40.02	1.972 1.072	2	0.0
1	2	2	23.20	3.024 3.764	2	1.1	-1	2	1	22.14	2.103	2	3.4 9.7	3	4 2	2	40.05	1.972 1.071	2	1.0
1	2 1	2	20.00	3.704 2.764	2	4.4	-1	-5	1	22.40 22.60	2.010	2	2.1	4	ວ ໑	2	40.00	1.971	2	1.0
2	1	1	23.04	3.704	2	2.0	-0	-1	2	34.06	2.000	2	1.0	-1	-5	2 2	40.20	1.902 1.056	2	0.0
-2	1 9	1	25.05 25.13	3.703	2	2.0	-1	-1	0	34.00	2.032	2	1.0	-J 9	-1	5	40.45	1.950 1.055	2	0.5
-1	-2	1	25.15	0.040 9 594	2	0.9 4.9	2 2	ე	0	94.10 94.16	2.029	2	1.5			1	40.45	1.900	2	0.0
-2	-1	1	25.20	2 501	2	4.0	ა ე	2 1	9	24.10	2.024 2.560	2	0.0	1	0	1	47.55	1.920 1.014	2	0.0
2 1	2 1	1	25.44	3.301 2.470	2	0.0	ა 1	1 9	ა ე	04.90 24.02	2.509	2	0.0	4	1	4	47.51	1.914 1.019	2	0.5
-1	-1	2 0	25.00	0.479 2.267	2	1.0	1	ა 1	3 4	04.90 25 90	2.500	2	1.4	0	1	1	47.52	1.910	2	0.5
2 1	-2	0	20.47	0.007 0.007	2	1.0	1	1 2	4	00.20 95.60	2.044	2	1.4	0	4	4	47.50	1.912	2	0.4
-1	2	2	20.52	3.301	2	1.2	2	-3	1	35.08	2.510	2	2.0	3	-4	0	41.13	1.905	2	0.5
1	1	0	20.03	3.348	2	12.7	-3	2	1	30.82	2.507	2	2.9	4	-3	1	41.19	1.903	2	0.5
1	1	3	20.72	3.330	2	2.9	-2	-2	2	30.81	2.442	2	1.3	0 1	-1	1	48.23	1.887	2	0.0
1	1	ა ე	27.00	3.295	2	8.4	0	-3	2	30.88	2.437	2	0.5	-1	1	5 1	48.70	1.8/0	2	1.4
0	1	ა ე	2(.11)	3.289	2	9.4	0	0	4	36.90	2.430	2	1.3	3	-4	1	49.06	1.857	2	1.0
0	0	3	27.40	3.248	2	4.2	1	2	4	37.05	2.426	2	0.4	-4	3	1	49.21	1.852	2	0.5
2	2	2	27.49	3.244	2	1.0	4	0	1	37.10	2.423	2	1.2	5	-1	2	49.41	1.845	2	0.5

CHEMICAL COMPOSITION: [Al₁₀P₁₀O₄₀]

REFINED COMPOSITION: [Al₁₀P₁₀O₄₀]

CRYSTAL DATA: P112₁ (No. 4) unique axis **c** a = 9.7179 Å b = 13.7915 Å c = 8.3591 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 110.6^{\circ}$ X-ray Rietveld refinement, $R_{exp} = 0.023$, $R_{wp} = 0.164$, $R_{F} = 0.074$

REFERENCE: R. M. Kirchner and J. M. Bennett,

Zeolites 14 523–528 (1994).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	1	0	6.85	12.910	2	100.0	3	0	0	29.46	3.032	2	11.6	2	-5	2	39.88	2.261	4	0.7
1	0	0	9.72	9.097	2	42.8	3	-3	0	29.47	3.031	2	5.1	1	5	1	41.00	2.201	4	0.2
1	-1	0	9.73	9.094	2	35.6	0	4	1	29.67	3.011	4	0.9	2	-6	1	41.04	2.199	4	0.4
0	1	1	12.62	7.017	4	0.6	3	-1	1	29.78	3.000	4	1.4	0	6	0	41.99	2.152	2	0.3
0	2	0	13.72	6.455	2	41.9	3	-2	1	29.78	3.000	4	1.0	3	3	0	42.06	2.148	2	0.9
1	1	0	13.74	6.445	2	10.1	0	3	2	29.80	2.998	4	1.4	0	4	3	42.88	2.109	4	0.3
1	-2	0	13.75	6.441	2	8.6	3	0	1	31.38	2.850	4	0.4	2	-4	3	42.92	2.107	4	0.3
1	-1	1	14.39	6.154	4	0.2	2	1	2	31.45	2.845	4	2.8	3	-1	3	42.96	2.105	4	0.4
0	2	1	17.36	5.109	4	0.6	2	-3	2	31.45	2.844	4	4.4	3	-5	2	43.01	2.103	4	0.3
1	1	1	17.37	5.104	4	0.3	0	1	3	32.88	2.724	4	0.3	0	0	4	43.29	2.090	2	3.2
1	-2	1	17.38	5.102	4	0.4	2	3	0	33.32	2.689	2	1.4	3	3	1	43.50	2.081	4	0.4
2	-1	0	18.26	4.859	2	10.6	2	-5	0	33.33	2.688	2	4.6	3	-6	1	43.52	2.080	4	0.4
1	-3	0	19.47	4.559	2	0.5	1	-1	3	33.64	2.664	4	0.8	0	1	4	43.89	2.063	4	0.3
2	0	0	19.52	4.548	2	0.8	1	3	2	33.69	2.660	4	4.2	3	0	3	44.14	2.052	4	0.3
2	-2	0	19.52	4.547	2	0.9	1	-4	2	33.70	2.660	4	0.6	4	1	1	44.15	2.051	4	0.9
0	3	0	20.64	4.303	2	3.1	1	4	1	34.31	2.614	4	0.5	4	-5	1	44.17	2.051	4	0.8
2	-1	1	21.15	4.201	4	0.3	1	-5	1	34.32	2.613	4	0.4	1	-1	4	44.48	2.037	4	0.5
0	0	2	21.26	4.180	2	68.3	3	1	1	34.39	2.608	4	0.2	1	5	2	45.28	2.003	4	0.7
1	2	1	22.20	4.004	4	10.5	3	-4	1	34.40	2.607	4	1.0	2	4	2	45.30	2.002	4	0.2
1	-3	1	22.21	4.002	4	9.7	0	5	0	34.74	2.582	2	2.8	4	0	2	45.40	1.998	4	0.8
2	0	1	22.25	3.995	4	19.5	2	3	1	35.05	2.560	4	0.5	4	-4	2	45.41	1.997	4	0.9
2	-2	1	22.26	3.994	4	23.0	2	-5	1	35.07	2.559	4	0.5	1	1	4	45.64	1.988	4	0.2
0	1	2	22.36	3.976	4	3.3	0	2	3	35.08	2.558	4	0.3	1	-2	4	45.64	1.988	4	0.4
2	1	0	22.90	3.883	2	18.0	1	1	3	35.09	2.558	4	0.3	1	4	3	46.37	1.958	4	0.2
2	-3	0	22.91	3.881	2	15.9	1	-2	3	35.09	2.557	4	0.3	1	-5	3	46.38	1.958	4	0.3
0	3	1	23.25	3.826	4	13.5	2	2	2	35.17	2.552	4	0.3	3	-4	3	46.45	1.955	4	0.6
1	0	2	23.42	3.798	4	1.6	3	-2	2	35.23	2.548	4	0.3	5	-2	0	46.87	1.938	2	1.0
1	-1	2	23.42	3.798	4	4.7	0	5	1	36.42	2.467	4	0.5	5	-3	0	46.88	1.938	2	0.7
2	1	1	25.29	3.522	4	1.7	3	0	2	36.61	2.454	4	1.4	2	-5	3	46.97	1.934	4	0.3
2	-3	1	25.30	3.520	4	1.8	3	-3	2	36.62	2.454	4	2.2	2	-1	4	47.35	1.920	4	0.3
0	2	2	25.39	3.508	4	2.8	3	2	0	36.92	2.435	2	1.2	2	5	1	47.47	1.915	4	0.9
1	1	2	25.40	3.507	4	3.0	3	-5	0	36.94	2.433	2	1.1	2	-7	1	47.48	1.915	4	1.6
1	-2	2	25.40	3.506	4	2.1	4	-2	0	37.00	2.429	2	2.6	0	6	2	47.53	1.913	4	0.3
1	3	0	25.83	3.449	2	10.7	2	-1	3	37.20	2.417	4	0.3	3	3	2	47.59	1.911	4	0.4
1	-4	0	25.84	3.448	2	11.5	4	-1	0	37.67	2.388	2	0.8	3	4	0	47.84	1.901	2	0.9
2	2	0	27.68	3.222	2	1.6	1	-3	3	37.84	2.377	4	2.9	3	-7	0	47.87	1.900	2	0.4
2	-4	0	27.70	3.221	2	0.7	2	Õ	3	37.87	2.376	4	6.2	1	-3	4	47.88	1.900	4	0.3
3	-2	0	27.76	3.214	2	1.7	2	-2	3	37.87	2.376	4	2.2	1	6	1	48.00	1.895	4	0.3
1	3	1	27.98	3.188	4	0.6	0	3	3	38.49	2.339	4	4.5	1	-7	1	48.01	1.895	4	0.4
1	-4	1	27.99	3.187	4	0.3	4	-3	1	39.25	2.296	4	0.6	0	5	3	48.04	1.894	4	0.5
2	-1	2	28.16	3.169	4	2.1	1	-6	0	39.50	2.281	2	0.2	5	-2	1	48.20	1.888	4	0.4
1	2	2	28.98	3 081	4	0.9	4	0	0	39.63	2.201 2.274	2	14	0	3	4	48.42	1.880	4	0.1
1	-3	2	28.98	3 081	4	0.7	2	1	3	39.82	2.214 2.264	4	0.2	5	-4	1	49 29	1 849	4	0.1
2	0	2	29.01	3.001	4	0.3	2	-3	3	39.83	2.261	4	0.8	0	7	0	49.42	1 844	2	1.9
2	-2	2	29.01	3.077	4	0.3	2	3	2	39.86	2.200 2.261	4	0.0	2	-3	4	49 54	1 840	4	0.5
-	4	4	40.04	0.011	т	0.0	4		4	00.00	2.20I	т	0.7	4	0	т	10.01	1.010	T	0.0

CHEMICAL COMPOSITION:	$ ((C_3H_7)_4NOH)_4 $ [Si ₇ Al ₂₉ P ₂₈ O ₁₂₈]
	$(C_3H_7)_4$ NOH = tetrapropylammonium hydroxide

REFINED COMPOSITION: $|((C_3H_7)_4N)_4|$ [Al₃₂P₃₂O₁₂₈]

CRYSTAL DATA: Pccn (No. 56) a = 21.9443 Å b = 13.6911 Å c = 14.2486 Å $\beta=90^\circ$ $\gamma=90^\circ$ $\alpha = 90^{\circ}$ X-ray Rietveld refinement, $R_{\rm exp}=0.149,\,R_{\rm wp}=0.161,\,R_{\rm F}=0.066$

REFERENCE: L. B. McCusker and Ch. Baerlocher, Microporous Materials 6 51–54 (1996).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	7.61	11.616	4	100.0	6	0	2	27.41	3.254	4	29.6	0	6	0	39.49	2.282	2	2.5
2	0	0	8.06	10.972	2	83.4	6	2	0	27.65	3.226	4	11.1	9	1	2	39.62	2.275	8	0.6
0	0	2	12.42	7.124	2	83.9	3	0	4	27.86	3.203	4	55.7	3	0	6	39.91	2.259	4	2.8
1	0	2	13.07	6.776	4	5.2	6	1	2	28.19	3.166	8	7.1	5	2	5	39.95	2.257	8	0.5
3	1	0	13.73	6.452	4	80.7	0	2	4	28.24	3.160	4	1.7	8	3	2	40.40	2.233	8	1.8
0	1	2	14.01	6.320	4	75.2	4	3	2	28.35	3.147	8	3.2	1	2	6	40.41	2.232	8	2.7
2	0	2	14.83	5.975	4	0.7	1	2	4	28.54	3.128	8	1.7	7	2	4	40.53	2.226	8	0.5
2	2	0	15.26	5.808	4	5.7	3	1	4	28.62	3.118	8	2.9	10	0	0	41.13	2.194	2	0.5
2	1	2	16.18	5.476	8	1.8	0	4	2	28.94	3.085	4	1.8	9	2	2	41.30	2.186	8	6.0
3	0	2	17.38	5.104	4	15.1	1	4	2	29.23	3.055	8	6.5	0	6	2	41.56	2.173	4	0.7
0	2	2	17.97	4.936	4	0.5	4	0	4	29.91	2.988	4	0.5	5	4	4	42.00	2.151	8	1.4
1	2	2	18.42	4.816	8	34.7	6	2	2	30.42	2.939	8	6.4	3	2	6	42.13	2.145	8	1.3
4	1	1	18.50	4.795	8	0.8	4	1	4	30.63	2.919	8	4.8	2	5	4	42.44	2.130	8	1.7
3	1	2	18.55	4.782	8	35.6	4	4	0	30.79	2.904	4	3.3	4	6	0	42.93	2.107	4	2.1
2	2	2	19.72	4.502	8	10.4	3	2	4	30.82	2.901	8	2.3	10	0	2	43.13	2.097	4	1.2
1	3	0	19.87	4.468	4	62.3	7	0	2	31.17	2.869	4	2.5	5	0	6	43.32	2.089	4	1.5
1	1	3	20.20	4.396	8	0.7	3	4	2	31.47	2.843	8	1.4	3	6	2	43.44	2.083	8	2.9
4	0	2	20.43	4.347	4	21.9	7	1	2	31.86	2.808	8	5.2	7	5	0	43.90	2.062	4	1.3
4	2	0	20.75	4.281	4	3.6	0	3	4	31.87	2.808	4	1.6	9	3	2	43.98	2.059	8	1.8
1	3	1	20.83	4.263	8	1.7	5	0	4	32.37	2.766	4	8.4	8	4	2	44.18	2.050	8	0.9
5	1	0	21.26	4.179	4	4.2	8	0	0	32.64	2.743	2	0.9	6	4	4	44.27	2.046	8	0.7
2	1	3	21.39	4.153	8	2.9	2	3	4	32.92	2.720	8	1.6	3	3	6	44.77	2.024	8	1.2
4	1	2	21.45	4.143	8	21.7	4	4	2	33.32	2.689	8	5.3	4	5	4	44.90	2.019	8	0.7
4	2	1	21.68	4.100	8	1.9	6	3	2	33.83	2.649	8	4.9	9	0	4	45.06	2.012	4	1.7
3	2	2	21.72	4.092	8	22.1	7	2	2	33.87	2.646	8	1.0	6	0	6	45.54	1.992	4	1.5
5	1	1	22.17	4.010	8	2.4	3	3	4	34.20	2.622	8	0.5	9	1	4	45.57	1.991	8	2.0
3	3	0	22.97	3.872	4	25.8	5	2	4	34.99	2.564	8	1.8	7	5	2	45.80	1.981	8	1.1
0	3	2	23.14	3.843	4	10.4	8	0	2	35.05	2.560	4	0.7	11	1	0	45.97	1.974	4	1.1
1	2	3	23.15	3.842	8	3.3	0	5	2	35.11	2.556	4	16.4	4	3	6	46.16	1.967	8	0.5
1	3	2	23.50	3.785	8	7.0	8	1	2	35.68	2.516	8	0.5	8	3	4	46.27	1.962	8	0.6
5	0	2	23.81	3.737	4	32.8	6	1	4	35.79	2.509	8	4.6	1	7	0	46.62	1.948	4	1.7
4	2	2	24.25	3.669	8	17.4	4	3	4	35.93	2.500	8	3.5	5	5	4	46.68	1.946	8	1.8
6	0	0	24.34	3.657	2	0.7	6	4	0	35.93	2.499	4	6.1	1	4	6	46.74	1.943	8	0.8
2	3	2	24.54	3.627	8	3.6	2	5	2	36.08	2.489	8	2.8	6	6	0	46.93	1.936	4	0.7
5	1	2	24.70	3.605	8	23.5	7	3	2	37.01	2.429	8	0.7	9	2	4	47.07	1.930	8	2.0
5	2	1	24.90	3.576	8	0.6	3	5	2	37.26	2.413	8	1.1	2	4	6	47.32	1.921	8	1.0
0	0	4	25.00	3.562	2	1.8	2	4	4	37.34	2.408	8	1.4	6	2	6	47.54	1.912	8	1.3
0	1	4	25.84	3.447	4	4.4	9	1	0	37.46	2.400	4	2.3	0	7	2	48.25	1.886	4	3.2
0	4	0	26.03	3.423	2	33.2	6	2	4	37.62	2.391	8	1.8	7	1	6	48.55	1.875	8	2.6
4	3	1	26.16	3.407	8	0.7	0	0	6	37.89	2.375	2	2.0	6	5	4	48.78	1.867	8	4.3
1	1	4	26.17	3.406	8	5.4	6	4	2	38.16	2.358	8	9.4	11	2	2	49.26	1.850	8	1.1
3	3	2	26.19	3.402	8	7.4	0	1	6	38.47	2.340	4	4.0	8	4	4	49.69	1.835	8	0.7
2	0	4	26.30	3.388	4	1.3	3	4	4	38.50	2.339	8	3.8	12	0	0	49.87	1.829	2	4.8
2	1	4	27.11	3.289	8	0.5	1	1	6	38.70	2.327	8	0.5	3	7	2	49.93	1.826	8	1.0
2	4	0	27.29	3.267	4	6.4	9	0	2	39.04	2.307	4	0.6	6	3	6	49.96	1.825	8	0.5

CHEMICAL COMPOSITION:	$ \begin{array}{l} ((C_{3}H_{7})_{2}NH_{2})_{8}(H_{2}O)_{14} \; [Mg_{6}Al_{22}P_{26}Si_{2}O_{112}] \\ (C_{3}H_{7})_{2}NH_{2} = \text{di-n-propylamine} \end{array} $
REFINED COMPOSITION:	$ (C_4N)_6 [Al_{28}P_{28}O_{112}]$
CRYSTAL DATA:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
REFERENCE:	 J. M. Bennett and B. K. Marcus, in <i>Innovations in Zeolite Material Science (Stud. Surf. Sci. Catal. No. 37)</i> Ed. by P. J. Grobet, W. J. Mortier, E. F. Vansant and G. Schulz-Ekloff (Elsevier: Amsterdam) 269–279 (1988). And J. M. Bennett, Private communication.

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	0	2	6.57	13.446	2	13.6	2	2	1	27.17	3.282	12	0.2	2	1	9	36.54	2.459	12	0.7
1	0	0	7.72	11.453	6	100.0	2	2	2	27.79	3.211	12	2.2	2	0	10	36.93	2.434	6	0.1
0	1	2	10.15	8.719	6	0.1	1	3	1	28.29	3.155	12	0.6	4	0	6	37.26	2.413	6	0.2
1	0	2	10.15	8.719	6	0.2	3	1	1	28.29	3.155	12	0.5	1	4	3	37.35	2.407	12	0.1
0	0	4	13.17	6.723	2	7.8	1	2	6	28.67	3.114	12	0.6	5	0	0	39.33	2.291	6	0.1
1	1	0	13.39	6.613	6	0.2	2	1	6	28.67	3.114	12	0.9	3	2	6	39.76	2.267	12	0.1
1	1	1	13.79	6.421	12	3.4	2	2	3	28.78	3.102	12	4.4	2	3	6	39.76	2.267	12	0.1
1	1	2	14.93	5.934	12	5.4	3	1	2	28.88	3.091	12	0.1	4	1	5	39.77	2.267	12	0.2
1	0	4	15.28	5.798	6	2.2	1	3	2	28.88	3.091	12	0.3	0	0	12	40.24	2.241	2	0.1
0	1	4	15.28	5.798	6	1.6	1	1	8	29.82	2.997	12	0.6	2	2	9	40.70	2.217	12	0.7
1	1	3	16.66	5.321	12	9.2	1	3	3	29.84	2.994	12	0.3	3	3	1	41.09	2.197	12	0.5
1	1	4	18.82	4.714	12	0.1	3	1	3	29.84	2.994	12	0.8	1	3	9	41.49	2.176	12	0.1
0	0	6	19.81	4.482	2	4.4	2	2	4	30.12	2.967	12	1.0	4	2	2	42.29	2.137	12	0.1
0	2	4	20.37	4.359	6	0.5	3	0	6	30.76	2.906	6	0.2	2	4	2	42.29	2.137	12	0.2
2	1	0	20.52	4.329	12	2.5	0	3	6	30.76	2.906	6	0.3	1	1	12	42.60	2.122	12	0.2
1	2	1	20.78	4.274	12	0.1	0	2	8	30.84	2.899	6	0.5	4	1	7	43.18	2.095	12	0.1
2	1	1	20.78	4.274	12	0.6	2	0	8	30.84	2.899	6	0.5	1	4	7	43.18	2.095	12	0.1
1	0	6	21.29	4.174	6	1.0	2	1	7	31.12	2.873	12	0.7	2	0	12	43.36	2.087	6	0.1
1	1	5	21.29	4.173	12	2.0	1	2	7	31.12	2.873	12	0.7	2	2	10	43.37	2.086	12	0.1
2	1	2	21.57	4.121	12	6.7	3	1	4	31.14	2.872	12	0.3	2	3	8	43.73	2.070	12	0.2
1	2	2	21.57	4.121	12	3.6	1	3	4	31.14	2.872	12	0.6	3	2	8	43.73	2.070	12	0.3
2	1	3	22.81	3.898	12	1.4	4	0	0	31.24	2.863	6	1.1	5	1	0	44.02	2.057	12	0.8
1	2	3	22.81	3.898	12	5.3	2	2	5	31.77	2.817	12	0.8	1	5	1	44.15	2.051	12	0.2
1	1	6	23.99	3.710	12	3.2	4	0	2	31.96	2.801	6	0.1	5	1	1	44.15	2.051	12	0.2
3	0	2	24.23	3.673	6	2.1	1	1	9	32.89	2.723	12	1.8	3	3	5	44.42	2.040	12	0.2
0	3	2	24.23	3.673	6	1.4	2	2	6	33.68	2.661	12	0.2	3	3	6	45.88	1.978	12	0.2
2	1	4	24.46	3.640	12	0.6	0	4	4	34.03	2.634	6	0.2	1	1	13	45.97	1.974	12	0.6
2	0	6	25.23	3.530	6	0.2	4	0	4	34.03	2.634	6	0.3	3	1	11	46.89	1.937	12	0.1
0	2	6	25.23	3.530	6	0.5	3	2	0	34.12	2.628	12	0.2	3	3	7	47.56	1.912	12	0.1
1	2	5	26.43	3.372	12	0.5	2	3	1	34.29	2.615	12	0.6	6	0	0	47.64	1.909	6	0.5
2	1	5	26.43	3.372	12	0.3	3	2	1	34.29	2.615	12	0.7	1	2	13	48.79	1.866	12	0.2
0	0	8	26.52	3.362	2	0.5	3	1	6	34.61	2.592	12	0.1	2	1	13	48.79	1.866	12	0.3
1	1	7	26.84	3.322	12	5.7	2	2	$\overline{7}$	35.83	2.506	12	0.4	1	1	14	49.41	1.845	12	0.2
0	3	4	26.85	3.320	6	0.7	4	1	0	35.93	2.499	12	1.7	3	3	8	49.45	1.843	12	0.2
3	0	4	26.85	3.320	6	0.3	1	1	10	36.05	2.491	12	0.1							
2	2	0	26.97	3.306	6	0.9	1	2	9	36.54	2.459	12	0.5							

CHEMICAL COMPOSITION: $|(H_2O)_x| [Al_{36}P_{36}O_{144}]$ Partially Rehydrated.

REFINED COMPOSITION: [Al₃₆P₃₆O₁₄₄]

CRYSTAL DATA: $P\overline{3}1c$ (No. 163) a = 13.715 Å b = 13.715 Å c = 29.676 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 120^{\circ}$ X-ray Rietveld refinement, $R_{exp} = 0.130$, $R_{wp} = 0.197$, $R_p = 0.173$

REFERENCE: N. K. McGuire, C. A. Bateman, C. S. Blackwell, S. T. Wilson and R. M. Kirchner, *Zeolites* **15** 460–469 (1995).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	0	1	8.02	11.027	12	69.6	2	0	8	28.37	3.146	12	0.9	2	1	10	36.29	2.476	12	0.8
1	0	2	9.54	9.273	12	100.0	4	-1	3	28.56	3.125	12	0.9	4	0	7	36.96	2.432	12	0.1
1	0	3	11.64	7.601	12	36.5	3	1	3	28.56	3.125	12	0.5	5	-1	5	37.88	2.375	12	0.1
1	1	0	12.91	6.857	6	41.0	3	0	6	28.89	3.091	12	0.2	5	0	2	38.37	2.346	12	0.4
1	0	4	14.07	6.292	12	3.3	2	1	7	28.97	3.082	12	0.5	4	0	8	38.85	2.318	12	0.3
2	0	1	15.21	5.823	12	4.8	3	-1	7	28.97	3.082	12	1.2	3	-1	11	38.95	2.312	12	0.1
2	0	2	16.07	5.514	12	11.2	4	-1	4	29.67	3.011	12	0.5	5	0	3	38.99	2.310	12	1.0
1	0	5	16.70	5.309	12	0.2	4	0	1	30.25	2.955	12	5.3	3	3	0	39.42	2.286	6	0.3
2	0	3	17.42	5.092	12	5.8	4	0	2	30.71	2.912	12	9.5	5	0	4	39.85	2.262	12	1.3
0	0	6	17.93	4.946	2	17.7	2	0	9	31.02	2.883	12	0.7	4	0	9	40.90	2.207	12	0.6
2	0	4	19.14	4.636	12	1.2	4	-1	5	31.05	2.880	12	0.1	5	0	5	40.92	2.205	12	0.4
3	-1	1	20.00	4.439	12	4.9	1	0	10	31.06	2.879	12	3.1	4	2	4	42.05	2.148	12	0.1
2	1	1	20.00	4.439	12	7.2	3	-1	8	31.28	2.860	12	3.3	6	-2	4	42.05	2.148	12	0.1
2	1	2	20.67	4.297	12	15.5	2	1	8	31.28	2.860	12	1.4	4	2	5	43.08	2.100	12	0.1
3	-1	2	20.67	4.297	12	6.9	4	0	3	31.45	2.844	12	5.5	4	0	10	43.09	2.099	12	0.5
2	1	3	21.74	4.088	12	9.7	2	2	6	31.75	2.818	6	0.3	3	0	12	43.13	2.097	12	1.2
3	-1	3	21.74	4.088	12	3.1	4	-2	6	31.75	2.818	6	1.0	6	-3	6	43.62	2.075	6	1.8
2	-1	6	22.16	4.011	6	2.1	4	0	4	32.48	2.757	12	1.2	3	3	6	43.62	2.075	6	1.0
1	0	7	22.26	3.993	12	2.5	5	-2	2	33.43	2.680	12	0.2	5	0	8	45.33	2.000	12	0.2
3	0	0	22.46	3.959	6	1.6	3	2	2	33.43	2.680	12	0.5	4	0	11	45.42	1.997	12	0.3
2	1	4	23.16	3.841	12	1.9	3	-1	9	33.73	2.658	12	3.2	6	0	0	45.84	1.980	6	0.2
3	-1	4	23.16	3.841	12	0.1	2	1	9	33.73	2.658	12	1.9	1	0	15	46.54	1.952	12	0.6
3	-1	5	24.87	3.580	12	0.3	2	0	10	33.76	2.655	12	0.6	4	3	1	46.61	1.948	12	0.2
1	0	8	25.15	3.541	12	7.2	1	0	11	34.08	2.631	12	0.4	7	-3	2	46.93	1.936	12	0.1
2	0	7	25.82	3.450	12	0.1	5	-2	3	34.13	2.627	12	0.4	4	3	2	46.93	1.936	12	0.6
2	2	0	25.99	3.429	6	13.6	3	2	3	34.13	2.627	12	0.4	5	0	9	47.15	1.927	12	1.3
3	0	5	27.07	3.294	12	0.1	4	1	0	34.61	2.592	12	5.4	6	-2	8	47.33	1.920	12	0.1
3	1	1	27.24	3.274	12	0.4	4	1	1	34.74	2.582	12	0.1	5	2	0	47.82	1.902	12	2.0
4	-1	2	27.74	3.216	12	0.3	5	-2	4	35.08	2.558	12	0.2	2	0	15	48.50	1.877	12	0.1
3	1	2	27.74	3.216	12	0.9	5	-2	5	36.28	2.476	12	0.1	5	0	10	49.13	1.855	12	1.6
1	0	9	28.08	3.177	12	6.9	3	-1	10	36.29	2.476	12	1.1	1	0	16	49.75	1.833	12	0.4

CHEMICAL COMPOSITION: [Si₅Al₂₃P₂₀O₉₆]

REFINED COMPOSITION: [Al₂₄P₂₄O₉₆]

CRYSTAL DATA: $P\overline{3}1c$ (No. 163) a = 13.7617 Å b = 13.7617 Å c = 19.949 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 120^{\circ}$ X-ray Rietveld refinement, $R_{\exp} = 0.068$, $R_{wp} = 0.219$

REFERENCE: N. K. McGuire, C. S. Blackwell, C. A. Bateman, S. T. Wilson and R. M. Kirchner, *Microporous and Mesoporous Materials* 28 125–137 (1999).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	0	0	7.42	11.918	6	30.0	4	-1	2	28.45	3.138	12	0.9	5	0	1	38.02	2.367	12	0.1
1	0	1	8.64	10.231	12	100.0	3	1	2	28.45	3.138	12	1.2	2	-1	8	38.39	2.344	6	0.3
1	0	2	11.57	7.649	12	54.0	3	0	4	28.73	3.107	12	0.2	5	0	2	38.84	2.318	12	1.7
1	1	0	12.87	6.881	6	43.2	3	-1	5	29.92	2.987	12	1.1	3	3	0	39.28	2.294	6	0.4
2	0	0	14.87	5.959	6	1.4	2	1	5	29.92	2.987	12	2.6	5	0	3	40.19	2.244	12	1.1
1	0	3	15.26	5.807	12	0.2	4	0	0	29.99	2.979	6	2.0	6	-2	1	40.30	2.238	12	0.2
2	0	1	15.52	5.710	12	8.0	3	1	3	30.19	2.960	12	0.5	4	0	6	40.66	2.219	12	1.2
2	0	2	17.33	5.116	12	8.7	4	-1	3	30.19	2.960	12	0.1	6	-2	2	41.08	2.197	12	0.2
0	0	4	17.78	4.987	2	19.1	4	0	1	30.33	2.947	12	10.3	4	2	2	41.08	2.197	12	0.1
1	0	4	19.29	4.601	12	1.5	2	0	6	30.79	2.903	12	1.8	5	-1	5	41.44	2.179	12	0.2
2	1	0	19.71	4.505	12	4.4	4	0	2	31.33	2.855	12	9.0	4	1	5	41.44	2.179	12	0.1
2	0	3	20.01	4.438	12	0.8	4	-2	4	31.59	2.832	6	0.2	3	0	8	42.82	2.112	12	1.1
2	1	1	20.21	4.394	12	7.3	2	2	4	31.59	2.832	6	0.9	6	-1	2	43.23	2.093	12	0.3
3	-1	1	20.21	4.394	12	14.8	1	0	7	32.30	2.772	12	1.4	6	-3	4	43.42	2.084	6	1.0
3	-1	2	21.65	4.105	12	15.7	4	0	3	32.94	2.719	12	0.3	3	3	4	43.42	2.084	6	1.6
2	1	2	21.65	4.105	12	3.8	3	-1	6	33.50	2.675	12	3.9	4	0	7	43.96	2.059	12	0.4
1	1	4	22.01	4.038	6	1.5	2	1	6	33.50	2.675	12	4.0	4	-2	8	44.89	2.019	6	0.2
3	0	0	22.38	3.973	6	2.5	5	-2	2	34.00	2.637	12	0.2	6	0	0	45.67	1.986	6	0.1
1	0	5	23.51	3.783	12	4.7	3	2	2	34.00	2.637	12	1.0	1	0	10	46.13	1.968	12	0.9
2	1	3	23.86	3.729	12	0.1	4	1	0	34.49	2.601	12	4.6	7	-3	1	46.58	1.950	12	0.4
3	-1	3	23.86	3.729	12	0.3	2	0	7	34.90	2.571	12	0.4	5	0	6	46.90	1.937	12	2.4
2	2	0	25.90	3.440	6	12.6	5	-2	3	35.50	2.529	12	0.2	7	-3	2	47.28	1.923	12	0.1
2	1	4	26.67	3.343	12	0.8	3	2	3	35.50	2.529	12	0.5	4	3	2	47.28	1.923	12	0.3
3	-1	4	26.67	3.343	12	0.4	4	1	3	37.12	2.422	12	0.2	5	-1	7	47.32	1.921	12	0.2
2	0	5	26.89	3.315	12	0.3	2	1	7	37.34	2.408	12	0.6	5	2	0	47.65	1.908	12	2.6
4	-1	1	27.35	3.261	12	0.7	3	-1	7	37.34	2.408	12	0.2	2	0	10	48.10	1.892	12	0.2
1	0	6	27.86	3.203	12	11.9	4	0	5	37.68	2.387	12	0.2	5	0	7	49.88	1.828	12	1.7

CHEMICAL COMPOSITION:	$ ((C_{3}H_{7})_{2}NH)_{3}(H_{2}O)_{6.7} $ [Co ₃ Al ₅ P ₈ O ₃₂] (C ₃ H ₇) ₂ NH = di-n-propylamine
REFINED COMPOSITION:	$ (C_4N)_6 [Al_6Co_2P_8O_{32}]$
CRYSTAL DATA:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
REFERENCE:	J. M. Bennett and B. K. Marcus, in <i>Innovations in Zeolite Material Science (Stud. Surf. Sci. Catal. No. 37)</i> Ed. by P. J. Grobet, W. J. Mortier, E. F. Vansant and G. Schulz-Ekloff (Elsevier: Amsterdam) 269–279 (1988). and J. M. Bennett, Private communication.

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	1	0	8.01	11.039	6	100.0	0	3	2	31.38	2.851	6	1.6	4	-2	3	41.29	2.186	6	0.2
0	0	1	9.81	9.015	2	8.8	3	0	2	31.38	2.851	6	1.7	2	2	3	41.29	2.186	6	1.7
0	1	1	12.68	6.983	6	5.1	0	4	0	32.44	2.760	6	0.2	0	5	1	42.14	2.144	6	0.3
1	1	0	13.89	6.373	6	2.8	1	1	3	32.95	2.718	6	3.2	1	1	4	42.54	2.125	6	0.5
0	2	0	16.06	5.520	6	1.2	2	-1	3	32.95	2.718	6	0.1	2	-1	4	42.54	2.125	6	0.2
2	-1	1	17.04	5.204	6	3.1	0	2	3	33.97	2.639	6	0.9	5	-4	2	42.55	2.125	6	0.3
2	1	0	21.29	4.172	6	0.5	2	0	3	33.97	2.639	6	0.3	3	3	0	42.55	2.124	6	0.5
1	2	0	21.29	4.172	6	0.2	0	4	1	33.97	2.639	6	1.1	2	0	4	43.36	2.087	6	0.3
1	2	1	23.49	3.787	6	0.3	4	0	1	33.97	2.639	6	0.1	4	2	0	43.37	2.086	6	0.5
3	-1	1	23.49	3.787	6	12.5	4	-2	2	34.47	2.602	6	0.4	4	0	3	44.58	2.033	6	0.1
3	-2	1	23.49	3.787	6	9.5	2	2	2	34.47	2.602	6	0.6	4	2	1	44.58	2.032	6	0.2
1	1	2	24.18	3.680	6	1.3	4	-3	2	35.44	2.533	6	0.3	6	-4	1	44.58	2.032	6	0.5
2	-1	2	24.18	3.680	6	19.4	4	-1	2	35.44	2.533	6	0.8	1	2	4	45.75	1.983	6	0.5
0	3	0	24.19	3.680	6	3.6	2	3	0	35.44	2.533	6	0.2	5	0	2	45.76	1.983	6	0.3
0	2	2	25.51	3.491	6	0.5	1	2	3	36.86	2.438	6	0.7	0	5	2	45.76	1.983	6	0.2
2	0	2	25.51	3.491	6	3.1	2	1	3	36.86	2.438	6	0.4	1	5	0	45.76	1.983	6	0.4
3	0	1	26.16	3.407	6	4.4	3	2	1	36.86	2.438	6	0.2	5	1	0	45.76	1.983	6	0.3
0	3	1	26.16	3.407	6	3.0	1	4	0	37.33	2.409	6	1.3	5	-3	3	46.92	1.937	6	0.8
3	-2	2	29.16	3.062	6	3.6	4	1	0	37.33	2.409	6	1.9	5	-2	3	46.92	1.937	6	0.5
3	-1	2	29.16	3.062	6	0.4	4	0	2	38.24	2.354	6	0.3	3	2	3	46.92	1.937	6	0.2
1	3	0	29.17	3.062	6	0.7	1	4	1	38.69	2.327	6	0.2	3	3	2	47.30	1.922	6	0.6
3	1	0	29.17	3.062	6	0.4	5	-1	1	38.69	2.327	6	0.1	6	-3	2	47.30	1.922	6	0.5
0	0	3	29.73	3.005	2	0.3	5	-4	1	38.69	2.327	6	0.2	5	-1	3	48.43	1.880	6	0.4
4	-2	1	29.73	3.005	6	9.2	4	1	1	38.69	2.327	6	0.3	2	2	4	49.54	1.840	6	0.8
0	1	3	30.84	2.900	6	0.2	0	1	4	40.86	2.208	6	0.3	0	6	0	49.54	1.840	6	2.2
4	-3	1	30.84	2.899	6	2.1	5	-2	2	40.87	2.208	6	0.1							
4	-1	1	30.84	2.899	6	1.5	0	5	0	40.87	2.208	6	0.1							

CHEMICAL COMPOSITION: $|(H_2O)_4|$ [Al₆P₆O₂₄]

REFINED COMPOSITION: $|(H_2O)_4|$ [Al₆P₆O₂₄]

CRYSTAL DATA: $P112_1$ (No. 4) unique axis **c** a = 9.486 Å b = 9.914 Å c = 8.126 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 121.49^{\circ}$ X-ray Rietveld refinement, $R_{\rm wp} = 0.127$

REFERENCE:

E: J. B. Higgins, R. M. Dessau, H-X. Li, M. E. Davis and J.M. Newsam, American Crystallographic Association Abstracts K005 39 (1993).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	1	0	10.46	8.454	2	87.1	0	3	0	31.75	2.818	2	4.3	1	-3	3	43.56	2.078	4	1.0
1	-1	0	10.47	8.452	2	100.0	3	-3	0	31.76	2.817	2	6.0	2	-3	3	43.56	2.077	4	0.5
1	0	0	10.94	8.089	2	4.1	3	0	0	33.23	2.696	2	11.3	1	2	3	44.19	2.049	4	0.4
0	1	1	15.12	5.858	4	4.7	0	3	1	33.66	2.662	4	2.3	3	-2	3	44.20	2.049	4	0.1
1	-1	1	15.12	5.858	4	3.9	3	-3	1	33.67	2.662	4	2.1	2	2	2	44.26	2.046	4	0.4
1	0	1	15.46	5.733	4	0.2	0	1	3	34.78	2.579	4	0.4	4	-2	2	44.27	2.046	4	0.5
1	-2	0	17.89	4.957	2	14.8	1	-1	3	34.78	2.579	4	0.6	0	4	1	44.28	2.045	4	0.3
1	1	0	18.73	4.738	2	5.7	1	0	3	34.93	2.568	4	0.2	4	-4	1	44.29	2.045	4	0.1
2	-1	0	18.73	4.737	2	3.1	3	0	1	35.06	2.559	4	0.2	2	1	3	44.57	2.033	4	0.2
1	-2	1	20.99	4.232	4	3.8	1	-3	2	35.45	2.532	4	1.6	3	-1	3	44.57	2.033	4	0.3
0	2	0	21.02	4.227	2	0.5	2	-3	2	35.45	2.532	4	2.2	0	0	4	44.60	2.032	2	3.9
2	-2	0	21.02	4.226	2	0.2	1	2	2	36.20	2.482	4	0.3	1	3	2	45.11	2.010	4	0.3
1	1	1	21.71	4.093	4	13.4	3	-2	2	36.20	2.481	4	0.6	0	1	4	45.94	1.975	4	0.8
2	-1	1	21.72	4.092	4	11.4	2	-4	0	36.24	2.478	2	1.1	1	-1	4	45.94	1.975	4	0.3
0	0	2	21.87	4.063	2	56.5	2	1	2	36.64	2.453	4	1.5	1	0	4	46.07	1.970	4	0.8
2	0	0	21.98	4.045	2	6.1	3	-1	2	36.64	2.452	4	2.8	3	1	2	46.10	1.969	4	0.3
0	2	1	23.73	3.750	4	15.1	1	-2	3	37.85	2.377	4	0.9	4	-1	2	46.10	1.969	4	0.4
2	-2	1	23.73	3.749	4	13.6	2	-4	1	37.95	2.371	4	0.9	0	3	3	46.50	1.953	4	0.4
0	1	2	24.30	3.662	4	12.2	1	-4	0	37.97	2.370	2	0.2	3	-3	3	46.51	1.953	4	0.2
1	-1	2	24.31	3.662	4	10.3	4	-2	0	37.99	2.368	2	0.2	2	-5	1	47.53	1.913	4	1.0
1	0	2	24.52	3.631	4	4.3	1	1	3	38.27	2.351	4	3.2	3	-5	1	47.54	1.913	4	0.9
2	0	1	24.59	3.621	4	0.2	2	-1	3	38.28	2.351	4	0.9	3	0	3	47.58	1.911	4	0.2
1	-3	0	27.55	3.238	2	8.7	0	3	2	38.89	2.316	4	0.2	5	-3	0	48.04	1.894	2	0.2
2	-3	0	27.55	3.238	2	12.4	3	-3	2	38.90	2.315	4	1.2	1	-2	4	48.42	1.880	4	1.7
1	-2	2	28.40	3.142	4	8.1	1	3	0	38.95	2.312	2	0.7	0	4	2	48.55	1.875	4	0.3
3	-2	0	28.49	3.133	2	0.2	4	-3	0	38.96	2.312	2	1.0	4	-4	2	48.56	1.875	4	0.9
1	1	2	28.95	3.084	4	5.4	2	-2	3	39.52	2.280	4	2.6	1	1	4	48.77	1.867	4	1.3
2	-1	2	28.95	3.084	4	5.8	1	-4	1	39.61	2.275	4	0.4	2	-1	4	48.77	1.867	4	1.4
2	1	0	29.03	3.076	2	15.6	3	-4	1	39.62	2.275	4	0.6	2	3	1	49.40	1.845	4	2.9
3	-1	0	29.03	3.076	2	13.1	2	2	1	39.63	2.274	4	0.6	5	-3	1	49.42	1.844	4	0.6
1	-3	1	29.70	3.008	4	2.1	4	-2	1	39.64	2.274	4	0.6	0	2	4	49.80	1.831	4	1.8
2	-3	1	29.70	3.008	4	6.1	2	0	3	40.06	2.251	4	0.5	2	-2	4	49.80	1.831	4	1.2
0	2	2	30.52	2.929	4	2.8	3	0	2	40.14	2.247	4	0.3	2	-4	3	49.87	1.829	4	0.1
2	-2	2	30.52	2.929	4	2.5	1	3	1	40.56	2.224	4	0.3	1	4	0	49.98	1.825	2	2.4
1	2	1	30.57	2.924	4	1.7	4	-3	1	40.57	2.223	4	0.3	3	2	1	49.98	1.825	4	1.8
3	-2	1	30.58	2.924	4	1.5	3	1	1	41.63	2.169	4	1.1	5	-4	0	49.99	1.824	2	1.6
2	1	1	31.09	2.877	4	1.7	4	-1	1	41.64	2.169	4	0.6	5	-2	1	49.99	1.824	4	1.0
3	-1	1	31.09	2.877	4	2.5	2	-4	2	42.73	2.116	4	0.3							
2	0	2	31.20	2.866	4	3.7	4	-4	0	42.79	2.113	2	0.3							

СН	EM	IC	AL CC	MPOS	SITI	ON:	Na ₁₆ (H Cyclope	₂ O) an I	16 Isla	$[Si_{32}A]$ nds, G	l ₁₆ O ₉₆] reece							
R	EF	INE	ED CO	MPOS	SITIC	ON:	$ Na_{16}(H$	₂ O)	16	$[Si_{32}A$	l ₁₆ O ₉₆]							
			CRY	STAL	DA	TA:	$Ia\overline{3}d (N)$ $a = 13.7$ $\alpha = 90^{\circ}$ X-ray si	o. 2 73 Å ngle	230 \ e cr	$b = \beta = \beta$ ystal r	13.73 Å 90° efinem	Å ent,	c = 13. $\gamma = 90^{\circ}$ R = 0.04	73 Å				
			Ι	REFER	REN(CE:	G. Ferra Z. Krist	aris, alla	D. ogr.	W. Jo 135 2	ones an 40–252	d J. 2 (19	Yerkess, 72).					
h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d
2	1	1	15.81	5.605	24	60.2	5	2	1	35.82	2.507	48	11.9	4	4	4	45.78	1.982
2	2	0	18.28	4.854	12	14.1	4	4	0	37.04	2.427	12	7.7	5	4	3	46.78	1.942
3	2	1	24.25	3.669	48	5.4	6	1	1	40.50	2.227	24	2.8	6	4	0	47.77	1.904
4	0	0	25.96	3.433	6	100.0	5	3	2	40.50	2.227	48	5.5	5	5	2	48.74	1.868
3	3	2	30.54	2.927	24	51.3	6	2	0	41.60	2.171	24	1.0	6	3	3	48.74	1.868
4	2	2	31.93	2.803	24	5.5	5	4	1	42.68	2.119	48	0.9	7	2	1	48.74	1.868
4	3	1	33.27	2.693	48	14.8	6	3	1	44.77	2.024	48	1.3	6	4	2	49.69	1.835

M

8

48

24

24

24

48

48

 $I_{\rm rel}$

0.4

0.7

0.2

6.9

2.3

0.4

14.9

REFINED COMPOSITION: $|(H_2O)_{16}O_8|$ [Al₁₆P₁₆O₆₄]

CRYSTAL DATA: Pbca (No. 61) $a = 19.3525 \text{ Å} \quad b = 9.7272 \text{ Å}$ c = 9.7621 Å $\beta=90^\circ$ $\gamma=90^\circ$ $\alpha = 90^{\circ}$ X-ray single crystal refinement, R = 0.033

REFERENCE: J. J. Pluth and J. V. Smith, Acta Cryst. C42 1118–1120 (1986).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
2	0	0	9.14	9.676	2	45.5	2	2	3	34.43	2.605	8	0.4	8	0	2	41.67	2.167	4	1.8
2	1	0	12.90	6.860	4	100.0	4	1	3	34.47	2.602	8	1.8	8	2	0	41.70	2.166	4	4.6
1	1	1	13.64	6.491	8	79.8	2	3	2	34.48	2.601	8	1.1	3	3	3	41.74	2.164	8	1.5
2	1	1	15.79	5.613	8	7.1	4	3	1	34.54	2.596	8	0.1	1	4	2	41.76	2.163	8	0.9
0	0	2	18.17	4.881	2	30.8	6	1	2	34.58	2.594	8	0.5	7	2	2	41.90	2.156	8	3.8
0	2	0	18.24	4.864	2	0.1	5	2	2	34.86	2.573	8	1.9	2	2	4	42.48	2.128	8	1.3
4	0	0	18.34	4.838	2	42.4	7	1	1	34.97	2.566	8	4.9	4	1	4	42.51	2.126	8	1.6
1	0	2	18.75	4.733	4	0.2	3	2	3	36.01	2.494	8	0.8	2	4	2	42.57	2.124	8	0.6
3	1	1	18.84	4.709	8	0.7	3	3	2	36.05	2.491	8	0.8	8	2	1	42.76	2.115	8	1.0
2	0	2	20.38	4.358	4	0.7	0	0	4	36.83	2.441	2	1.9	4	3	3	43.62	2.075	8	0.8
0	2	1	20.40	4.353	4	0.2	0	4	0	36.96	2.432	2	0.9	3	2	4	43.81	2.066	8	1.2
2	2	0	20.44	4.346	4	0.8	1	0	4	37.13	2.421	4	3.4	7	1	3	43.97	2.059	8	1.5
4	1	0	20.50	4.332	4	3.3	8	0	0	37.17	2.419	2	0.5	7	3	1	44.03	2.057	8	1.0
1	1	2	20.87	4.256	8	21.0	5	1	3	37.26	2.413	8	3.4	9	1	1	44.12	2.053	8	0.4
1	2	1	20.92	4.247	8	54.6	5	3	1	37.33	2.409	8	0.6	5	1	4	44.88	2.019	8	0.3
2	1	2	22.35	3.977	8	1.9	7	0	2	37.38	2.406	4	2.5	4	2	4	45.62	1.989	8	0.5
4	1	1	22.45	3.960	8	2.0	2	0	4	38.02	2.366	4	0.1	4	4	2	45.71	1.985	8	1.0
3	1	2	24.63	3.614	8	3.5	4	2	3	38.12	2.361	8	0.1	8	2	2	45.83	1.980	8	0.1
3	2	1	24.67	3.608	8	6.4	0	4	1	38.14	2.360	4	2.5	5	3	3	45.94	1.975	8	0.7
0	2	2	25.86	3.445	4	5.4	2	4	0	38.16	2.358	4	2.7	0	4	3	46.63	1.948	4	1.9
4	0	2	25.93	3.436	4	1.3	4	3	2	38.16	2.358	8	0.7	6	4	0	46.78	1.942	4	0.4
4	2	0	25.98	3.430	4	0.2	6	2	2	38.22	2.355	8	0.4	1	3	4	46.83	1.940	8	0.7
1	2	2	26.27	3.392	8	34.8	1	1	4	38.31	2.350	8	1.8	1	4	3	46.88	1.938	8	1.2
5	1	1	26.41	3.375	8	5.9	8	1	0	38.34	2.348	4	0.4	7	2	3	47.00	1.933	8	0.3
2	2	2	27.48	3.246	8	0.4	1	4	1	38.43	2.342	8	0.7	7	3	2	47.04	1.932	8	3.1
4	1	2	27.53	3.240	8	0.2	7	2	1	38.58	2.334	8	0.2	9	1	2	47.12	1.929	8	0.7
6	0	0	27.66	3.225	2	0.3	2	1	4	39.18	2.299	8	0.1	9	2	1	47.14	1.928	8	1.0
2	3	0	29.04	3.074	4	10.2	2	4	1	39.30	2.293	8	1.9	2	3	4	47.57	1.911	8	0.8
6	1	0	29.17	3.061	4	59.8	6	3	0	39.40	2.287	4	3.5	2	4	3	47.62	1.910	8	0.3
1	1	3	29.31	3.047	8	24.1	3	0	4	39.48	2.283	4	0.8	6	1	4	47.65	1.908	8	0.5
1	3	1	29.39	3.039	8	1.1	8	1	1	39.48	2.282	8	0.2	1	1	5	47.74	1.905	8	3.4
5	0	2	29.45	3.033	4	0.6	1	3	3	39.51	2.281	8	0.4	6	4	1	47.76	1.904	8	0.8
2	1	3	30.40	2.940	8	0.8	2	3	3	40.36	2.235	8	0.2	8	1	3	47.77	1.904	8	0.2
2	3	1	30.48	2.932	8	11.8	6	1	3	40.45	2.230	8	0.2	8	3	1	47.83	1.902	8	0.4
6	1	1	30.60	2.921	8	5.7	6	3	1	40.52	2.226	8	0.9	5	2	4	47.87	1.900	8	0.7
5	1	2	30.88	2.895	8	2.3	3	1	4	40.60	2.222	8	1.7	1	5	1	47.91	1.899	8	0.2
5	2	1	30.91	2.893	8	12.7	5	2	3	40.70	2.217	8	0.7	10	1	0	47.93	1.898	4	4.8
3	1	3	32.15	2.784	8	1.6	3	4	1	40.71	2.216	8	2.0	5	4	2	47.95	1.897	8	0.1
3	3	1	32.23	2.777	8	10.2	5	3	2	40.74	2.215	8	0.5	2	5	1	48.64	1.872	8	0.3
0	2	3	33.12	2.705	4	0.1	0	2	4	41.39	2.181	4	1.4	6	3	3	48.67	1.871	8	1.0
4	3	0	33.26	2.693	4	0.6	4	0	4	41.44	2.179	4	1.6	3	4	3	48.84	1.865	8	3.2
6	0	2	33.29	2.691	4	0.2	0	4	2	41.49	2.177	4	0.8	3	1	5	49.68	1.835	8	0.1
6	2	0	33.33	2.688	4	1.0	4	4	0	41.56	2.173	4	0.4	3	5	1	49.84	1.830	8	0.3
1	2	3	33.45	2.679	8	35.8	1	2	4	41.67	2.168	8	1.3							

CHEMICAL COMPOSITION: [Al₁₆P₁₆O₆₄]

REFINED COMPOSITION: [Al₁₆P₁₆O₆₄]

CRYSTAL DATA: *Pbca* (No. 61) a = 19.816 Å b = 10.047 Å c = 8.935 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ X-ray Rietveld refinement, $R_{wp} = 0.17$, $R_{F} = 0.051$; At $T = 100^{\circ}$ C.

REFERENCE: E. B. Keller, W. M. Meier and R. M. Kirchner, Solid State Ionics 43 93–102 (1990).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	1	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
2	1	0	12.55	7.055	4	100.0	2		1	3	32.63	2.744	8	2.0	4	4	1	41.56	2.173	8	0.8
1	1	1	14.00	6.327	8	37.6	1	:	3	2	33.75	2.655	8	0.8	1	1	4	41.67	2.167	8	1.5
2	1	1	16.01	5.537	8	8.8	6		2	1	34.00	2.637	8	0.1	8	0	2	41.69	2.166	4	0.2
0	2	0	17.65	5.023	2	3.0	3		1	3	34.21	2.621	8	0.8	6	1	3	41.82	2.160	8	1.2
4	0	0	17.90	4.954	2	40.4	7		1	1	34.41	2.606	8	2.3	7	2	2	41.84	2.159	8	0.8
3	1	1	18.90	4.696	8	0.8	2	;	3	2	34.68	2.587	8	1.9	8	2	1	41.90	2.156	8	0.6
0	0	2	19.87	4.468	2	39.2	6		1	2	34.94	2.568	8	1.4	3	3	3	42.88	2.109	8	0.7
1	0	2	20.38	4.358	4	4.0	0		2	3	35.02	2.562	4	0.5	7	3	1	43.04	2.101	8	0.9
1	2	1	20.77	4.276	8	27.4	5		2	2	35.15	2.553	8	2.3	0	2	4	44.38	2.041	4	1.7
2	2	1	22.19	4.005	8	4.2	1		2	3	35.33	2.541	8	3.8	4	0	4	44.49	2.036	4	0.3
1	1	2	22.23	3.998	8	8.0	0	4	4	0	35.75	2.512	2	3.6	1	2	4	44.63	2.030	8	2.2
4	1	1	22.35	3.978	8	1.9	3	;	3	2	36.17	2.483	8	0.1	7	1	3	45.10	2.010	8	0.6
2	1	2	23.57	3.774	8	5.9	5	;	3	1	36.54	2.459	8	0.9	4	4	2	45.28	2.003	8	0.6
3	1	2	25.65	3.473	8	0.1	0	4	4	1	37.18	2.418	4	0.8	2	2	4	45.37	1.999	8	0.2
5	1	1	26.15	3.408	8	4.9	7	(0	2	37.61	2.391	4	0.1	4	1	4	45.45	1.996	8	0.1
0	2	2	26.70	3.338	4	4.2	3	:	2	3	37.66	2.389	8	0.4	8	2	2	45.60	1.989	8	0.1
4	0	2	26.87	3.318	4	2.9	7		2	1	37.84	2.377	8	2.1	2	5	0	46.09	1.969	4	0.2
1	2	2	27.09	3.292	8	6.3	4	;	3	2	38.18	2.357	8	0.2	1	5	1	46.55	1.951	8	0.2
4	2	1	27.18	3.281	8	0.2	6	;	3	0	38.27	2.352	4	2.9	7	3	2	46.67	1.946	8	0.3
2	3	0	28.13	3.173	4	8.1	7		1	2	38.71	2.326	8	0.6	10	1	0	46.72	1.944	4	3.2
2	2	2	28.21	3.164	8	1.6	5		1	3	38.87	2.317	8	0.5	9	1	2	46.88	1.938	8	0.2
4	1	2	28.33	3.150	8	0.3	6	;	3	1	39.63	2.274	8	0.2	1	4	3	47.58	1.911	8	0.1
6	1	0	28.45	3.137	4	26.1	3	4	4	1	39.69	2.271	8	0.2	5	1	4	47.60	1.910	8	0.7
1	3	1	28.82	3.097	8	3.3	4	4	4	0	40.26	2.240	4	0.5	10	1	1	47.88	1.900	8	0.1
2	3	1	29.88	2.990	8	5.2	0	(0	4	40.38	2.234	2	0.3	7	2	3	47.89	1.900	8	1.0
5	0	2	30.14	2.965	4	0.4	8		2	0	40.61	2.222	4	0.3	4	2	4	48.22	1.887	8	0.6
6	1	1	30.19	2.960	8	2.8	5	;	3	2	40.64	2.220	8	0.5	3	5	1	48.43	1.879	8	0.1
5	2	1	30.42	2.938	8	5.5	1	(0	4	40.64	2.220	4	0.2	1	3	4	49.25	1.850	8	0.3
5	1	2	31.46	2.844	8	2.3	0	4	4	2	41.23	2.189	4	0.1	6	3	3	49.38	1.846	8	0.4
1	1	3	31.66	2.826	8	5.1	2	(0	4	41.44	2.179	4	0.1	1	5	2	49.98	1.825	8	1.6
4	2	2	32.34	2.768	8	0.2	1	4	4	2	41 49	2.176	8	0.7							

CHEMICAL COMPOSITION: [Al₁₆P₁₆O₆₄]

REFINED COMPOSITION: [Al₁₆P₁₆O₆₄]

CRYSTAL DATA: $Pca2_1$ (No. 29) a = 19.187 Å b = 8.576 Å c = 9.804 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ X-ray Rietveld refinement, $R_{\rm wp} = 0.203$, $R_{\rm F} = 0.115$; At $T = 100^{\circ}$ C.

REFERENCE:

E. B. Keller, W. M. Meier and R. M. Kirchner, Solid State Ionics 43 93–102 (1990).

h	k	l	2θ	d	M	$I_{\rm rel}$	Ì	ı	k	l	2θ	d	M	$I_{\rm rel}$		h	k	l	2θ	d	M	$I_{\rm rel}$
2	0	0	9.22	9.594	2	0.4		3	1	3	32.49	2.756	8	1.7		0	2	4	42.48	2.128	4	1.2
1	1	0	11.30	7.829	4	0.4		1	3	1	32.97	2.717	8	0.2		8	2	0	43.22	2.093	4	0.3
2	0	1	12.91	6.857	4	100.0		1	0	3	33.17	2.701	4	4.0		8	1	2	43.30	2.089	8	0.1
1	1	1	14.48	6.118	8	3.7		3	0	2	33.46	2.678	4	5.0		7	2	2	43.31	2.089	8	0.1
2	1	1	16.55	5.355	8	1.0		1	2	2	33.46	2.678	8	3.4		6	3	1	43.45	2.083	8	0.1
3	1	0	17.30	5.127	4	4.9		7	1	0	34.35	2.611	4	0.1		1	4	1	43.46	2.082	8	0.8
0	0	2	18.10	4.902	2	7.4		3	3	0	34.36	2.610	4	1.0		2	2	4	43.57	2.077	8	0.4
4	0	0	18.50	4.797	2	18.8		1	1	3	34.83	2.576	8	0.3		5	3	2	43.58	2.077	8	1.2
3	1	1	19.54	4.543	8	17.0		1	2	3	34.83	2.576	8	0.3		9	1	0	43.75	2.069	4	1.6
2	0	2	20.34	4.365	4	13.9		3	1	2	35.10	2.557	8	0.1		8	2	1	44.25	2.047	8	1.2
4	0	1	20.61	4.309	4	20.9		3	3	1	35.60	2.522	8	4.7		2	4	1	44.26	2.046	8	0.8
0	2	0	20.71	4.288	2	89.1		2	2	3	35.79	2.509	8	3.4		$\overline{7}$	1	3	44.41	2.040	8	1.0
0	1	2	20.87	4.256	4	2.6		3	2	1	36.22	2.480	8	3.0		3	3	3	44.42	2.039	8	0.4
4	1	0	21.22	4.186	4	2.8		5	2	2	36.37	2.470	8	0.2		3	4	0	44.57	2.033	4	0.1
1	2	0	21.23	4.185	4	0.3	()	3	2	36.38	2.469	4	0.3		9	1	1	44.77	2.024	8	0.6
1	1	2	21.39	4.155	8	15.0		1	3	0	36.59	2.456	4	0.3		6	2	3	44.94	2.017	8	1.3
2	1	2	22.86	3.890	8	3.8)	0	4	36.66	2.451	2	3.3		5	1	4	45.15	2.008	8	0.9
4	1	1	23.10	3.850	8	3.7		1	3	2	36.69	2.449	8	3.8		3	4	1	45.57	1.990	8	0.2
1	2	1	23.11	3.849	8	1.4	:	3	2	3	37.34	2.408	8	0.2		7	3	0	45.86	1.978	4	0.1
2	2	1	24.48	3.636	8	12.1		3	0	0	37.50	2.398	2	1.2		0	4	2	46.21	1.964	4	0.5
3	2	0	25.00	3.562	4	0.2		2	3	2	37.61	2.391	8	0.9		4	4	0	46.39	1.957	4	0.3
3	1	2	25.13	3.543	8	10.4		1	3	1	37.76	2.382	8	0.8		1	4	2	46.47	1.954	8	0.3
5	1	0	25.43	3.503	4	2.1		2	0	4	37.89	2.375	4	1.1		6	0	4	46.69	1.945	4	0.5
4	0	2	25.99	3.428	4	11.3)	1	4	38.19	2.357	4	0.5		4	2	4	46.70	1.945	8	0.2
3	2	1	26.63	3.348	8	0.5		1	1	4	38.49	2.339	8	0.2		7	3	1	46.84	1.939	8	0.6
5	1	1	27.03	3.299	8	7.3		3	1	0	38.99	2.310	4	0.2		8	0	3	46.99	1.934	4	0.8
0	2	2	27.64	3.227	4	2.0		3	3	2	39.10	2.304	8	1.3		8	2	2	47.21	1.925	8	0.6
6	0	0	27.90	3.198	2	0.2		5	3	0	39.30	2.292	4	0.5		2	4	2	47.23	1.924	8	0.6
4	2	0	27.91	3.197	4	3.7		5	0	3	39.42	2.286	4	0.2		2	0	5	47.32	1.921	4	0.5
4	1	2	28.03	3.183	8	0.4		1	2	3	39.43	2.285	8	0.7		4	4	1	47.36	1.919	8	0.3
1	2	2	28.03	3.183	8	0.6		3	2	2	39.68	2.272	8	0.1		9	1	2	47.71	1.906	8	0.5
2	0	3	28.86	3.093	4	13.7		5	3	1	40.41	2.232	8	2.4		1	1	5	47.82	1.902	8	1.1
2	2	2	29.19	3.059	8	4.2		3	1	3	40.86	2.209	8	0.4		6	1	4	47.95	1.897	8	0.1
6	0	1	29.38	3.040	4	13.7		1	3	2	41.11	2.196	8	0.2		8	1	3	48.25	1.886	8	0.2
4	2	1	29.39	3.039	8	3.4		1	0	4	41.37	2.183	4	1.0]	10	0	1	48.33	1.883	4	1.1
1	1	3	29.62	3.016	8	1.8		3	0	2	41.93	2.154	4	2.1		2	1	5	48.56	1.875	8	0.1
2	1	3	30.72	2.910	8	0.8		5	2	3	41.98	2.152	8	0.1		0	3	4	48.95	1.861	4	0.1
3	2	2	31.04	2.881	8	0.2)	4	0	42.15	2.144	2	5.2		1	3	4	49.20	1.852	8	0.3
6	1	1	31.21	2.865	8	0.3		1	3	3	42.27	2.138	8	0.8		3	1	5	49.79	1.831	8	0.1
5	1	2	31.39	2.850	8	1.7		l	4	0	42.42	2.131	4	0.4								

 $4 \quad 2 \quad 0 \quad 29.86 \quad 2.993 \quad 12$

9.2

CH	EM	IC	AL CO	MPOS	SITI	ON: (C C ₇ I	7H ₁₃ I H ₁₃ N	$N)_4 = c$	(H ₂ quir	2O) ₁₆ nuclidii	[Al ₂₀ P ₂ ne	₂₀ O ₈	0]						
R	EFI	INE	ED CO	MPOS	SITIC	DN: (C	₇ H ₁₃ I	$N)_4$	[A	$l_{20}P_{20}$	O ₈₀]								
			CRY F	'STAL REFER	DA' REN($\begin{array}{llllllllllllllllllllllllllllllllllll$	3 (No = 13.3 = 90° ay R M. Be <i>lites</i>	9. 19 832 ietv enne 11	96) A eld ett 502	b = 1 $\beta =$ refinent and R. 2–506 (13.3832 90° ment, 1 M. Ki (1991).	2 Å R _{wp} irchr	c = 1 $\gamma = 9$ = 0.19 her,	3.3832 00° 2, <i>R</i> _F =	Å = 0.	100	6		
h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M
1	1	1	11.45	7.727	8	61.9	4	0	2	29.86	2.993	12	18.6	6	0	2	42.73	2.116	12
2	0	0	13.23	6.692	6	0.3	4	2	2	32.78	2.732	24	5.0	6	2	0	42.73	2.116	12
2	2	0	18.75	4.732	12	52.0	3	3	3	34.83	2.576	8	0.3	5	3	3	44.39	2.041	24
3	3 1 1 22.03 4.035 24 10					100.0	5	1	1	34.83	2.576	24	5.1	6	2	2	44.93	2.018	24
2	$2 \ 2 \ 2 \ 23.02 \ 3.863 \ 8$					9.2	4	4	0	38.03	2.366	12	10.3	4	4	4	47.04	1.932	8
4	$4 0 0 26.64 3.346 6 \qquad 2$					24.4	5	3	1	39.85	2.262	24	2.1	7	1	1	48.58	1.874	24
3	3	1	29.08	3.070	24	8.4	4	4	2	40.44	2.231	24	0.3	5	5	1	48.58	1.874	24

 $6 \quad 0 \quad 0 \quad 40.44 \quad 2.231 \quad 6$

0.5

 $I_{\rm rel} \\ 0.2 \\ 0.2 \\ 4.6 \\ 0.6 \\ 0.2 \\ 4.8 \\$

3.7

 $6 \quad 0 \quad 4 \quad 49.09 \quad 1.856 \quad 12 \quad 1.1$

CHEMICAL COMPOSITION: $|(C_7H_{14}NF)_2|$ [Si₂₀O₄₀] $C_7H_{14}NF =$ quinuclidinium fluoride

REFINED COMPOSITION: $|C_{6.18}F_{0.07}|$ [Si₂₀O₄₀]

CRYSTAL DATA: I 4/m (No. 87) a = 9.194 Å b = 9.194 Å c = 13.396 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ X-ray single crystal refinement, $R_{\rm w} = 0.039$

REFERENCE: P. Caullet, J. L. Guth, J. Hazm, J. M. Lamblin and H. Gies, Eur. J. Solid State Inorg. Chem. 28 345–361 (1991).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	ı	k	l	2θ	d	M	$I_{\rm rel}$
1	0	1	11.67	7.580	8	100.0	1	1	4	30.01	2.977	8	6.3	3	3	2	3	40.75	2.214	8	1.8
0	0	2	13.22	6.698	2	2.9	2	2	2	30.57	2.924	8	5.5	2	2	3	3	40.75	2.214	8	0.7
1	1	0	13.62	6.501	4	5.1	1	3	0	30.75	2.907	4	8.5	4	1	1	1	41.03	2.200	8	2.4
1	1	2	19.02	4.665	8	12.0	2	0	4	33.09	2.707	8	1.8	1	L	4	1	41.03	2.200	8	0.3
2	0	0	19.31	4.597	4	2.7	1	3	2	33.60	2.667	8	0.1	1	L	3	4	41.11	2.195	8	0.7
1	0	3	22.13	4.017	8	14.9	3	1	2	33.60	2.667	8	2.6	4	1	0	2	41.54	2.174	8	0.4
2	1	1	22.62	3.931	8	3.6	1	0	5	34.88	2.572	8	1.8	3	3	3	2	43.91	2.062	8	0.1
1	2	1	22.62	3.931	8	35.4	3	0	3	35.53	2.527	8	0.5	2 2	2	4	0	44.05	2.056	4	1.7
2	0	2	23.47	3.790	8	4.3	2	3	1	35.85	2.505	8	0.4	3	3	0	5	44.94	2.017	8	0.6
0	0	4	26.62	3.349	2	7.5	3	2	1	35.85	2.505	8	1.2	2	2	0	6	45.14	2.008	8	0.2
2	2	0	27.44	3.251	4	8.2	2	2	4	38.60	2.333	8	6.6	1	L	4	3	45.46	1.995	8	0.8
2	1	3	29.53	3.025	8	0.3	4	0	0	39.19	2.299	4	0.5	2 2	2	4	2	46.19	1.965	8	0.4
1	2	3	29.53	3.025	8	5.0	2	1	5	40.17	2.245	8	0.7	1	L	0	7	48.59	1.874	8	1.2
3	0	1	29.91	2.987	8	0.4	0	0	6	40.40	2.233	2	0.3	4	2	3	5	49.34	1.847	8	4.6

CHEMICAL COMPOSITION:	$ ((CH_3)_2NH)_2(H_2O)_2 [Ge_{20}O_{40}] (CH_3)_2NH = dimethylamine$
REFINED COMPOSITION:	$ (C_4N_2)(H_2O)_2 [Ge_{20}O_{40}]$
CRYSTAL DATA:	$\begin{array}{ll} P4/mcc~({\rm No.~124})\\ a=8.7795~{\rm \AA}&b=8.7795~{\rm \AA}&c=14.4696~{\rm \AA}\\ \alpha=90^\circ&\beta=90^\circ&\gamma=90^\circ\\ {\rm X}\mbox{-ray single crystal refinement},~R_{\rm F}=0.025,~wR_{\rm F2}=0.053;~{\rm at}~-75~{\rm C}. \end{array}$

REFERENCE: H. Li and O. M. Yaghi,

J. Am. Chem. Soc. **120** 10569–10570 (1998).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	, 1	ĉ	l	2θ	d	M	$I_{\rm rel}$
1	0	0	10.07	8.780	4	100.0	2	0	4	32.06	2.792	8	9.4	4	. ()	0	41.12	2.195	4	1.1
0	0	2	12.23	7.235	2	1.6	3	1	0	32.24	2.776	8	1.1	4		1	0	42.45	2.129	8	3.5
1	1	0	14.27	6.208	4	7.7	3	1	1	32.85	2.727	16	18.7	2	: ()	6	42.78	2.114	8	0.2
1	0	2	15.87	5.583	8	6.5	3	0	2	33.02	2.713	8	0.6	4	: .	1	1	42.93	2.107	16	3.9
1	1	2	18.84	4.711	8	12.4	2	1	4	33.69	2.660	16	12.4	3		3	0	43.74	2.069	4	0.5
2	0	0	20.23	4.390	4	0.3	3	1	2	34.60	2.592	16	3.8	2		1	6	44.07	2.055	16	1.8
2	1	0	22.65	3.926	8	26.5	3	2	0	36.91	2.435	8	0.2	4		1	2	44.34	2.043	16	0.5
2	1	1	23.48	3.789	16	25.8	0	0	6	37.29	2.412	2	1.2	3		2	4	44.87	2.020	16	0.5
2	0	2	23.71	3.753	8	9.6	3	1	3	37.37	2.406	16	1.3	3		1	5	45.26	2.003	16	10.7
0	0	4	24.61	3.617	2	10.9	3	2	1	37.45	2.401	16	1.8	3		3	2	45.59	1.990	8	1.0
2	1	2	25.82	3.451	16	0.9	2	2	4	38.20	2.356	8	15.0	4		2	0	46.24	1.963	8	8.1
1	0	4	26.65	3.345	8	14.0	2	1	5	38.65	2.330	16	1.3	4		1	3	46.63	1.948	16	1.1
1	1	4	28.56	3.126	8	5.0	1	0	6	38.72	2.325	8	0.7	4		2	2	48.02	1.895	16	0.3
2	2	0	28.76	3.104	4	2.3	3	2	2	39.03	2.308	16	0.2	3		2	5	48.88	1.863	16	6.1
2	1	3	29.33	3.045	16	4.1	3	0	4	39.61	2.275	8	0.5	4	: :	1	4	49.68	1.835	16	2.8
3	0	0	30.55	2.926	4	0.3	1	1	6	40.11	2.248	8	0.5								
2	2	2	31.36	2.853	8	5.4	3	1	4	40.98	2.202	16	0.4								

CHEMICAL COMPOSITION:	$ ((C_3H_7)_2NH)_x [Al_7MgP_8O_{32}] (C_3H_7)_2NH = di-n-propylamine$
REFINED COMPOSITION:	$ C_{13.16}O_{0.168} $ [Al _{7.512} P _{7.504} O ₃₂]
CRYSTAL DATA:	$ \begin{array}{l} I4/m~({\rm No.}~87)\\ a=13.2088~{\rm \AA}~~b=13.2088~{\rm \AA}~~c=5.2771~{\rm \AA}\\ \alpha=90^\circ~~\beta=90^\circ~~\gamma=90^\circ\\ {\rm X-ray~single~crystal~refinement},~R_{\rm w}=0.02,~R_{\rm F}=0.02,~R_{\rm F}=0.02,~R_{$

REFERENCE: W. H. Baur, W. Joswig, D. Kassner, A. Bieniok, G. Finger and J. Kornatowski, Z. Kristallogr. **214** 154–159 (1999).

0.093

h	k	l	2θ	d	M	$I_{ m rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	9.47	9.340	4	39.6	1	4	1	32.70	2.738	8	9.1	4	0	2	43.92	2.061	8	2.6
2	0	0	13.41	6.604	4	75.6	0	0	2	33.98	2.639	2	16.5	3	3	2	45.04	2.013	8	1.0
1	0	1	18.10	4.900	8	69.0	5	1	0	34.63	2.590	4	0.8	6	1	1	45.15	2.008	8	0.1
2	2	0	19.00	4.670	4	0.3	2	0	2	36.68	2.450	8	4.4	4	2	2	46.13	1.968	8	3.1
1	3	0	21.27	4.177	4	20.8	3	4	1	38.09	2.362	8	1.7	2	4	2	46.13	1.968	8	1.6
3	1	0	21.27	4.177	4	72.5	5	0	1	38.09	2.362	8	9.7	5	4	1	47.31	1.921	8	1.3
2	1	1	22.59	3.935	8	42.3	4	3	1	38.09	2.362	8	4.3	4	5	1	47.31	1.921	8	0.9
1	2	1	22.59	3.935	8	100.0	4	4	0	38.56	2.335	4	0.3	5	5	0	48.75	1.868	4	4.6
3	0	1	26.36	3.381	8	1.1	2	2	2	39.22	2.297	8	1.4	1	$\overline{7}$	0	48.75	1.868	4	0.2
4	0	0	27.00	3.302	4	5.3	3	5	0	39.79	2.265	4	0.4	5	1	2	49.30	1.848	8	0.8
3	3	0	28.67	3.113	4	11.9	5	3	0	39.79	2.265	4	0.6	1	5	2	49.30	1.848	8	0.4
2	3	1	29.69	3.009	8	6.4	1	3	2	40.43	2.231	8	0.6	3	6	1	49.40	1.845	8	1.2
3	2	1	29.69	3.009	8	14.6	2	5	1	40.56	2.224	8	0.1	6	3	1	49.40	1.845	8	1.1
2	4	0	30.26	2.954	4	23.9	6	0	0	41.00	2.201	4	3.1	4	6	0	49.78	1.832	4	0.3
4	2	0	30.26	2.954	4	15.7	6	2	0	43.32	2.088	4	1.1	6	4	0	49.78	1.832	4	0.2
4	1	1	32.70	2.738	8	10.5	2	6	0	43.32	2.088	4	1.5							

CHEMICAL COMPOSITION:	$ ((C_3H_7)_2NH)_2 [Al_{18}P_{17}SiO_{72}] (C_3H_7)_2NH = di-n-propylamine$
REFINED COMPOSITION:	$ C_{14.76} $ [Al _{17.71} P _{16.67} O ₇₂]
CRYSTAL DATA:	$R\overline{3}$ (No. 148) hexagonal setting a=20.839 Å $b=20.839$ Å $c=5.041$ Å $\alpha=90^\circ$ $\beta=90^\circ$ $\gamma=120^\circ$ X-ray single crystal refinement, $R_{\rm wF}=0.018,$ $R_{\rm F}=0.051$

REFERENCE: W. H. Baur, W. Joswig, D. Kassner and J. Kornatowski, Acta Cryst. **B50** 290–294 (1994).

h	k	l	2θ	d	M	I_{rel}	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	8.49	10.419	6	100.0	7	-3	1	35.09	2.557	6	11.6	0	8	1	43.97	2.059	6	0.9
0	3	0	14.73	6.016	6	2.8	0	1	2	35.98	2.496	6	5.8	4	2	2	44.71	2.027	6	1.1
2	2	0	17.02	5.210	6	7.2	2	0	2	37.03	2.428	6	4.5	6	-2	2	44.71	2.027	6	0.5
1	0	1	18.27	4.855	6	5.0	7	-6	1	37.22	2.416	6	0.8	9	-7	1	44.87	2.020	6	0.3
0	2	1	20.18	4.401	6	91.6	1	7	0	37.63	2.390	6	2.0	2	$\overline{7}$	1	44.87	2.020	6	1.0
2	1	1	21.92	4.054	6	8.8	7	1	0	37.63	2.390	6	0.7	0	9	0	45.22	2.005	6	3.0
3	-1	1	21.92	4.054	6	46.8	3	-2	2	38.06	2.364	6	2.9	1	5	2	45.59	1.990	6	0.4
4	1	0	22.58	3.938	6	99.9	1	2	2	38.06	2.364	6	2.4	2	8	0	46.10	1.969	6	0.8
1	4	0	22.58	3.938	6	53.5	8	-5	1	39.25	2.295	6	2.6	8	2	0	46.10	1.969	6	1.0
4	-3	1	25.07	3.552	6	7.7	3	5	1	39.25	2.295	6	0.3	9	-1	1	46.62	1.948	6	0.2
1	3	1	25.07	3.552	6	0.4	7	0	1	39.25	2.295	6	3.3	8	1	1	46.62	1.948	6	6.5
3	3	0	25.65	3.473	6	5.2	6	3	0	39.64	2.274	6	1.0	3	4	2	47.32	1.921	6	2.3
5	-2	1	27.88	3.199	6	1.9	3	6	0	39.64	2.274	6	2.0	4	6	1	47.48	1.915	6	1.8
3	2	1	27.88	3.199	6	21.1	4	-1	2	40.05	2.251	6	0.6	10	-6	1	47.48	1.915	6	0.1
0	6	0	29.70	3.008	6	9.7	3	1	2	40.05	2.251	6	3.8	7	3	1	48.32	1.883	6	0.2
5	2	0	30.94	2.890	6	1.0	6	2	1	40.23	2.242	6	1.4	10	-3	1	48.32	1.883	6	1.4
6	-4	1	31.67	2.825	6	5.7	2	3	2	41.96	2.153	6	0.4	7	4	0	48.65	1.871	6	1.5
2	4	1	31.67	2.825	6	32.5	5	-3	2	41.96	2.153	6	0.2	4	7	0	48.65	1.871	6	2.6
6	-1	1	32.85	2.726	6	0.3	5	4	1	43.06	2.101	6	0.4	6	1	2	49.01	1.859	6	0.2
5	1	1	32.85	2.726	6	0.1	9	-4	1	43.06	2.101	6	0.8	7	-1	2	49.01	1.859	6	2.5
4	4	0	34.43	2.605	6	0.4	5	5	0	43.42	2.084	6	0.6							
4	3	1	35.09	2.557	6	5.4	5	0	2	43.81	2.067	6	1.9							

CHEMICAL COMPOSITION: [(Al_{10.8}Mg)P_{12.2}O₄₈]

REFINED COMPOSITION: [Si₂₄O₄₈]

CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 13.1483 Å b = 21.5771 Å c = 5.1639 Å $\alpha = 90^{\circ}$ $\beta = 91.84^{\circ}$ $\gamma = 90^{\circ}$ X-ray Rietveld refinement, $R_{exp} = 0.112$, $R_{wp} = 0.135$, $R_{F} = 0.058$

REFERENCE: J. V. Smith, J. J. Pluth and K. J. Andries, Zeolites 13 166–169 (1993).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	7.88	11.224	4	100.0	-3	3	1	29.09	3.069	4	2.4	-1	5	2	41.14	2.194	4	0.1
0	2	0	8.20	10.789	2	25.3	1	7	0	29.77	3.001	4	0.2	6	0	0	41.22	2.190	2	1.0
2	0	0	13.48	6.571	2	4.9	3	3	1	29.88	2.990	4	0.6	3	1	2	41.39	2.182	4	0.1
1	3	0	14.04	6.309	4	0.3	0	6	1	30.29	2.951	4	2.8	4	6	1	41.51	2.175	4	0.2
2	2	0	15.79	5.612	4	1.3	4	4	0	31.89	2.806	4	3.4	2	4	2	41.53	2.175	4	0.6
0	4	0	16.43	5.394	2	12.2	-2	6	1	33.05	2.710	4	0.2	1	5	2	41.53	2.174	4	0.3
-1	1	1	18.72	4.739	4	0.6	0	8	0	33.22	2.697	2	0.3	1	9	1	42.22	2.141	4	0.1
0	2	1	19.06	4.656	4	19.8	-3	5	1	33.59	2.668	4	0.6	3	3	2	43.13	2.098	4	0.2
1	1	1	19.12	4.641	4	1.0	-1	7	1	34.46	2.603	4	1.1	0	6	2	43.15	2.097	4	0.4
3	1	0	20.69	4.293	4	10.7	1	7	1	34.69	2.586	4	3.6	-5	5	1	43.52	2.079	4	0.4
2	4	0	21.31	4.169	4	2.2	0	0	2	34.76	2.581	2	3.6	2	10	0	44.18	2.050	4	0.7
1	5	0	21.67	4.100	4	3.7	-1	1	2	35.48	2.530	4	0.6	-6	2	1	45.24	2.004	4	0.3
-1	3	1	22.08	4.025	4	8.8	0	2	2	35.78	2.510	4	0.5	5	7	0	45.34	2.000	4	0.4
1	3	1	22.42	3.965	4	9.8	1	1	2	35.92	2.500	4	0.2	-3	5	2	45.37	1.999	4	0.6
-2	2	1	23.09	3.852	4	2.2	2	8	0	35.99	2.495	4	0.4	2	6	2	45.77	1.983	4	0.2
2	2	1	23.74	3.748	4	1.7	-4	4	1	36.01	2.494	4	1.0	-1	7	2	46.23	1.964	4	0.1
3	3	0	23.78	3.741	4	1.1	5	3	0	36.39	2.469	4	0.2	6	2	1	46.32	1.960	4	0.4
0	6	0	24.76	3.596	2	0.2	0	8	1	37.63	2.390	4	0.4	-4	8	1	46.66	1.947	4	0.3
4	0	0	27.14	3.285	2	6.2	2	0	2	37.86	2.376	2	0.3	4	8	1	47.36	1.919	4	0.3
-2	4	1	27.22	3.276	4	2.2	1	3	2	37.87	2.376	4	0.3	-2	10	1	47.56	1.912	4	0.8
3	1	1	27.44	3.251	4	0.7	-5	1	1	38.15	2.359	4	0.5	-6	4	1	47.66	1.908	4	0.1
-1	5	1	27.65	3.226	4	0.2	2	2	2	38.81	2.321	4	0.3	-5	7	1	48.41	1.880	4	0.1
2	4	1	27.78	3.211	4	0.7	5	1	1	39.18	2.299	4	0.3	6	6	0	48.67	1.871	4	0.3
1	5	1	27.93	3.195	4	0.6	-3	7	1	39.49	2.282	4	0.2	7	1	0	48.68	1.870	4	0.3
2	6	0	28.29	3.155	4	1.8	5	5	0	40.17	2.245	4	1.0	6	4	1	48.70	1.870	4	0.2
4	2	0	28.40	3.143	4	0.3	2	8	1	40.34	2.236	4	0.2	0	8	2	48.84	1.865	4	0.1
3	5	0	29.05	3.074	4	2.3	-2	4	2	40.74	2.215	4	0.4	5	7	1	49.26	1.850	4	0.5

CHEMICAL COMPOSITION: $|((CH_3)_4NOH)_4| [Al_{12}P_{12}O_{48}]$ (CH₃)₄NOH = tetramethylammonium hydroxide

REFINED COMPOSITION: $|(C_4NO)_4|$ [Al₁₂P₁₂O₄₈]

CRYSTAL DATA: $P2_12_12$ (No. 18)

 $a = 10.3325 \text{ Å} \quad b = 14.6405 \text{ Å} \quad c = 9.5112 \text{ Å}$ $\alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ}$ X-ray Rietveld refinement, $R_{\rm wp} = 0.19, R_{\rm F} = 0.17$

REFERENCE:

P. R. Rudolf, C. Saldarriaga-Molina and A. Clearfield, J. Phys. Chem. **90** 6122–6125 (1986).

h	k	l	2θ	d	M	I_{rel}	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	0	1	9.30	9.511	2	24.3	1	5	0	31.76	2.817	4	0.5	2	6	1	42.04	2.149	8	0.1
1	1	0	10.48	8.442	4	0.3	1	2	3	31.96	2.800	8	0.5	0	3	4	42.28	2.138	4	0.3
0	1	1	11.09	7.976	4	0.5	1	4	2	32.05	2.793	8	11.1	2	1	4	42.29	2.137	8	1.0
0	2	0	12.09	7.320	2	0.9	3	0	2	32.09	2.789	4	1.4	1	6	2	42.55	2.125	8	0.1
1	0	1	12.65	6.998	4	100.0	3	1	2	32.68	2.740	8	0.1	4	4	0	42.85	2.110	4	0.1
1	1	1	14.03	6.314	8	0.9	1	5	1	33.16	2.701	8	0.3	1	5	3	42.95	2.106	8	0.3
1	2	0	14.83	5.973	4	0.4	3	3	1	33.20	2.698	8	1.2	3	3	3	42.98	2.105	8	0.3
0	2	1	15.27	5.801	4	26.6	0	3	3	33.71	2.659	4	0.5	1	3	4	43.22	2.093	8	0.2
2	0	0	17.16	5.166	2	7.8	3	2	2	34.40	2.607	8	9.2	2	2	4	43.69	2.072	8	0.5
1	2	1	17.53	5.058	8	21.7	4	0	0	34.73	2.583	2	0.9	4	3	2	43.99	2.058	8	0.7
0	0	2	18.66	4.756	2	0.5	2	2	3	35.41	2.535	8	0.8	1	7	0	44.18	2.050	4	0.2
2	0	1	19.55	4.540	4	2.7	2	4	2	35.49	2.529	8	1.0	5	1	0	44.26	2.046	4	0.3
0	1	2	19.63	4.523	4	0.5	4	0	1	36.03	2.493	4	0.3	0	7	1	44.34	2.043	4	0.2
1	3	0	20.12	4.413	4	1.3	2	5	1	36.52	2.461	8	1.2	5	0	1	44.88	2.019	4	0.5
0	3	1	20.45	4.342	4	2.8	4	1	1	36.56	2.457	8	0.2	1	7	1	45.25	2.004	8	0.5
2	1	1	20.48	4.336	8	0.7	0	6	0	36.83	2.440	2	1.1	4	0	3	45.28	2.003	4	0.7
1	0	2	20.56	4.320	4	19.7	3	4	1	37.07	2.425	8	0.9	2	6	2	45.31	2.001	8	0.3
2	2	0	21.05	4.221	4	5.8	1	5	2	37.09	2.424	8	1.3	5	1	1	45.33	2.000	8	0.6
1	1	2	21.45	4.143	8	1.3	3	3	2	37.12	2.422	8	0.1	1	4	4	46.38	1.958	8	0.2
1	3	1	22.21	4.003	8	4.3	0	0	4	37.84	2.378	2	1.8	3	0	4	46.40	1.957	4	0.2
0	2	2	22.29	3.988	4	0.3	2	3	3	38.06	2.364	8	0.2	3	6	1	46.60	1.949	8	0.6
2	2	1	23.05	3.858	8	6.9	4	2	1	38.14	2.360	8	0.6	5	2	1	46.66	1.947	8	0.3
1	2	2	23.92	3.720	8	30.9	0	1	4	38.35	2.347	4	0.4	3	1	4	46.84	1.940	8	0.2
0	4	0	24.32	3.660	2	1.0	1	4	3	38.57	2.334	8	0.3	4	2	3	47.04	1.932	8	2.1
2	3	0	25.10	3.548	4	1.3	3	0	3	38.60	2.333	4	0.1	4	4	2	47.11	1.929	8	0.1
2	0	2	25.46	3.499	4	0.2	1	0	4	38.86	2.317	4	0.5	0	7	2	47.49	1.915	4	0.8
0	4	1	26.09	3.416	4	44.4	1	6	1	39.09	2.304	8	0.9	5	3	0	47.80	1.903	4	0.3
0	3	2	26.16	3.406	4	0.1	3	1	3	39.10	2.304	8	0.8	0	0	5	47.81	1.902	2	0.9
2	1	2	26.19	3.403	8	0.5	1	1	4	39.37	2.289	8	0.3	1	6	3	47.86	1.901	8	1.9
2	3	1	26.82	3.324	8	1.4	4	0	2	39.71	2.270	4	1.7	2	7	1	47.89	1.900	8	0.2
1	4	1	27.50	3.243	8	5.3	2	5	2	40.16	2.246	8	0.7	3	2	4	48.13	1.890	8	0.6
3	0	1	27.54	3.238	4	51.5	4	1	2	40.20	2.243	8	0.6	5	1	2	48.43	1.880	8	0.4
1	3	2	27.58	3.235	8	0.5	3	5	0	40.43	2.231	4	0.4	1	0	5	48.67	1.871	4	0.3
0	0	3	28.15	3.170	2	0.4	3	2	3	40.59	2.222	8	0.7	2	4	4	48.96	1.860	8	0.2
2	2	2	28.27	3.157	8	0.5	4	3	1	40.64	2.220	8	0.3	1	1	5	49.09	1.856	8	0.1
0	1	3	28.81	3.099	4	0.1	3	4	2	40.67	2.219	8	3.1	0	5	4	49.37	1.846	4	0.2
1	0	3	29.47	3.031	4	9.7	1	2	4	40.85	2.209	8	0.2	0	2	5	49.51	1.841	4	0.1
2	4	0	29.92	2.987	4	1.6	2	4	3	41.54	2.174	8	0.5	3	6	2	49.64	1.837	8	0.2
1	1	3	30.11	2.968	8	0.2	3	5	1	41.58	2.172	8	0.1	5	2	2	49.69	1.835	8	0.2
0	2	3	30.73	2.909	4	7.6	0	6	2	41.60	2.171	4	0.2	0	8	0	49.83	1.830	2	2.3
0	4	2	30.83	2.901	4	0.2	4	2	2	41.66	2.168	8	2.4	3	5	3	49.99	1.824	8	0.2
2	4	1	31.39	2.849	8	1.0	2	0	4	41.82	2.160	4	0.3							
2	3	2	31.46	2.844	8	1.0	0	5	3	42.00	2.151	4	1.3							

CHEMICAL COMPOSITION: [Al₁₂P₁₂O₄₈]

REFINED COMPOSITION: $[Al_{12}P_{12}O_{48}]$

CRYSTAL DATA: Acmm (No. 67) **cba** setting a = 9.4489 Å b = 15.2028 Å c = 8.4084 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ Neutron Rietveld refinement, $R_{\rm wp} = 0.041$, $R_{\rm F^2} = 0.133$; At T = 593 K.

REFERENCE: J. W. Richardson, Jr., J. V. Smith and J. J. Pluth, J. Phys. Chem. **94** 3365–3367 (1990).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	0	0	9.36	9.449	2	48.0	3	1	1	30.88	2.896	8	0.3	0	0	4	43.03	2.102	2	9.0
0	2	0	11.64	7.601	2	12.6	0	4	2	31.74	2.819	4	1.8	4	3	1	43.62	2.075	8	0.8
1	2	0	14.96	5.923	4	95.2	1	5	1	32.72	2.737	8	1.2	3	1	3	43.64	2.074	8	0.3
1	1	1	15.26	5.805	8	0.3	1	4	2	33.16	2.702	8	11.3	4	0	2	43.97	2.059	4	0.3
2	0	0	18.78	4.724	2	29.7	1	1	3	33.88	2.646	8	0.2	1	$\overline{7}$	1	44.12	2.053	8	0.3
0	0	2	21.13	4.204	2	100.0	3	3	1	35.21	2.549	8	1.3	1	0	4	44.13	2.052	4	0.7
2	2	0	22.15	4.013	4	0.5	0	6	0	35.43	2.534	2	4.9	1	5	3	45.02	2.013	8	1.0
2	1	1	22.36	3.976	8	33.4	2	5	1	36.74	2.446	8	2.2	4	2	2	45.64	1.988	8	0.8
1	3	1	22.54	3.944	8	44.0	3	4	0	37.07	2.425	4	4.4	1	2	4	45.80	1.981	8	1.4
1	0	2	23.16	3.841	4	6.7	2	4	2	37.13	2.421	8	0.5	3	6	0	45.97	1.974	4	1.1
0	4	0	23.41	3.801	2	5.3	3	2	2	37.59	2.393	8	6.8	2	6	2	46.02	1.972	8	3.0
0	2	2	24.19	3.679	4	1.1	2	1	3	37.79	2.381	8	6.9	3	3	3	46.95	1.935	8	0.7
1	4	0	25.26	3.526	4	47.2	1	3	3	37.90	2.374	8	8.3	2	$\overline{7}$	1	47.32	1.921	8	4.4
1	2	2	25.99	3.428	8	11.4	4	0	0	38.09	2.362	2	0.7	2	0	4	47.33	1.921	4	0.9
2	3	1	27.91	3.196	8	1.9	4	2	0	39.97	2.256	4	0.1	0	8	0	47.87	1.900	2	3.6
3	0	0	28.34	3.150	2	3.0	4	1	1	40.09	2.249	8	1.4	2	5	3	48.17	1.889	8	1.1
2	0	2	28.42	3.141	4	7.0	2	6	0	40.39	2.233	4	0.8	2	2	4	48.91	1.862	8	0.3
2	4	0	30.18	2.961	4	0.2	2	3	3	41.48	2.177	8	0.4	0	4	4	49.55	1.839	4	0.7
3	2	0	30.73	2.910	4	21.5	3	5	1	42.71	2.117	8	0.2	5	2	0	49.71	1.834	4	0.9

AIPO-25

CHEMICAL COMPOSITION:	$ (C_7H_{21}N_2)_{1.33} $ [Al ₁₂ P ₁₂ O ₄₈]
	$C_7H_{21}N_2 = N, N, N', N'$ -tetramethyl-1,3-propanediamine

REFINED COMPOSITION: $|N_{2.84}C_{13.41}O_4H_4|$ [Al₁₂P₁₂O₄₈]

CRYSTAL DATA: $P1 2_1/a 1$ (No. 14) unique axis **b**, cell choice 3 $a = 10.3307 \text{ Å} \quad b = 17.5241 \text{ Å} \quad c = 8.6757 \text{ Å}$ $\alpha = 90.0^{\circ} \qquad \beta = 123.369^{\circ} \qquad \gamma = 90.0^{\circ}$ X-ray single crystal refinement, R = 0.046, $R_{\rm w} = 0.042$

REFERENCE: J. M. Bennett, J. M. Cohen, G. Artioli, J. J. Pluth and J. V. Smith, Inorg. Chem. 24 188–193 (1985).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
0	2	0	10.10	8.762	2	100.0	0	4	2	32.06	2.792	4	2.2	2	7	0	41.71	2.165	4	0.6
1	1	0	11.43	7.740	4	25.7	1	6	0	32.36	2.766	4	3.1	2	2	2	41.72	2.165	4	0.7
-1	1	1	11.92	7.424	4	33.2	1	5	1	32.47	2.758	4	3.9	4	0	0	41.88	2.157	2	0.6
0	0	1	12.22	7.245	2	53.3	-1	6	1	32.54	2.751	4	3.2	-3	5	3	41.93	2.155	4	0.9
0	1	1	13.22	6.696	4	9.4	-2	2	3	32.61	2.746	4	11.5	-3	1	4	42.17	2.143	4	0.8
1	2	0	14.41	6.148	4	56.0	3	2	0	32.77	2.732	4	0.6	-2	$\overline{7}$	2	42.30	2.136	4	0.9
-1	2	1	14.80	5.986	4	64.2	2	5	0	32.93	2.720	4	18.5	-1	8	1	42.73	2.116	4	1.1
0	2	1	15.87	5.584	4	46.5	-1	1	3	32.95	2.718	4	1.5	0	4	3	42.75	2.115	4	1.5
-2	0	1	17.19	5.158	2	18.4	-1	5	2	33.01	2.713	4	1.6	4	2	0	43.19	2.094	4	2.1
-2	1	1	17.93	4.948	4	1.7	0	6	1	33.07	2.709	4	18.0	-2	2	4	43.47	2.082	4	5.3
1	3	0	18.34	4.837	4	3.1	1	2	2	33.26	2.693	4	9.3	-2	6	3	44.07	2.055	4	1.1
-1	3	1	18.65	4.757	4	7.4	-3	4	1	33.44	2.680	4	26.8	3	6	0	44.20	2.049	4	1.4
0	3	1	19.52	4.548	4	1.9	-2	5	2	33.65	2.664	4	0.9	-5	1	2	44.31	2.044	4	0.9
-2	2	1	19.98	4.445	4	11.8	-1	2	3	34.15	2.625	4	5.6	1	1	3	44.47	2.037	4	1.0
0	4	0	20.27	4.381	2	3.2	-3	2	3	34.38	2.608	4	4.8	-4	1	4	44.52	2.035	4	0.8
1	1	1	20.51	4.330	4	31.3	-2	3	3	34.61	2.592	4	0.6	1	6	2	44.58	2.033	4	1.9
-1	1	2	21.34	4.163	4	28.9	-4	0	2	34.79	2.579	2	15.3	4	3	0	44.79	2.023	4	1.0
-2	0	2	21.68	4.098	2	10.4	-4	1	2	35.17	2.551	4	0.9	3	4	1	44.85	2.021	4	3.5
-2	1	2	22.28	3.991	4	1.6	1	3	2	35.23	2.547	4	1.5	-5	1	3	45.02	2.014	4	0.6
1	2	1	22.33	3.981	4	0.8	-1	3	3	36.08	2.489	4	1.2	-3	7	1	45.03	2.013	4	0.9
1	4	0	22.76	3.906	4	29.1	-3	3	3	36.30	2.475	4	1.3	-2	3	4	45.06	2.012	4	0.8
2	2	0	22.98	3.870	4	18.2	-4	2	2	36.31	2.474	4	3.2	-5	2	2	45.26	2.004	4	1.7
-2	3	1	23.00	3.866	4	37.8	-4	0	1	36.34	2.472	2	0.6	-1	6	3	45.28	2.003	4	1.2
-1	4	1	23.02	3.864	4	69.3	-3	5	1	36.90	2.436	4	3.3	1	2	3	45.41	1.997	4	2.7
-1	2	2	23.10	3.850	4	1.4	-1	6	2	37.25	2.414	4	0.6	-4	2	4	45.46	1.995	4	2.1
0	4	1	23.73	3.749	4	21.4	-3	5	2	37.40	2.405	4	0.6	-3	6	3	45.46	1.995	4	1.3
0	0	2	24.57	3.623	2	19.5	1	7	0	37.40	2.404	4	12.2	-5	2	3	45.95	1.975	4	0.6
1	3	1	25.09	3.549	4	3.9	3	4	0	37.40	2.404	4	2.5	-4	5	3	45.97	1.974	4	3.1
0	1	2	25.10	3.548	4	51.7	-1	7	1	37.57	2.394	4	1.3	1	8	1	46.15	1.967	4	2.0
0	2	2	26.63	3.348	4	77.9	0	1	3	37.59	2.393	4	2.0	-1	2	4	46.37	1.958	4	2.6
-2	4	1	26.70	3.339	4	2.8	-4	0	3	37.65	2.389	2	1.7	-1	8	2	46.56	1.951	4	0.6
-3	1	1	26.81	3.326	4	20.5	1	4	2	37.84	2.377	4	3.0	-4	3	4	46.99	1.934	4	3.6
-3	1	2	27.46	3.248	4	17.2	-4	3	2	38.15	2.359	4	2.6	-4	6	2	47.00	1.933	4	0.9
-1	5	1	27.68	3.223	4	15.2	-1	4	3	38.64	2.330	4	1.1	-2	8	2	47.04	1.932	4	4.4
-3	2	1	28.25	3.159	4	39.2	2	5	1	39.20	2.298	4	0.9	-5	1	1	47.24	1.924	4	0.6
0	5	1	28.29	3.155	4	8.0	-4	3	1	39.58	2.277	4	1.3	-5	3	3	47.47	1.915	4	2.0
-3	2	2	28.87	3.093	4	17.2	0	6	2	39.64	2.274	4	2.1	3	5	1	47.61	1.910	4	1.6
0	3	2	29.00	3.079	4	0.6	3	1	1	39.91	2.259	4	1.8	-1	3	4	47.89	1.900	4	1.7
-1	4	2	29.15	3.064	4	8.5	0	3	3	40.41	2.232	4	4.4	1	9	0	47.89	1.899	4	4.9
2	0	1	29.35	3.043	2	0.8	-2	5	3	40.44	2.231	4	3.4	-4	6	1	48.23	1.887	4	2.5
-3	3	1	30.51	2.930	4	2.1	-3	6	1	40.79	2.212	4	1.3	2	5	2	48.31	1.884	4	2.5
-2	5	1	30.84	2.899	4	0.8	-4	3	3	40.81	2.211	4	3.4	-5	4	2	48.89	1.863	4	1.3
-3	3	2	31.09	2.877	4	5.4	3	2	1	40.94	2.204	4	0.9	-1	7	3	49.20	1.852	4	1.1
3	1	0	31.52	2.838	4	8.4	1	5	2	40.99	2.202	4	0.8	-4	6	3	49.28	1.849	4	1.0
1	1	2	32.03	2.794	4	9.5	1	$\overline{7}$	1	41.34	2.184	4	3.1	-2	5	4	49.88	1.828	4	0.9

CHEMICAL COMPOSITION:	$ (C_7H_{13}N)_4(PO_3OH)_2 $ [Al ₂₄ P ₂₄ O ₉₆]
	$C_7H_{13}N = quinuclidine$

REFINED COMPOSITION: $|P_2O_{8.48}(C_7N)_4|$ [Al₂₄P₂₄O₉₆]

CRYSTAL DATA: P 4/n cc (No. 130) origin at centre $\overline{1}$ a = 13.628 Å b = 13.628 Å c = 15.463 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.18

REFERENCE: J. W. Richardson, Jr., J. J. Pluth and J. V. Smith, *Naturwiss.* **76** 467–469 (1989). And J. J. Pluth, Private communication (1990).

h	k	l	2θ	d	M	I_{rel}	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	1	0	9.18	9.636	4	92.8	4	2	1	29.88	2.990	16	0.2	6	1	2	41.98	2.152	16	0.4
0	0	2	11.44	7.732	2	2.8	3	3	2	30.13	2.966	8	0.6	5	2	4	42.70	2.117	16	0.4
2	0	0	12.99	6.814	4	6.3	3	1	4	31.08	2.878	16	2.3	6	2	2	43.60	2.076	16	0.5
1	0	2	13.17	6.725	8	21.1	4	2	2	31.56	2.835	16	14.1	6	1	3	44.07	2.055	16	0.2
1	1	2	14.69	6.030	8	3.6	4	1	3	32.17	2.782	16	0.4	5	4	2	44.13	2.052	16	1.1
2	1	1	15.63	5.670	16	0.2	2	1	5	32.46	2.758	16	0.2	4	4	4	44.30	2.045	8	4.1
2	0	2	17.35	5.112	8	31.3	3	2	4	33.15	2.703	16	3.3	4	1	6	44.58	2.032	16	1.1
2	2	0	18.41	4.818	4	1.6	5	1	0	33.53	2.673	8	0.4	5	1	5	44.82	2.022	16	0.4
2	1	2	18.54	4.786	16	100.0	5	1	1	34.04	2.634	16	1.2	3	3	6	45.10	2.010	8	4.6
3	1	0	20.61	4.310	8	63.9	0	0	6	34.81	2.577	2	9.7	5	3	4	45.34	2.000	16	0.3
3	1	1	21.40	4.151	16	1.9	5	0	2	34.90	2.571	8	8.3	4	2	6	46.13	1.968	16	0.3
2	2	2	21.73	4.089	8	2.8	4	3	2	34.90	2.571	16	4.4	6	3	2	46.20	1.965	16	1.9
2	1	3	22.59	3.936	16	3.1	4	0	4	35.11	2.556	8	3.2	6	0	4	46.36	1.958	8	0.3
3	0	2	22.70	3.917	8	5.0	1	0	6	35.45	2.532	8	0.4	6	1	4	46.87	1.938	16	1.6
0	0	4	23.01	3.866	2	3.2	5	1	2	35.54	2.526	16	6.3	0	0	8	47.01	1.933	2	1.3
3	1	2	23.63	3.764	16	16.5	3	1	5	35.73	2.513	16	0.3	5	5	0	47.16	1.927	4	1.0
1	0	4	23.93	3.719	8	18.0	4	1	4	35.74	2.512	16	0.7	1	0	8	47.51	1.914	8	0.1
3	2	1	24.24	3.672	16	3.0	5	2	1	35.96	2.497	16	0.2	7	1	1	47.54	1.912	16	0.1
1	1	4	24.82	3.588	8	10.7	1	1	6	36.08	2.490	8	0.6	1	1	8	48.01	1.895	8	0.4
4	0	0	26.16	3.407	4	9.5	5	2	2	37.39	2.405	16	1.5	6	4	0	48.15	1.890	8	0.2
3	2	2	26.24	3.396	16	6.4	3	2	5	37.58	2.394	16	0.5	7	0	2	48.20	1.888	8	5.2
2	0	4	26.51	3.362	8	9.1	4	2	4	37.58	2.393	16	1.6	6	2	4	48.36	1.882	16	0.2
3	1	3	26.97	3.306	16	0.2	2	1	6	37.90	2.374	16	1.1	5	0	6	48.62	1.873	8	0.4
2	1	4	27.32	3.264	16	25.7	4	4	2	39.17	2.300	8	1.5	7	1	2	48.69	1.870	16	2.1
4	1	1	27.60	3.232	16	0.1	2	2	6	39.66	2.273	8	1.7	5	5	2	48.69	1.870	8	2.6
3	3	0	27.77	3.212	4	5.9	6	0	0	39.68	2.271	4	1.7	5	4	4	48.85	1.864	16	0.3
4	0	2	28.63	3.118	8	8.3	3	0	6	40.23	2.242	8	0.8	2	0	8	48.98	1.860	8	2.0
3	2	3	29.30	3.048	16	1.0	5	3	2	40.31	2.237	16	0.6	7	2	1	49.02	1.858	16	0.1
4	2	0	29.31	3.047	8	18.8	4	3	4	40.49	2.228	16	0.1	5	1	6	49.11	1.855	16	2.8
4	1	2	29.39	3.039	16	10.1	5	1	4	41.06	2.198	16	3.5	2	1	8	49.47	1.842	16	0.3
2	2	4	29.63	3.015	8	0.9	6	2	0	41.93	2.155	8	1.9	6	4	2	49.66	1.836	16	0.2

CHEMICAL COMPOSITION: [Si₆₄O₁₂₈]

REFINED COMPOSITION: [Si₆₄O₁₂₈]

CRYSTAL DATA: $P4_122$ (No. 91) $a = 12.661 \text{ Å} \quad b = 12.661 \text{ Å} \quad c = 26.406 \text{ Å}$ $\alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ}$ DLS refinement.

REFERENCE: J. M. Newsam, M. M. J. Treacy, W. T. Koetsier and C. B. deGruyter, *Proc. Roy. Soc.* (London) A420 375–405 (1988).

h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$	h	k	l	2θ	d	M	$I_{\rm rel}$
1	0	0	6.98	12.661	4	22.8	3	2	2	26.26	3.394	16	0.1	2	1	10	37.58	2.393	16	0.1
1	0	1	7.74	11.417	8	100.0	0	0	8	27.01	3.301	2	2.4	5	1	3	37.64	2.390	16	0.1
1	0	2	9.68	9.138	8	14.7	2	0	7	27.52	3.241	8	1.8	4	2	6	37.78	2.381	16	0.2
1	1	1	10.43	8.479	8	0.3	1	0	8	27.93	3.194	8	0.2	3	1	9	38.02	2.367	16	0.1
1	1	2	11.94	7.410	8	0.3	4	0	0	28.19	3.165	4	0.9	5	0	4	38.06	2.364	8	0.1
1	0	3	12.25	7.227	8	6.3	4	0	1	28.40	3.143	8	2.9	1	0	11	38.16	2.359	8	0.1
0	0	4	13.41	6.602	2	2.9	2	1	7	28.43	3.139	16	0.5	5	1	4	38.74	2.324	16	0.2
2	0	0	13.99	6.331	4	0.3	2	2	6	28.44	3.138	8	0.6	4	0	8	39.44	2.285	8	0.3
2	0	1	14.39	6.156	8	3.8	3	2	4	28.80	3.100	16	0.4	2	2	10	39.63	2.274	8	0.1
1	0	4	15.14	5.854	8	0.3	4	0	2	29.01	3.078	8	0.2	5	2	3	39.68	2.271	16	0.2
2	0	2	15.52	5.708	8	1.0	3	0	6	29.32	3.046	8	2.1	2	0	11	40.17	2.245	8	0.4
2	1	1	16.01	5.536	16	0.2	3	3	0	29.94	2.984	4	0.5	5	2	4	40.74	2.215	16	0.6
2	1	2	17.04	5.204	16	0.1	2	0	8	30.54	2.927	8	1.0	2	1	11	40.83	2.210	16	0.1
1	0	5	18.20	4.874	8	4.2	3	2	5	30.57	2.924	16	1.9	5	3	1	41.74	2.164	16	0.1
2	1	3	18.63	4.762	16	0.5	4	1	3	30.84	2.899	16	0.1	5	1	6	41.77	2.163	16	0.3
2	0	4	19.43	4.569	8	1.1	2	2	7	31.00	2.885	8	0.1	4	0	9	41.99	2.152	8	0.4
1	1	5	19.51	4.549	8	0.1	1	0	9	31.29	2.858	8	0.7	5	2	5	42.07	2.148	16	0.2
2	2	1	20.12	4.413	8	0.5	4	1	4	32.15	2.784	16	0.5	3	2	10	42.85	2.110	16	0.3
2	1	4	20.67	4.298	16	1.7	4	2	2	32.34	2.768	16	0.1	6	0	0	42.86	2.110	4	2.1
2	2	2	20.95	4.239	8	1.4	3	1	7	32.61	2.746	16	1.1	5	3	3	42.90	2.108	16	0.2
3	0	0	21.05	4.220	4	2.8	3	3	4	32.94	2.719	8	1.1	5	0	7	43.02	2.102	8	0.3
1	0	6	21.37	4.157	8	1.0	4	0	5	32.99	2.715	8	0.2	6	1	1	43.62	2.075	16	0.2
2	0	5	21.92	4.055	8	6.9	2	0	9	33.67	2.662	8	0.8	5	2	6	43.65	2.074	16	0.4
3	0	2	22.11	4.020	8	19.2	4	1	5	33.76	2.655	16	0.1	2	1	12	44.15	2.051	16	0.3
3	1	0	22.20	4.004	8	0.7	2	1	9	34.43	2.605	16	0.1	1	0	13	45.21	2.006	8	0.1
2	2	3	22.28	3.990	8	0.3	4	2	4	34.47	2.602	16	0.1	5	2	7	45.46	1.995	16	0.2
3	1	1	22.46	3.959	16	3.7	3	0	8	34.50	2.600	8	0.2	5	1	8	45.72	1.984	16	0.2
1	1	6	22.51	3.950	8	0.4	1	0	10	34.70	2.585	8	0.2	3	2	11	45.78	1.982	16	1.1
2	1	5	23.03	3.862	16	0.7	3	2	7	34.91	2.570	16	0.3	2	0	13	46.98	1.934	8	0.2
3	1	2	23.21	3.831	16	0.7	3	1	8	35.24	2.547	16	0.3	5	0	9	47.42	1.917	8	0.9
3	1	3	24.42	3.644	16	1.3	5	0	0	35.45	2.532	4	0.2	5	2	8	47.48	1.915	16	0.2
1	0	7	24.62	3.615	8	1.0	4	3	1	35.62	2.521	16	0.7	6	0	6	47.80	1.903	8	0.3
2	0	6	24.64	3.614	8	0.3	5	0	1	35.62	2.521	8	0.4	5	1	9	48.00	1.895	16	0.1
3	0	4	25.04	3.556	8	2.3	4	3	2	36.12	2.487	16	0.3	5	4	4	48.03	1.894	16	0.2
3	2	0	25.36	3.512	8	0.1	5	1	1	36.34	2.472	16	0.2	5	3	7	48.37	1.882	16	0.3
3	2	1	25.59	3.481	16	0.8	5	1	2	36.83	2.440	16	0.4	6	2	5	48.64	1.872	16	0.2
2	1	6	25.64	3.475	16	1.6	4	3	3	36.94	2.434	16	0.7	6	3	2	48.74	1.868	16	0.4
3	1	4	26.03	3.423	16	0.3	5	0	3	36.94	2.434	8	0.6	5	2	9	49.69	1.835	16	0.2
2	2	5	26.09	3.415	8	0.2	4	0	$\overline{7}$	37.08	2.425	8	0.3	5	0	10	49.90	1.828	8	0.4

Zeolite beta and its mineral analog tschernichite are intergrown materials and *BEA represents the framework of a hypothetical end member. Simulated powder patterns for intergrown variants are presented later in this book.

CHEMICAL COMPOSITION:	$ Li_2(H_2O)_2 $ [Si ₄ Al ₂ O ₁₂] Bikita, Zimbabwe
REFINED COMPOSITION:	$ Li_{1.86}(H_2O)_2 $ [Si _{3.89} Al _{2.13} O ₁₂]
CRYSTAL DATA:	$\begin{array}{ll} P1 \ ({\rm No.}\ 1) \\ a = 8.6071 \ {\rm \AA} & b = 4.9540 \ {\rm \AA} & c = 7.5972 \ {\rm \AA} \\ \alpha = 89.900^\circ & \beta = 114.437^\circ & \gamma = 89.988^\circ \\ {\rm Neutron\ single\ crystal\ refinement,\ } R_{\rm w} = 0.056 \end{array}$
~~~	

REFERENCE: K. Ståhl, Å. Kvick and S. Ghose, Zeolites **9** 303–311 (1989).

h	k	l	$2\theta$	d	M	$I_{ m rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	11.29	7.836	<b>2</b>	45.2	2	1	1	35.58	2.523	2	8.8	2	-2	0	43.23	2.093	2	0.6
0	0	1	12.80	6.917	2	30.6	2	-1	1	35.64	2.519	2	9.3	0	1	3	43.25	2.092	2	0.4
-1	0	1	13.11	6.754	<b>2</b>	16.1	-1	0	3	35.76	2.511	2	0.3	0	-1	3	43.32	2.089	2	0.7
1	0	1	20.34	4.366	2	31.3	-3	-1	1	36.20	2.482	2	18.6	-3	1	3	44.17	2.050	2	4.0
-2	0	1	20.93	4.244	2	9.7	-3	1	1	36.21	2.481	2	18.4	-3	-1	3	44.21	2.049	2	4.1
1	1	0	21.21	4.189	2	69.7	0	2	0	36.27	2.477	2	43.5	0	2	2	44.97	2.016	2	4.5
1	-1	0	21.23	4.185	2	68.2	1	1	<b>2</b>	37.17	2.419	2	1.9	0	-2	2	45.06	2.012	2	3.6
0	1	1	22.05	4.031	2	0.6	1	-1	2	37.23	2.415	2	2.5	1	0	3	45.36	1.999	2	7.5
0	-1	1	22.09	4.024	<b>2</b>	0.5	1	2	0	38.09	2.363	2	0.5	-2	2	2	45.38	1.998	2	4.9
-1	1	1	22.24	3.997	<b>2</b>	5.4	-3	1	2	38.10	2.362	2	3.9	2	-1	2	45.43	1.996	2	0.4
-1	-1	1	22.27	3.993	2	4.6	1	-2	0	38.11	2.361	2	0.5	-2	-2	2	45.43	1.996	2	4.3
2	0	0	22.69	3.918	<b>2</b>	2.4	-3	-1	2	38.12	2.361	2	4.5	3	1	1	45.70	1.985	2	4.3
-1	0	2	23.43	3.797	2	9.3	0	2	1	38.58	2.333	2	1.5	3	-1	1	45.75	1.983	2	4.4
0	0	<b>2</b>	25.76	3.458	2	100.0	0	-2	1	38.63	2.330	2	1.3	4	0	0	46.35	1.959	2	7.0
-2	0	2	26.39	3.377	2	78.4	-1	2	1	38.70	2.326	2	1.5	-4	-1	1	46.39	1.957	2	0.9
1	1	1	27.20	3.279	2	25.4	-1	-2	1	38.73	2.325	2	1.7	-4	1	1	46.41	1.956	2	0.8
1	-1	1	27.25	3.273	2	23.3	3	1	0	38.96	2.312	2	1.1	-4	1	2	46.55	1.951	2	0.7
-2	1	1	27.67	3.223	2	20.0	3	-1	0	39.00	2.310	2	1.7	-4	-1	2	46.56	1.951	2	0.6
-2	-1	1	27.68	3.223	2	20.4	0	0	3	39.07	2.306	2	1.0	-4	0	3	46.81	1.941	2	2.2
2	1	0	29.04	3.075	2	13.5	-1	1	3	40.24	2.241	2	1.9	-2	0	4	47.92	1.898	2	15.0
2	-1	0	29.07	3.072	2	14.9	-1	-1	3	40.30	2.238	2	2.0	2	2	1	48.07	1.893	2	1.8
-1	1	2	29.62	3.016	<b>2</b>	0.6	-2	1	3	40.56	2.224	2	0.4	2	-2	1	48.15	1.890	2	1.7
-1	-1	2	29.67	3.011	2	1.0	-2	-1	3	40.61	2.221	2	0.6	-3	-2	1	48.57	1.875	2	2.7
2	0	1	30.52	2.929	2	5.9	3	0	1	41.71	2.165	2	0.1	-3	2	1	48.58	1.874	2	2.6
-3	0	1	31.20	2.867	<b>2</b>	8.7	1	2	1	41.90	2.156	2	0.9	-1	0	4	49.03	1.858	2	0.5
0	1	2	31.52	2.838	<b>2</b>	0.7	1	-2	1	41.97	2.153	2	1.0	1	1	3	49.11	1.855	2	6.9
0	-1	2	31.58	2.833	2	0.7	-2	2	1	42.24	2.139	2	1.0	1	-1	3	49.18	1.853	2	6.0
-2	1	2	32.06	2.792	<b>2</b>	2.7	-2	-2	1	42.25	2.139	2	1.3	1	-2	2	49.42	1.844	2	0.1
-2	-1	2	32.09	2.789	2	3.0	-4	0	1	42.44	2.130	<b>2</b>	0.1	-3	0	4	49.76	1.832	2	0.4
1	0	2	32.33	2.769	2	0.1	2	2	0	43.19	2.095	2	0.6							



С	HE	MI	CAL C	COMPO	SIT	ION:	Na _{2.9} C Goble a	a _{7.8} rea,	(H ₂ 01	$O)_{70} $ regon,	[Si _{77.5} A U.S.A.	Al _{18.3}	₃ O ₁₉₂ ]							
	RE	FII	NED C	COMPO	SIT	ION:	$ (H_2O) $	137.04	4 [	Si _{77.76} /	$1_{18.24}$	$D_{192}]$								
			CI	RYSTAI	L DA	ATA:	$Imma a = 20. \alpha = 90^{\circ} X-ray s$	(No. 236 ingle	. 74 Å e cr	b = $\beta = \beta$ $\beta = \beta$ systal r	23.798 90° efinem	Å ent,	$c = 1$ $\gamma = 0$ $R_{\rm w} = 0$	12.798 Å 90° 0.094	L					
				REFE	REN	ICE:	J. J. Pl Americ	uth an l	ano Min	l J. V. eralogi	Smith st <b>75</b> 5	, 501–	507(1)	990).						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	2	0	7.43	11.899	2	13.6	2	6	2	27.89	3.198	8	19.0	3	2	5	38.37	2.346	8	0.5
0	1	1	7.84	11.271	4	68.2	0	5	3	28.09	3.177	4	1.5	8	4	0	38.68	2.328	4	1.3
1	0	1	8.17	10.816	4	9.2	5	3	2	28.42	3.141	8	1.7	6	5	3	38.95	2.312	8	1.3
2	0	0	8.74	10.118	2	10.8	4	6	0	28.60	3.121	4	0.5	7	5	2	39.08	2.305	8	1.1
1	2	1	11.05	8.004	8	8.7	0	2	4	28.90	3.090	4	0.7	( 9	6	1	39.20	2.298	8	4.4
$\frac{2}{2}$	2 1	1	11.40 11.75	7.700 7 520	4	3.9 4.6	ა ე	4	3 1	20.90	3.065	0	5.7 8.0	3 0	0 5	ა 5	39.20	2.290 2.254	0	$1.0 \\ 2.7$
0	3	1	13 13	6.742	4	11.0	0	8	0	30.04	2.975	2	15.8	0	9	3	40.12	2.204 2.247	4	17
3	0	1	14.85	5.967	4	3.0	5	0	3	30.44	2.936	4	1.6	3	4	5	40.63	2.220	8	0.4
Õ	2	2	15.72	5.636	4	5.7	1	3	4	30.45	2.936	8	4.4	5	5	4	40.64	2.220	8	0.5
<b>2</b>	3	1	15.79	5.611	8	1.8	1	6	3	31.10	2.875	8	11.4	3	10	1	40.82	2.210	8	0.7
1	4	1	17.01	5.213	8	2.3	3	1	4	31.17	2.870	8	9.1	8	1	3	41.68	2.167	8	0.6
2	4	0	17.29	5.129	4	1.3	5	2	3	31.38	2.851	8	1.8	5	0	5	41.75	2.163	4	3.2
4	0	0	17.53	5.059	2	0.7	0	4	4	31.75	2.818	4	4.2	0	11	1	42.37	2.133	4	2.5
2	2	2	18.02	4.924	8	8.8	4	6	2	31.90	2.805	8	0.8	2	8	4	42.44	2.130	8	2.3
4	2	0	19.06	4.656	4	1.0	5	5	2	32.23	2.778	8	17.2	8	3	3	43.11	2.098	8	0.9
0	5	1	19.90	4.461	4	29.4	57	6	1	32.37	2.766	8	2.1	5 7	9	2	43.25	2.092	8	0.7
0 3	4	2	20.38 21.00	4.337	4	29.4 5.6	(	2	1	32.03	2.744 2.716	8	0.5	( 	3 0	4	43.72	2.071 2.054	ð	0.0
0	4	1 3	21.09 21.16	4.213	1	0.0 2.3	3 9	- 3 - 1	4	32.98	2.710 2.715	8	1.0 3.5	4	9 3	6	44.09	2.034	8	$\frac{2.1}{1.7}$
1	0	3	21.10 21.28	4 174	4	2.0	4	5	3	33.30	2.710 2.690	8	0.8	3	6	5	44.20	2.049 2.049	8	2.0
3	3	2	22.19	4.007	8	8.4	3	6	3	33.59	2.668	8	5.5	1	9	4	44.68	2.028	8	1.0
2	4	2	22.21	4.002	8	0.6	6	4	2	33.60	2.667	8	0.6	3	1	6	44.72	2.026	8	0.9
4	0	2	22.40	3.969	4	0.8	5	4	3	34.05	2.633	8	21.0	5	10	1	44.74	2.026	8	1.0
0	6	0	22.41	3.966	2	9.0	1	5	4	34.05	2.633	8	0.7	10	0	0	44.79	2.024	2	14.2
1	2	3	22.57	3.939	8	1.0	6	1	3	34.10	2.630	8	0.6	0	4	6	45.16	2.008	4	1.0
5	0	1	23.05	3.859	4	100.0	7	1	2	34.24	2.618	8	1.6	2	7	5	45.24	2.004	8	1.3
4	4	0	23.08	3.854	4	0.5	0	9	1	34.64	2.590	4	12.9	8	0	4	45.72	1.984	4	6.4
0	3	3	23.68	3.757	4	15.1	6	6	0	34.92	2.569	4	0.7	0	12	0	45.75	1.983	2	5.2
1	6	1	23.90	3.724	8	3.2 15.7	(	4	1	35.22	2.548 2.545	8	1.7	8 9	5 9	3 6	45.80 46.07	1.979	8	3.0
2 5	0	1	24.10 24.25	3.095	4	10.7	1	1	5	35.27	2.040	4	0.0	ວ 8	ა ე	4	40.07	1.970 1.057	0 8	0.8
3	0	3	24.20 24.69	3.071 3.605	4	37.9	8	0	0	35.00 35.49	$\frac{2.539}{2.530}$	2	1.5	3	9	4	46.55	1.957 1.951	8	8.9
2	3	3	25.29	3.522	8	10.1	6	3	3	35.78	2.500 2.510	8	0.6	9	6	1	46.99	1.934	8	0.6
1	4	3	26.08	3.417	8	4.4	7	3	2	35.92	2.500	8	3.2	10	Ő	2	47.10	1.929	4	0.5
5	1	2	26.32	3.386	8	61.3	0	6	4	36.07	2.490	4	1.2	5	6	5	47.90	1.899	8	0.5
0	6	<b>2</b>	26.44	3.371	4	64.6	3	5	4	36.36	2.471	8	4.4	0	12	2	48.03	1.894	4	1.5
3	5	2	26.83	3.323	8	2.7	0	3	5	36.90	2.436	4	4.6	8	4	4	48.35	1.882	8	1.1
3	6	1	26.99	3.303	8	5.5	5	7	2	37.29	2.411	8	8.1	0	6	6	48.46	1.879	4	1.4
4	4	2	27.01	3.301	8	1.0	7	0	3	37.58	2.393	4	0.8	3	5	6	48.69	1.870	8	2.7
6	2	0	27.49	3.245	4	2.4	5	3	4	37.59	2.393	8	2.2	2	12	2	48.92	1.862	8	0.9
5 6	4	1	27.55	3.237	8	0.5	6	6	2	37.73	2.384	8	0.8	5	3	б	49.66	1.836	8	0.5
0	1	1 9	27.01 27.61	3.231 2.991	8 0	1.5 0.6	U 9	01 10	U 5	37.8U 37.00	∠.380 २.२८०	2	0.9	10	47	29	49.07 40.75	1.835 1.999	8	0.5
4 0	1	3 /	21.01 27.88	3.231 3.20∩	0 9	7.0	⊿ 5	ა ջ	อ 1	38.20	2.300 2.356	0 8	0.7 0.5	05	( 11	ა ი	49.70 70.87	1.000 1.808	0 8	0.0
U	0	-1	41.00	0.200	4	1.0	0	0	Ŧ	00.20	2.000	0	0.0	0	τī	4	10.01	1.040	0	0.1



## CHEMICAL COMPOSITION: $|Na_7K_7(H_2O)_{20}|$ [Be₁₄P₁₄O₅₆]

REFINED COMPOSITION:  $|Na_{8.36}K_{5.49}(H_2O)_{30.48}|$  [Be₁₄P₁₄O₅₆]

CRYSTAL DATA: P321 (No. 150) a = 12.5815 Å b = 12.5815 Å c = 12.4508 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.192$ ,  $R_{\rm F} = 0.106$ 

**REFERENCE**:

G. Harvey, Ch. Baerlocher and T. Wroblewski, *Z. Kristallogr.* **201** 113–123 (1992).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	ŀ	ı	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k		$l = 2\theta$	d	M	$I_{\rm rel}$
0	0	1	7.10	12.451	2	68.8	(	)	3	3	32.77	2.733	6	5.6	3	3	(	) 43.14	2.097	6	4.5
1	0	0	8.11	10.896	6	100.0	4	1	0	0	32.88	2.724	6	10.1	0	0	6	6 43.62	2.075	2	3.0
1	0	1	10.79	8.200	6	0.1		L	3	2	32.95	2.719	12	4.4	3	3	1	43.78	2.068	12	2.7
0	1	1	10.79	8.200	6	1.3	:	3	1	2	32.95	2.719	12	4.3	1	4	3	3 43.88	2.063	12	1.4
1	1	0	14.08	6.291	6	2.6	, ,	2	0	4	33.15	2.703	6	1.4	4	1	3	3 43.88	2.063	12	4.7
0	0	2	14.23	6.225	2	2.4	(	)	<b>2</b>	4	33.15	2.703	6	0.2	0	5	2	2 44.02	2.057	6	0.7
1	1	1	15.78	5.615	12	7.5	4	1	0	1	33.68	2.661	6	0.4	5	0	2	2 44.02	2.057	6	1.6
<b>2</b>	0	0	16.27	5.448	6	1.1	(	)	4	1	33.68	2.661	6	1.9	0	3	Ę	5 44.09	2.054	6	0.1
0	1	2	16.40	5.405	6	0.5	4	2	2	3	35.82	2.507	12	4.3	4	0	4	44.18	2.050	6	0.3
1	0	2	16.40	5.405	6	1.5	e e	3	2	0	35.93	2.500	12	4.4	0	4	4	44.18	2.050	6	0.2
<b>2</b>	0	1	17.77	4.991	6	1.3	4	1	0	2	35.99	2.496	6	0.2	1	0	6	6 44.44	2.038	6	0.3
1	1	2	20.07	4.425	12	1.8	(	)	0	5	36.07	2.490	2	1.6	2	4	]	44.60	2.032	12	0.2
0	0	3	21.41	4.150	2	2.9		L	<b>2</b>	4	36.17	2.483	12	9.1	4	2	1	44.60	2.032	12	1.5
2	1	0	21.58	4.118	12	9.1	-	2	1	4	36.17	2.483	12	5.2	3	3	2	2 45.65	1.987	12	0.7
<b>2</b>	0	2	21.68	4.100	6	2.6	:	3	<b>2</b>	1	36.67	2.451	12	1.9	1	1	6	6 46.06	1.971	12	0.8
0	2	2	21.68	4.100	6	3.8	-	2	3	1	36.67	2.451	12	0.8	5	1	(	) 46.40	1.957	12	4.1
2	1	1	22.74	3.910	12	15.5	:	3	1	3	36.79	2.443	12	1.5	2	4	2	2 46.45	1.955	12	0.3
1	2	1	22.74	3.910	12	24.3	-	L	3	3	36.79	2.443	12	0.4	4	2	2	2 46.45	1.955	12	1.4
1	0	3	22.93	3.878	6	14.3	(	)	1	5	37.03	2.428	6	2.9	2	2	Ę	6 46.51	1.952	12	0.4
0	1	3	22.93	3.878	6	0.9	4	1	1	0	37.84	2.378	12	1.8	3	2	4	46.60	1.949	12	0.2
3	0	1	25.55	3.487	6	4.3	(	)	3	4	38.07	2.363	6	0.1	2	3	4	46.60	1.949	12	0.2
1	1	3	25.72	3.464	12	11.2	-	L	4	1	38.55	2.335	12	0.4	2	0	6	6 46.85	1.939	6	1.1
2	1	2	25.94	3.435	12	12.6	4	ł	1	1	38.55	2.335	12	0.6	0	2	6	6 46.85	1.939	6	0.2
1	2	2	25.94	3.435	12	6.1	4	2	3	2	38.82	2.320	12	0.3	5	1	1	47.00	1.933	12	0.6
0	2	3	27.01	3.301	6	0.1	÷	3	2	2	38.82	2.320	12	1.5	1	5	1	47.00	1.933	12	1.7
2	0	3	27.01	3.301	6	0.4		L	1	5	38.90	2.315	12	1.8	0	5	÷	8 47.10	1.929	6	1.7
2	2	0	28.37	3.145	6	6.3	(	)	4	3	39.57	2.277	6	0.6	5	0	:	3 47.10	1.929	6	0.4
0	3	2	28.45	3.137	6	9.4	4	2	0	5	39.80	2.265	6	0.5	3	1	Ę	5 47.30	1.922	12	1.8
3	0	2	28.45	3.137	6	2.1	(	)	2	5	39.80	2.265	6	0.7	1	3	Ľ,	5 47.30	1.922	12	1.8
2	2	1	29.29	3.050	12	20.4	-	L	4	2	40.62	2.221	12	0.6	4	1	4	48.16	1.889	12	0.5
3	1	0	29.56	3.022	12	5.9	4	2	2	4	40.78	2.212	12	2.1	3	3		3 48.65	1.872	12	0.2
1	0	4	29.85	2.993	6	0.2	;	5	0	0	41.43	2.179	6	9.2	1	5	2	2 48.78	1.867	12	0.3
0	1	4	29.85	2.993	6	0.1		3	1	4	41.65	2.168	12	3.7	5	1	2	2 48.78	1.867	12	0.2
1	3	1	30.44	2.937	12	1.4	-	L	3	4	41.65	2.168	12	6.6	2	1	6	6 49.16	1.853	12	0.6
3	1	1	30.44	2.937	12	16.1	(	)	5	1	42.09	2.147	6	0.6	1	2	6	6 49.16	1.853	12	0.9
2	1	3	30.58	2.923	12	10.8	;	5	0	1	42.09	2.147	6	1.3	4	2		3 49.41	1.845	12	1.0
1	2	3	30.58	2.923	12	5.9	-	2	3	3	42.20	2.141	12	2.1	2	4	5	3 49.41	1.845	12	0.2
2	2	2	31.88	2.807	12	27.3	•	3	2	3	42.20	2.141	12	1.5	4	0	L.	5 49.60	1.838	6	0.1
1	1	4	32.08	2.790	12	47.5	-	L	2	5	42.42	2.131	12	0.5	0	4	Ŀ,	5 49.60	1.838	6	0.2
3	0	3	32.77	2.733	6	3.4	-	2	1	5	42.42	2.131	12	1.0							



СН	EN	1IC	AL CO	OMPO	SITI	ON:	K _{0.02} Ba Strontia	10.48 n, 1	Sr Arg	$_{1.42}(\mathrm{H}_{2})$ yll, Sco	$O)_{10} [$	$\operatorname{Si}_{12}$	$Al_4O_{32}$	2]						
R	EF	IN	ED CC	OMPOS	SITI	ON:	$ Ba_{0.52}S $	r _{1.4} ;	₈ (H	$[_{2}O)_{10} $	$[\mathrm{Si}_{12}\mathrm{A}$	.l ₄ O3	32]							
			CR	YSTAI	J DA	ATA:	$P1 2_1/m$ a = 6.79 $\alpha = 90^{\circ}$ X-ray si	n 1 ( 03 Å ngle	(No A	b. 11) u b = $\beta =$ rystal r	inique 17.573 94.54° efinem	axis Å ent,	$b c = \gamma' = \gamma = R_w = 0$	7.759 Å 90° 0.06						
			]	REFEI	REN	CE:	J. L. Scl Acta Cr	nler <i>yst</i> .	ikei B	:, J. J. <b>33</b> 290	Pluth 7–2910	and ) (19	J. V. 977).	Smith,						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	<b>2</b>	0	10.07	8.786	2	5.3	1	5	1	31.31	2.857	4	7.9	3	<b>2</b>	0	41.29	2.186	4	1.4
0	0	1	11.44	7.735	2	5.4	1	3	2	31.48	2.841	4	6.4	1	3	3	41.42	2.180	4	3.0
0	1	1	12.50	7.079	4	18.8	-2	3	1	31.90	2.806	4	18.3	1	6	2	41.51	2.176	4	1.1
1	0	0	13.07	6.772	2	43.0	0	6	1	32.69	2.739	4	13.7	-2	6	1	41.83	2.159	4	1.2
1	1	0	14.02	6.319	4	100.0	-1	4	2	32.84	2.727	4	23.8	-1	4	3	41.89	2.157	4	2.0
0	2	1	15.26	5.806	4	2.9	1	6	0	33.33	2.688	4	1.1	-3	2	1	42.08	2.147	4	6.5
-1	0	1	16.70	5.307	2	18.6	2	4	0	33.41	2.682	4	9.9	2	4	2	42.19	2.142	4	11.7
-1 1	1	1	17.45	5.081	4	58.5	2	3	1	33.42	2.681	4	10.1	-2	0	3	42.35	2.134	2	1.0
1	1	1	18.08	4.906	2	22.5	-2	1	2	33.78	2.654	2	0.6	ა ე	1	1	42.60	2.122	2	1.1
1	1 9	1	10.70	4.720 4.670	4	31.1 70.8	-2	1	2	04.17 97 99	2.024 2.612	4	14.1	-2	1	ა ე	42.07	2.119	4	2.5
1	3 2	1	19.00 10.54	4.070	4	75.6	1	4 5	2	34.55	2.012 2.601	4	2.0	-2	ગ	2 0	42.09	2.110 2 106	4	10.3
-1	2	1	20.04	4.040	4	1 1	0	0	2	34.40	2.001 2.578	4 9	2.5 22.0	0	5	3	42.94	2.100 2.070	4	10.5
0	4	0	20.04 20.21	4 393	2	1.1	-1	6	1	34.00	2.510 2.564	4	0.8	-3	3	1	43.00	2.073 2.071	4	1.7
1	2	1	20.21 20.74	4.284	4	5.0	-1	$\frac{0}{2}$	2	35.33	2.540	4	5.0	-5	4	3	43.70	2.071 2.071	4	7.7
-1	3	1	22.61	3.933	4	35.6	1	6	1	35.70	2.515	4	13.5	3	2	1	43.89	2.063	4	5.9
0	0	2	23.00	3.867	2	18.9	2	4	1	36.13	2.486	4	8.6	-1	7	2	44.50	2.036	4	2.0
0	4	1	23.28	3.820	4	10.0	-1	0	3	36.29	2.476	2	1.4	-1	8	1	44.64	2.030	4	4.4
0	1	<b>2</b>	23.55	3.777	4	30.4	0	<b>2</b>	3	36.31	2.474	4	4.9	-1	5	3	44.78	2.024	4	20.8
1	3	1	23.65	3.761	4	0.7	-1	5	<b>2</b>	36.33	2.472	4	3.4	-3	0	<b>2</b>	44.86	2.020	2	7.3
1	4	0	24.15	3.686	4	13.2	2	0	2	36.63	2.453	2	5.0	1	8	1	45.23	2.005	4	1.1
0	2	2	25.16	3.540	4	25.9	-1	1	3	36.66	2.451	4	5.5	3	3	1	45.46	1.995	4	0.8
-1	0	2	25.60	3.479	2	1.9	2	5	0	36.86	2.438	4	0.6	1	7	2	45.67	1.987	4	2.6
-1	1	2	26.11	3.413	4	28.6	-2	3	2	37.20	2.417	4	11.2	-3	4	1	45.89	1.977	4	10.6
2	0	0	26.32	3.386	2	0.6	0	7	1	37.67	2.388	4	1.4	2	0	3	45.90	1.977	2	1.5
-1	4	1	26.33	3.384	4	3.2	1	5	2	37.70	2.386	4	3.1	-2	7	1	45.97	1.974	4	1.6
2	1	0	26.81	3.325	4	2.7	-1	2	3	37.75	2.383	4	4.9	-3	2	2	46.10	1.969	4	1.7
1	4	1	27.25	3.273	4	69.2	-2	5	1	38.06	2.365	4	7.0	1	5	3	46.51	1.953	4	14.9
1	0	2	27.45	3.249	2	1.3	2	2	2	38.09	2.363	4	1.8	0	6	3	46.95	1.935	4	1.8
-1	2	2	27.58	3.235	4	0.6	1	( 6	0	38.23	2.354	4	16.8	0	07	4	46.99	1.934	2	1.1
0	0	1	21.00 27.02	3.200 2.106	4	0.7 10.0	0	1	2	30.30 20 60	∠. <b>ວ</b> ວວ ດ_ວດ≎	4	0.4 25	2	1	1	47.10	1.929 1.020	4	2.4
-2	1	1 9	27.92	3.190 3.105	2 1	10.0	1	3	ა ვ	30.00	2.320	4	5.5 1.6		2 1	3 4	47.11	1.929 1.022	4	2.0
1 2	2	0	21.92	3.195	4	23.0 2.1	-1	- J	ა ე	30.68	2.260 2.271	4	0.5	2	1	4 २	47.29	1.922 1.020	4	1.8
-2	1	1	28.38	3.105 3.144	4	2.1	-2	7	1	39.72	2.211 2.269	4	1.4	-2	3	2	47.61	1.920	4	1.0
1	5	0	28.61	3.119	4	28.6	1	2	3	39.73	2.269	4	1.9	-1	0	4	47.89	1.899	2	4.8
1	$\overset{\circ}{2}$	2	29.30	3.048	4	41.2	2	3	2	39.84	2.263	4	8.6	3	5	0	47.89	1.899	4	2.6
2	0	1	29.63	3.015	2	10.4	3	Ũ	0	39.94	2.257	2	0.7	0	9	1	48.06	1.893	4	6.0
-2	2	1	29.74	3.003	4	9.3	-1	6	2	40.25	2.241	4	0.7	3	0	2	48.26	1.886	2	3.2
-1	3	2	29.87	2.991	4	5.9	3	1	0	40.28	2.239	4	3.8	-1	8	2	49.04	1.857	4	1.4
2	1	1	30.07	2.972	4	18.0	1	7	1	40.36	2.235	4	3.1	-1	2	4	49.07	1.857	4	5.5
2	3	0	30.49	2.931	4	56.5	0	4	3	40.57	2.224	4	7.6	3	2	2	49.44	1.844	4	1.5
-1	5	1	30.51	2.930	4	41.1	2	6	0	40.73	2.215	4	8.6	2	8	0	49.46	1.843	4	2.5
0	6	0	30.52	2.929	2	13.8	-3	1	1	41.08	2.197	4	0.8	0	3	4	49.65	1.836	4	4.2
0	4	2	30.80	2.903	4	7.1	0	8	0	41.09	2.197	2	8.5	-3	4	2	49.67	1 836	4	1.0



1 1 1

 $\mathbf{2}$ 0 1

3 0 0

1

 $\mathbf{2}$ 

 $\mathbf{2}$  $\mathbf{2}$ 0

3 1

1 3 0

3 0

4

 $\mathbf{2}$ 

1 1

0 0

1

0

1

22.36

23.81

24.40

27.74

27.74

28.25

29.43

29.43

30.09

32.74

3.975

3.736

3.647

3.216

3.216

3.159

3.035

3.035

2.970

2.736

12

12

6

12

12

6

6

6

12

6

1.0

2.7

55.1

56.9

61.4

0.3

0.9

3.2

4.3

42.6

1 0  $\mathbf{2}$ 

4

1 40

41 0

1 1

 $\mathbf{2}$ 0

 $\mathbf{2}$ 

 $\mathbf{3}$ 

500

1

0 1

3

 $\mathbf{2}$ 1

 $\mathbf{2}$ 2

 $\mathbf{2}$ 

 $\mathbf{2}$ 

1

36.06

37.27

37.67

37.67

37.95

38.87

40.01

40.01

41.25

41.51

2.490

2.412

2.388

2.388

2.371

2.317

2.254

2.254

2.188

2.175

12

12

6

6

12

12

12

12

6

12

1.2

34.0

3.4

0.7

1.1

2.6

10.4

10.4

1.7

1.5

50 1

22 $\mathbf{2}$ 

5

3

1

 $\mathbf{2}$ 4 1

4

4 0 $\mathbf{2}$ 

1 51

5

1

1  $\mathbf{2}$ 

3

 $\mathbf{2}$ 

1

0

 $\mathbf{2}$ 

1

1

2.012

1.988

1.965

1.956

1.956

1.917

1.917

1.868

1.835

1.835

45.06

45.64

46.19

46.43

46.43

47.42

47.42

48.74

49.70

49.70

M

12

12

12

6

12

6

12

12

6

12

12

12

12

12

12

12

 $I_{\rm rel}$ 

1.9

6.7

4.4

21.6

13.6

0.2

4.9

0.5

0.5

0.4

0.5

1.3

1.1

0.5

0.3

13.1

CH	[EN	ſΙC	AL CO	OMPOS	SITIO	ON:	Na7Ca _{0.} Syntheti	.9(C c cr	CO ₃ yst	$)_{1.4}(H_2)$ al.	$_{2}O)_{2.1} $	[Si ₆	$Al_6O_{24}$	]				
F	REF	IN	ED CO	OMPOS	ITIC	ON:	$ Na_8(CO) $	$_{3})_{1}$	.2(H	$I_2O)_2 $	$[Si_6A]$	${}_{6}O_{24}$	]					
			CR	YSTAL	DA	ΓA:	$P6_3$ (No a = 12.6 $\alpha = 90^\circ$ X-ray sin	. 17 35 . ngle	73) Å	b = 1 $\beta = 1$ ystal re	12.635 90° efinemo	Å ent,	c = 5. $\gamma = 1$ R = 0.0	115 Å 20° 04				
				REFER	ENG	CE:	Y. I. Sm Kristallo	olir ogra	n, Y fiya	7. F. Sl a <b>26</b> 63	nepelev 3–66 (1	v, I. 981)	K. But	ikova a	ind	I. 1	B. Kob	oyakov,
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d
1	0	0	8.08	10.942	6	3.9	2	2	1	33.34	2.688	12	0.1	2	1	2	41.51	2.175
1	1	0	14.02	6.317	6	59.5	3	1	1	34.36	2.610	12	10.2	1	4	1	41.75	2.164
2	0	0	16.20	5.471	6	3.7	· 1	3	1	34.36	2.610	12	19.8	4	1	1	41.75	2.164
1	0	1	19.15	4.634	12	100.0	0	0	<b>2</b>	35.09	2.557	2	42.0	3	3	0	42.95	2.106
1	2	0	21.49	4.136	6	0.6	3	2	0	35.77	2.510	6	1.3	3	0	2	43.20	2.094
2	1	0	21.49	4.136	6	6.1	2	3	0	35.77	2.510	6	1.7	2	4	0	43.78	2.068



CHEMICAL COMPOSITION:  $|K_2Li_{2.9}Na_{1.7}Ca_{0.7}(H_2O)_{1.3}(OH)_2\Box_{0.7}|$  [Be₆P₆O₂₄]  $\Box$  = cation vacancy Tip Top Mine, Custer, S. Dakota, U.S.A.

REFINED COMPOSITION: |Li_{2.9}Na_{1.7}K₂Ca_{0.7}O₆| [Be₆P₆O₂₄]

CRYSTAL DATA:  $P6_3$  (No. 173)

 $\begin{array}{ll} a=11.655\ \text{\AA} & b=11.655\ \text{\AA} & c=4.692\ \text{\AA} \\ \alpha=90^\circ & \beta=90^\circ & \gamma=120^\circ \\ \text{X-ray single crystal refinement}, \ R_{\rm w}=0.048 \end{array}$ 

REFERENCE: D. R. Peacor, R. C. Rouse and J. H. Ahn, American Mineralogist **72** 816–820 (1987).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	8.76	10.094	6	0.8	3	0	1	32.75	2.734	12	3.5	3	2	1	43.59	2.076	12	4.2
1	1	0	15.20	5.827	6	9.0	4	0	0	35.58	2.523	6	43.2	2	1	2	45.38	1.998	12	4.1
2	0	0	17.57	5.047	6	5.5	3	1	1	37.41	2.404	12	3.1	1	2	2	45.38	1.998	12	3.2
1	0	1	20.88	4.255	12	13.4	1	3	1	37.41	2.404	12	1.7	1	4	1	45.49	1.994	12	0.9
<b>2</b>	1	0	23.32	3.815	6	2.0	0	0	2	38.37	2.346	2	31.8	4	1	1	45.49	1.994	12	1.7
1	<b>2</b>	0	23.32	3.815	6	38.8	2	3	0	38.89	2.316	6	1.3	3	3	0	46.76	1.942	6	11.7
1	1	1	24.35	3.655	12	31.9	3	2	0	38.89	2.316	6	3.7	3	0	<b>2</b>	47.23	1.924	12	1.0
<b>2</b>	0	1	25.93	3.436	12	20.2	1	0	2	39.43	2.285	12	1.2	2	4	0	47.67	1.907	6	0.3
3	0	0	26.49	3.365	6	44.1	4	0	1	40.59	2.222	12	20.6	4	2	0	47.67	1.907	6	0.1
2	1	1	30.19	2.960	12	100.0	4	1	0	40.97	2.203	6	2.7	5	0	1	49.13	1.854	12	0.6
1	2	1	30.19	2.960	12	34.2	1	4	0	40.97	2.203	6	2.4	2	<b>2</b>	2	49.91	1.827	12	2.0
3	1	0	31.97	2.799	6	0.8	1	1	2	41.49	2.176	12	7.7							
1	3	0	31.97	2.799	6	0.7	2	3	1	43.59	2.076	12	10.5							



# CHEMICAL COMPOSITION: |Cs₄| [Si₂₄O₄₈]

REFINED COMPOSITION: |Cs_{3.26}| [Si₂₄O₄₈]

CRYSTAL DATA: Ama2 (No. 40) a = 16.776 Å b = 13.828 Å c = 5.021 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.0549$ 

REFERENCE: T. Araki,

Z. Kristallogr. 152 207–213 (1980).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
2	0	0	10.55	8.388	2	0.2	4	4	0	33.59	2.668	4	2.1	7	1	1	42.29	2.137	8	4.5
0	2	0	12.80	6.914	2	1.7	4	3	1	33.97	2.639	8	3.9	3	6	0	42.42	2.131	4	1.8
<b>2</b>	2	0	16.62	5.335	4	0.9	6	<b>2</b>	0	34.60	2.592	4	4.5	4	5	1	43.12	2.098	8	4.3
0	1	1	18.80	4.720	4	2.0	0	0	2	35.77	2.510	2	12.5	8	0	0	43.14	2.097	2	2.4
1	1	1	19.54	4.543	8	2.9	0	5	1	37.11	2.422	4	3.4	4	<b>2</b>	2	44.03	2.057	8	3.4
3	2	0	20.43	4.348	4	1.1	5	4	0	37.35	2.408	4	1.8	0	4	2	44.61	2.031	4	0.3
4	0	0	21.18	4.194	2	0.7	6	1	1	37.38	2.406	8	6.7	4	6	0	44.87	2.020	4	1.0
<b>2</b>	1	1	21.60	4.113	8	48.3	2	0	2	37.39	2.405	4	1.7	1	4	2	44.95	2.017	8	3.7
3	1	1	24.68	3.607	8	100.0	1	5	1	37.51	2.398	8	1.8	2	4	2	45.97	1.974	8	1.0
4	<b>2</b>	0	24.83	3.586	4	53.4	5	3	1	37.69	2.387	8	0.1	7	4	0	46.08	1.970	4	0.2
0	4	0	25.77	3.457	2	20.8	0	2	2	38.14	2.360	4	8.4	5	5	1	46.22	1.964	8	1.5
0	3	1	26.25	3.396	4	17.8	1	2	2	38.53	2.337	8	1.8	7	3	1	46.37	1.958	8	2.6
1	4	0	26.32	3.386	4	22.3	2	5	1	38.69	2.327	8	7.8	5	2	2	47.08	1.930	8	4.0
1	3	1	26.79	3.328	8	39.4	1	6	0	39.47	2.283	4	2.2	8	1	1	47.44	1.916	8	0.6
<b>2</b>	4	0	27.91	3.196	4	5.7	2	2	2	39.68	2.272	8	1.3	3	4	2	47.63	1.909	8	4.1
<b>2</b>	3	1	28.36	3.147	8	6.1	7	2	0	39.81	2.264	4	1.6	5	6	0	47.88	1.900	4	4.8
4	1	1	28.47	3.135	8	1.9	3	5	1	40.58	2.223	8	1.0	6	0	2	48.75	1.868	4	3.4
5	2	0	29.59	3.019	4	12.8	2	6	0	40.59	2.222	4	0.2	0	$\overline{7}$	1	49.59	1.838	4	5.7
3	4	0	30.40	2.940	4	8.6	3	2	2	41.54	2.174	8	1.7	6	5	1	49.80	1.831	8	1.8
3	3	1	30.81	2.902	8	14.1	6	4	0	41.54	2.174	4	0.4	4	4	2	49.88	1.828	8	1.9
6	0	0	32.01	2.796	2	5.1	6	3	1	41.85	2.158	8	7.2	1	7	1	49.91	1.827	8	0.7
5	1	1	32 75	2735	8	10.4	1	0	2	<i>A</i> 1 9 <i>A</i>	2.154	1	0.2							



## CHEMICAL COMPOSITION: [Si₃₂O₆₄]

REFINED COMPOSITION: [Si₃₂O₆₄]

CRYSTAL DATA: Imma (No. 74) a = 13.695 Å b = 5.021 Å c = 25.497 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.0875$ ,  $R_{\rm wp} = 0.1143$ 

REFERENCE: P. Wagner, M. Yoshikawa, M. Lavallo, K. Tsuji, M. Tsapatsis and M. E. Davis, J. Chem. Soc., Chem. Commun. 2179–2180 (1997).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	<b>2</b>	6.93	12.748	2	84.1	0	1	$\overline{7}$	30.31	2.948	4	0.9	2	2	4	40.82	2.211	8	0.4
1	0	1	7.33	12.065	4	100.0	2	0	8	30.95	2.889	4	0.2	3	2	1	41.19	2.192	8	0.6
1	0	3	12.26	7.221	4	5.7	3	0	$\overline{7}$	31.42	2.847	4	1.8	0	2	6	41.79	2.161	4	0.2
<b>2</b>	0	0	12.93	6.847	2	5.1	4	1	1	31.83	2.811	8	0.6	6	0	4	42.05	2.149	4	0.1
0	0	4	13.89	6.374	2	2.5	2	1	7	33.08	2.708	8	1.3	0	1	11	42.98	2.104	4	0.2
0	1	1	18.01	4.926	4	0.3	4	1	3	33.38	2.684	8	0.1	5	1	6	43.23	2.093	8	0.1
1	0	5	18.57	4.779	4	0.7	4	0	6	33.61	2.666	4	0.2	6	1	1	43.71	2.071	8	0.3
<b>2</b>	0	4	19.02	4.666	4	19.9	3	1	6	33.90	2.644	8	0.6	1	2	7	44.32	2.044	8	0.2
3	0	1	19.76	4.494	4	3.5	1	1	8	33.95	2.640	8	0.3	3	1	10	44.52	2.035	8	0.2
1	1	2	20.08	4.422	8	27.7	5	0	3	34.40	2.607	4	0.2	2	0	12	44.65	2.029	4	1.0
0	1	3	20.54	4.323	4	21.7	0	<b>2</b>	0	35.77	2.510	2	6.0	3	2	5	44.87	2.020	8	0.2
0	0	6	20.90	4.249	2	8.1	4	1	5	36.32	2.474	8	0.9	2	1	11	45.07	2.012	8	0.4
3	0	3	22.10	4.022	4	1.3	0	1	9	36.41	2.467	4	2.2	6	0	6	45.09	2.011	4	1.3
1	1	4	23.47	3.790	8	3.3	0	2	2	36.48	2.463	4	0.4	4	1	9	45.30	2.002	8	0.2
2	1	3	24.35	3.655	8	1.8	1	2	1	36.56	2.458	8	1.6	4	2	2	45.36	1.999	8	0.6
2	0	6	24.66	3.611	4	6.9	5	0	5	37.26	2.413	4	1.0	0	2	8	46.02	1.972	4	0.4
0	1	5	24.89	3.578	4	0.3	2	0	10	37.64	2.389	4	0.1	5	0	9	46.09	1.969	4	0.2
4	0	0	26.02	3.424	2	2.9	5	1	2	38.08	2.363	8	1.0	5	1	8	47.36	1.920	8	0.8
3	0	5	26.20	3.401	4	1.8	2	1	9	38.79	2.321	8	0.5	2	2	8	48.01	1.895	8	0.2
4	0	2	26.96	3.307	4	12.2	3	1	8	38.85	2.318	8	1.5	3	2	7	48.33	1.883	8	0.5
3	1	2	27.31	3.265	8	4.8	1	0	11	39.43	2.285	4	0.6	1	2	9	48.93	1.861	8	0.3
0	0	8	27.99	3.187	2	1.6	5	1	4	40.08	2.250	8	0.4	6	0	8	49.09	1.856	4	0.4
<b>2</b>	1	5	28.14	3.171	8	1.9	1	1	10	40.21	2.243	8	0.1	4	2	6	49.89	1.828	8	0.6
1	1	6	28.27	3.156	8	9.1	4	1	7	40.37	2.234	8	0.3	7	0	5	49.93	1.827	4	0.5



CHEMICAL COMPOSITION:	$ (C_6H_{14}N_2)_8  [(Co_{16}Ga_{20}P_{36}O_{144}]$
	$C_6H_{12}N_2 = 1,4$ -diazabicyclo[2.2.2]-octane (DABCO)

REFINED COMPOSITION:  $|C_{48}N_{16}|$  [Co₁₆Ga₂₀P₃₆O₁₄₄]

CRYSTAL DATA: I12/a1 (No. 15) unique axis **b**, cell choice 3 a = 15.002 Å b = 17.688 Åc = 15.751 Å $\beta=97.24^\circ$  $\gamma = 90^{\circ}$  $\alpha = 90^{\circ}$ X-ray single crystal refinement, R = 0.0704,  $R_{\rm w} = 0.0850$ 

REFERENCE: A. M. Chippindale and A. R. Cowley, Zeolites 18 176–181 (1997).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	<b>2</b>	0	10.00	8.844	2	100.0	-2	5	1	28.20	3.164	4	1.0	-4	0	6	39.66	2.272	2	1.3
0	0	2	11.33	7.813	2	20.7	-4	3	1	28.33	3.150	4	3.1	-4	6	2	39.81	2.264	4	1.9
<b>2</b>	0	0	11.89	7.441	2	2.7	1	5	<b>2</b>	28.64	3.116	4	0.8	6	3	1	40.53	2.225	4	2.8
-2	1	1	13.48	6.568	4	4.8	2	5	1	28.82	3.097	4	2.2	4	5	3	40.55	2.225	4	0.5
2	2	0	15.56	5.694	4	12.4	2	2	4	28.94	3.085	4	16.3	6	2	2	40.83	2.210	4	1.2
0	3	1	16.07	5.516	4	7.9	0	5	3	30.55	2.926	4	3.1	-4	2	6	41.01	2.201	4	0.6
<b>2</b>	0	2	17.46	5.078	2	3.6	-3	4	3	30.83	2.900	4	1.5	-2	1	$\overline{7}$	41.04	2.199	4	0.5
0	1	3	17.75	4.996	4	2.8	3	1	4	31.29	2.859	4	0.8	-6	3	3	41.24	2.189	4	0.5
-2	2	2	18.37	4.828	4	12.0	1	6	1	31.60	2.831	4	0.8	6	4	0	41.75	2.163	4	0.7
3	1	0	18.58	4.776	4	0.7	-4	3	3	31.61	2.830	4	2.1	-6	2	4	41.87	2.157	4	1.7
-1	3	2	19.34	4.588	4	0.5	4	1	3	31.67	2.825	4	2.6	3	7	2	42.41	2.131	4	0.5
-2	3	1	19.60	4.529	4	13.2	-2	5	3	32.06	2.792	4	10.1	0	8	2	42.49	2.127	4	0.9
-1	<b>2</b>	3	20.03	4.432	4	0.8	0	3	5	32.42	2.761	4	4.3	2	4	6	43.36	2.087	4	2.0
-2	1	3	20.17	4.402	4	8.7	0	6	<b>2</b>	32.46	2.758	4	2.7	1	$\overline{7}$	4	43.49	2.081	4	0.6
1	3	2	20.22	4.392	4	0.9	2	6	0	32.67	2.741	4	10.3	-5	1	6	43.49	2.081	4	1.2
2	3	1	20.46	4.340	4	15.7	-4	2	4	32.68	2.740	4	0.6	-2	3	7	43.63	2.075	4	0.6
-1	4	1	21.52	4.129	4	3.2	2	1	5	32.84	2.727	4	5.2	-4	6	4	43.94	2.061	4	2.2
3	2	1	21.91	4.057	4	2.6	5	1	2	33.93	2.642	4	0.8	2	1	7	44.10	2.054	4	1.1
1	4	1	21.92	4.054	4	1.8	2	4	4	33.95	2.641	4	1.5	4	7	1	44.11	2.053	4	1.4
2	1	3	22.60	3.934	4	20.1	-1	5	4	34.22	2.621	4	1.0	-5	4	5	44.31	2.044	4	0.8
0	0	4	22.76	3.906	2	6.3	3	3	4	34.50	2.600	4	0.6	4	0	6	44.93	2.017	2	0.7
0	3	3	22.78	3.903	4	3.8	-1	1	6	34.58	2.594	4	0.6	6	3	3	45.12	2.009	4	1.4
3	1	2	22.97	3.872	4	0.8	4	3	3	34.85	2.574	4	0.9	-4	7	3	45.60	1.989	4	0.7
0	4	2	23.11	3.848	4	41.4	-4	5	1	34.97	2.566	4	3.2	-6	4	4	45.65	1.987	4	0.8
-1	1	4	23.35	3.809	4	4.2	-2	0	6	35.04	2.561	2	0.6	-5	3	6	45.97	1.974	4	0.5
-2	0	4	24.36	3.653	2	0.8	2	6	2	35.20	2.550	4	5.9	4	2	6	46.15	1.967	4	0.6
-4	1	1	24.41	3.647	4	0.8	-4	1	5	35.47	2.531	4	1.4	0	0	8	46.49	1.953	2	0.7
-2	3	3	24.73	3.599	4	6.3	2	3	5	35.93	2.500	4	2.6	2	3	7	46.55	1.951	4	3.1
0	2	4	24.92	3.573	4	1.3	0	2	6	35.95	2.498	4	0.7	0	9	1	46.57	1.950	4	0.6
-4	0	2	25.18	3.537	2	36.0	-6	1	1	36.31	2.474	4	3.0	-2	$\overline{7}$	5	46.88	1.938	4	0.9
-2	4	2	25.39	3.508	4	5.8	-2	2	6	36.53	2.460	4	2.4	-7	4	1	47.12	1.928	4	0.7
0	5	1	25.82	3.450	4	1.3	-4	4	4	37.24	2.414	4	1.8	0	8	4	47.24	1.924	4	0.9
4	2	0	25.98	3.429	4	7.6	6	2	0	37.66	2.388	4	0.8	-6	0	6	47.32	1.921	2	1.0
-2	2	4	26.39	3.377	4	1.6	6	1	1	37.78	2.381	4	1.9	-4	3	7	47.35	1.920	4	2.4
-1	4	3	26.63	3.347	4	1.6	2	0	6	38.02	2.367	2	0.7	4	5	5	47.80	1.903	4	1.8
2	4	2	26.73	3.335	4	2.4	-6	2	2	38.04	2.366	4	1.7	6	6	0	47.93	1.898	4	1.0
2	3	3	26.77	3.330	4	8.0	-4	<b>3</b>	5	38.37	2.346	4	1.2	-1	9	2	47.93	1.898	4	0.6
2	0	4	27.08	3.292	2	14.8	0	5	5	38.43	2.342	4	5.6	4	7	3	48.03	1.894	4	0.5
3	3	2	27.09	3.292	4	1.0	-3	6	3	38.49	2.339	4	1.1	-6	6	2	48.24	1.887	4	1.1
-3	4	1	27.14	3.286	4	0.5	4	6	0	38.98	2.311	4	1.1	1	9	2	48.33	1.883	4	0.6
-4	2	2	27.15	3.284	4	20.4	-6	<b>3</b>	1	39.15	2.301	4	1.3	-2	5	7	48.47	1.878	4	1.5
-1	3	4	27.41	3.253	4	0.7	-2	6	4	39.27	2.294	4	1.2	3	5	6	48.83	1.865	4	0.7
4	0	2	27.83	3.206	2	1.8	2	2	6	39.41	2.286	4	1.8	0	9	3	49.57	1.839	4	1.2
3	4	1	28.09	3.176	4	1.0	6	0	2	39.48	2.283	2	2.6	5	1	6	49.60	1.838	4	0.5
-4	1	3	28.12	3.174	4	5.2	0	$\overline{7}$	3	39.64	2.273	4	1.5	6	5	3	49.85	1.829	4	1.5



CHEMICAL COMPOSITION:  $|(C_7H_{14}N)_4|$  [Co₄Ga₁₂P₁₆O₆₄]  $C_7H_{13}N = quinuclidine$ 

REFINED COMPOSITION:  $|C_{28}N_4|$  [Co₄Ga₁₂P₁₆O₆₄]

CRYSTAL DATA:  $P12_1/c1$  (No. 14) unique axis **b**, cell choice 1 a = 14.365 Å b = 16.305 Åc = 8.734 Å $\alpha = 90^{\circ}$  $\beta=90.243^\circ$  $\gamma = 90^{\circ}$ X-ray single crystal refinement.  $R=0.0310,\,R_{\rm w}=0.0365$ 

REFERENCE: A. R. Cowley and A. M. Chippindale, Microporous and Mesoporous Materials 28 163–172 (1999).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.20	10.779	4	100.0	-4	1	1	27.36	3.259	4	3.5	4	3	2	36.43	2.467	4	2.3
0	2	0	10.85	8.153	2	8.1	3	0	2	27.71	3.220	2	10.0	-2	5	2	36.56	2.457	4	4.2
0	1	1	11.49	7.699	4	89.0	-3	1	2	28.13	3.172	4	3.5	2	5	<b>2</b>	36.63	2.453	4	1.4
2	0	0	12.32	7.182	2	67.4	-2	3	2	28.99	3.080	4	23.1	5	0	2	37.55	2.395	2	3.5
-1	1	1	13.03	6.796	4	22.9	-4	2	1	28.99	3.080	4	19.7	5	1	2	37.96	2.370	4	1.7
1	1	1	13.07	6.775	4	29.9	2	3	2	29.06	3.072	4	13.9	6	1	0	37.99	2.369	4	2.4
0	<b>2</b>	1	14.86	5.960	4	10.2	4	2	1	29.07	3.072	4	15.1	-4	5	1	38.67	2.329	4	1.8
2	<b>2</b>	0	16.45	5.389	4	71.6	0	5	1	29.23	3.055	4	5.1	4	5	1	38.72	2.325	4	1.4
-2	1	1	16.85	5.262	4	15.8	2	5	0	30.10	2.969	4	3.0	-5	2	<b>2</b>	39.05	2.307	4	8.3
2	1	1	16.91	5.242	4	19.4	-3	4	1	30.54	2.927	4	10.4	1	$\overline{7}$	0	39.18	2.299	4	2.8
0	3	1	19.23	4.614	4	36.5	3	4	1	30.59	2.922	4	3.4	5	2	2	39.20	2.298	4	10.1
3	1	0	19.32	4.594	4	29.7	-1	4	2	30.62	2.919	4	5.3	4	4	2	39.35	2.290	4	4.0
-2	2	1	19.33	4.593	4	47.0	1	4	2	30.66	2.916	4	8.8	-3	6	1	39.48	2.283	4	1.8
2	2	1	19.38	4.580	4	31.7	0	1	3	31.21	2.866	4	6.4	1	6	2	39.57	2.277	4	3.2
-1	3	1	20.20	4.396	4	2.5	-4	3	1	31.53	2.837	4	7.3	3	3	3	39.92	2.258	4	3.3
1	3	1	20.23	4.391	4	8.5	4	3	1	31.60	2.831	4	13.7	-2	4	3	40.03	2.252	4	1.3
0	0	2	20.34	4.367	2	7.8	5	1	0	31.62	2.829	4	4.8	-4	1	3	40.17	2.245	4	2.3
0	1	2	21.06	4.218	4	2.0	-1	1	3	31.81	2.813	4	3.2	0	5	3	41.58	2.172	4	2.3
-1	0	2	21.24	4.183	2	3.0	-2	5	1	31.81	2.813	4	5.3	1	0	4	41.87	2.157	2	2.2
1	0	2	21.29	4.173	2	1.9	2	5	1	31.85	2.810	4	3.5	5	5	0	41.91	2.156	4	5.0
3	2	0	21.52	4.129	4	2.9	1	1	3	31.86	2.808	4	2.7	2	7	1	42.09	2.147	4	3.1
0	4	0	21.80	4.076	2	2.4	-4	0	2	32.20	2.780	2	2.8	5	5	1	43.26	2.091	4	2.7
-3	1	1	21.82	4.073	4	6.1	2	4	2	32.57	2.750	4	4.3	-1	2	4	43.33	2.088	4	1.4
3	1	1	21.90	4.059	4	18.1	0	2	3	32.66	2.742	4	6.7	-3	6	2	43.50	2.080	4	2.4
-1	1	2	21.94	4.052	4	14.9	-4	1	2	32.68	2.740	4	1.6	2	1	4	43.74	2.070	4	2.5
1	4	0	22.67	3.921	4	7.4	4	1	2	32.82	2.729	4	1.3	5	4	2	43.83	2.065	4	1.4
2	3	1	22.93	3.878	4	21.6	3	5	0	33.24	2.695	4	5.6	6	2	2	44.65	2.030	4	1.9
0	2	2	23.10	3.849	4	16.8	-5	1	1	33.24	2.695	4	3.6	-2	2	4	44.73	2.026	4	2.1
-2	0	2	23.80	3.738	2	4.7	4	4	0	33.25	2.695	4	1.7	0	6	3	45.67	1.987	4	2.6
-3	2	1	23.80	3.738	4	18.3	1	2	3	33.29	2.691	4	7.4	0	8	1	45.71	1.985	4	4.8
3	2	1	23.87	3.727	4	7.8	1	6	0	33.56	2.670	4	1.5	-2	3	4	46.52	1.952	4	1.6
-1	2	2	23.91	3.722	4	6.5	2	1	3	33.72	2.658	4	2.3	2	3	4	46.62	1.948	4	1.7
1	2	2	23.95	3.715	4	4.5	-4	2	2	34.08	2.631	4	9.9	-7	2	1	46.78	1.942	4	2.1
-2	1	2	24.43	3.644	4	1.4	0	5	2	34.32	2.613	4	29.9	7	2	1	46.86	1.939	4	1.4
2	1	2	24.52	3.631	4	9.7	-5	2	1	34.62	2.591	4	5.1	5	6	1	47.23	1.924	4	1.6
4	0	0	24.79	3.591	2	1.6	4	4	1	34.87	2.573	4	1.4	7	3	0	47.35	1.920	4	3.3
-1	4	1	24.88	3.579	4	8.1	0	3	3	34.96	2.566	4	2.3	-5	3	3	47.41	1.917	4	3.1
1	4	1	24.90	3.576	4	32.1	-2	2	3	34.98	2.565	4	3.1	-4	7	1	47.66	1.908	4	2.2
4	1	0	25.40	3.507	4	1.6	2	2	3	35.08	2.558	4	5.6	4	7	1	47.71	1.906	4	1.3
0	3	2	26.18	3.404	4	38.6	-1	6	1	35.14	2.554	4	5.9	-3	7	2	48.15	1.890	4	3.8
-2	2	2	26.22	3.398	4	1.7	1	6	1	35.15	2.553	4	3.0	-6	4	2	48.72	1.869	4	1.8
-3	3	1	26.80	3.326	4	1.7	5	3	0	35.34	2.540	4	4.0	-7	0	2	48.96	1.860	2	1.9
-2	4	1	27.13	3.287	4	1.7	-3	4	2	35.43	2.533	4	2.6	2	4	4	49.04	1.857	4	1.3
4	2	0	27.13	3.286	4	18.2	-1	3	3	35.51	2.528	4	1.9	4	1	4	49.25	1.850	4	2.6
2	4	1	27.17	3.282	4	4.8	-4	3	2	36.30	2.475	4	3.3	6	1	3	49.72	1.834	4	2.1



CI	HEN	IIC.	AL CO	OMPO	SITI	ON:	K _{3.2} Nort	2Na h E	0.75( Last	$(H_2(A_z))$	D) _{8.4}   [ erbaija:	Si _{8.2} Al n, Iran	3.8O	24]		
]	REF	INF	ED CC	OMPOS	SITI	ON:	$ K_{4.1} $	₆ (H	I ₂ O)	)7.23	[Si _{8.1}	$_{6}\mathrm{Al}_{3.84}$	$O_{24}]$			
			CR	YSTAI	DA	TA:	$R\overline{3}m$ $a =$ $\alpha =$ X-ra	n (N 9.43 94. y si	lo. 1 59 Å 07° .ngle	166) A	rhomb b = 9 $\beta = 9$ $\gamma$ stal re	bohedr 9.459 Å 94.07° efineme	al se ent, l	tting c = 9.4 $\gamma = 94$ R = 0.0	459 Å 4.07° 95	
			]	REFEI	REN	CE:	M. C Zeol	Calli ites	igar: <b>3</b> 2	is, C 205–	G. Naro 208 (19	din and 983).	1 L. 1	Randao	ecio,	
h	k	l	$2\theta$	d	M	$I_{\rm rel}$		h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k
1	0	0	9.40	9.408	6	100.0		3	-1	-1	30.40	2.940	6	63.6	3	3

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	9.40	9.408	6	100.0	3	-1	-1	30.40	2.940	6	63.6	3	3	0	42.29	2.137	6	0.1
1	0	-1	12.79	6.922	6	15.3	3	1	0	30.73	2.909	12	38.2	3	2	2	42.37	2.133	6	0.2
1	1	0	13.81	6.412	6	1.4	3	1	-1	31.31	2.856	12	0.9	4	1	-2	43.09	2.099	12	5.9
1	1	-1	15.90	5.575	6	6.9	2	2	-2	32.11	2.788	6	3.2	3	2	-3	43.70	2.071	12	2.7
1	1	1	17.53	5.059	2	12.6	3	1	1	33.08	2.708	6	5.0	4	2	0	44.36	2.042	12	0.1
<b>2</b>	0	0	18.87	4.704	6	7.3	3	0	-2	33.10	2.706	12	1.7	3	3	1	44.43	2.039	6	1.3
<b>2</b>	0	-1	20.45	4.342	12	40.6	3	-1	-2	34.27	2.616	12	10.4	4	2	-1	44.45	2.038	12	1.0
<b>2</b>	-1	-1	22.24	3.996	6	3.8	3	1	-2	34.69	2.586	12	4.3	4	2	1	46.43	1.956	12	1.7
<b>2</b>	1	-1	22.86	3.890	12	26.7	3	2	0	35.60	2.522	12	14.4	4	0	-3	46.46	1.955	12	0.5
2	1	1	24.61	3.617	6	23.3	3	2	1	37.87	2.376	12	0.9	4	-1	-3	47.35	1.920	12	1.6
<b>2</b>	0	-2	25.74	3.461	6	4.0	2	2	-3	37.99	2.368	6	0.6	4	1	-3	47.67	1.908	12	0.4
2	1	-2	27.46	3.248	12	3.0	4	0	0	38.27	2.352	6	0.7	5	0	0	48.37	1.882	6	5.4
<b>2</b>	2	0	27.83	3.206	6	7.2	4	0	-1	38.75	2.324	12	0.1	3	3	2	48.59	1.874	6	3.1
3	0	0	28.46	3.136	6	2.4	3	2	-2	38.75	2.324	12	4.6	5	0	-1	48.62	1.873	12	0.3
2	2	-1	28.46	3.136	6	0.5	3	0	-3	39.04	2.307	6	6.9	3	3	-3	49.01	1.858	6	0.3
3	0	-1	29.32	3.046	12	1.2	4	0	-2	41.60	2.171	12	1.5							
<b>2</b>	2	1	30.38	2.942	6	4.3	4	1	1	42.29	2.137	6	0.6							



CHEMICAL COMPOSITION:	$ (C_5H_{12}NH_2)_{1.4}(H_2O)_{2.5}  [Al_{6.0}Si_{1.4}P_{4.6}O_{24}] C_5H_{12}NH_2 = methylbutylamine$
REFINED COMPOSITION:	$ (C_5N)_{2.06} $ [Al _{5.47} P _{5.37} O ₂₄ ]
CRYSTAL DATA:	$\begin{array}{l} R\overline{3} \mbox{ (No. 148) rhombohedral setting} \\ a = 9.3834 \mbox{ \AA}  b = 9.3834 \mbox{ \AA}  c = 9.3834 \mbox{ \AA} \\ \alpha = 94.085^{\circ}  \beta = 94.085^{\circ}  \gamma = 94.085^{\circ} \\ \mbox{ X-ray single crystal refinement, } R_{\rm w} = 0.068 \end{array}$

REFERENCE: J. J. Pluth and J. V. Smith,

J. Phys. Chem. **93** 6516–6520 (1989).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	9.48	9.332	6	100.0	3	1	-1	31.57	2.834	6	1.5	4	0	-2	41.95	2.154	6	0.1
1	0	-1	12.89	6.867	6	34.9	3	-1	1	31.57	2.834	6	0.8	3	0	3	42.65	2.120	6	1.1
1	0	1	13.93	6.359	6	2.4	2	-2	2	32.37	2.766	6	1.6	4	1	1	42.65	2.120	6	0.9
1	-1	1	16.02	5.531	6	14.6	3	1	1	33.36	2.686	6	2.9	3	2	2	42.74	2.116	6	0.3
1	1	1	17.68	5.017	2	8.9	3	-2	0	33.37	2.685	6	0.4	3	-1	3	42.74	2.115	6	0.9
<b>2</b>	0	0	19.02	4.666	6	0.3	3	0	-2	33.37	2.685	6	0.8	4	-2	-1	42.75	2.115	6	0.3
<b>2</b>	0	-1	20.62	4.308	6	23.7	3	-1	-2	34.56	2.596	6	3.3	4	-1	-2	42.75	2.115	6	0.1
2	-1	0	20.62	4.308	6	45.3	3	-2	-1	34.56	2.596	6	2.1	4	1	-2	43.45	2.083	6	1.5
2	0	1	21.94	4.051	6	0.4	3	-2	1	34.98	2.565	6	0.3	4	-2	1	43.45	2.083	6	1.0
2	1	0	21.94	4.051	6	3.7	1	-2	3	34.98	2.565	6	0.9	3	-3	2	44.06	2.055	6	0.3
2	-1	-1	22.42	3.965	6	3.0	2	0	3	35.90	2.501	6	1.8	2	-3	3	44.06	2.055	6	0.1
1	-1	2	23.04	3.859	6	0.4	3	0	2	35.90	2.501	6	2.5	4	0	2	44.74	2.025	6	0.2
2	-1	1	23.04	3.859	6	7.0	3	2	1	38.20	2.356	6	0.2	3	1	3	44.82	2.022	6	0.1
2	1	1	24.82	3.587	6	26.9	3	1	2	38.20	2.356	6	0.1	3	-2	3	45.09	2.011	6	0.6
2	0	-2	25.95	3.434	6	9.7	2	-3	2	38.30	2.350	6	0.4	4	-2	-2	45.77	1.982	6	0.2
1	-2	2	27.68	3.222	6	0.8	4	0	0	38.59	2.333	6	1.0	4	1	2	46.84	1.940	6	0.2
2	-2	1	27.68	3.222	6	1.7	2	-2	3	39.07	2.305	6	0.2	4	0	-3	46.85	1.939	6	0.3
<b>2</b>	0	2	28.06	3.180	6	3.1	4	0	-1	39.07	2.305	6	0.2	4	-3	0	46.85	1.939	6	0.6
3	0	-1	29.56	3.021	6	1.7	3	-2	2	39.07	2.305	6	0.2	2	-2	4	47.09	1.930	6	0.1
3	-1	0	29.56	3.021	6	0.6	3	0	-3	39.36	2.289	6	0.7	4	-1	-3	47.75	1.905	6	2.2
2	1	2	30.64	2.918	6	7.9	4	-1	-1	39.74	2.268	6	2.7	4	-3	-1	47.75	1.905	6	1.2
3	-1	-1	30.65	2.917	6	24.9	4	-1	1	40.85	2.209	6	0.1	1	-3	4	48.07	1.893	6	0.1
3	1	0	30.99	2.885	6	5.3	4	1	-1	40.85	2.209	6	0.2	5	0	0	48.79	1.866	6	3.8
3	0	1	30.99	2.885	6	4.6	4	-2	0	41.95	2.154	6	0.2	3	2	3	49.02	1.858	6	1.5



CHEMICAL COMPOSITION:	$ Ca_4Mn_4(H_2O)_8 $ [Si ₂₀ (BeOH) ₈ O ₅₂ ] Val di San Giacomo, Chiavenna, Italy
REFINED COMPOSITION:	$ Ca_4Mn_4(H_2O)_8 $ [Si ₂₀ (BeOH) ₈ O ₅₂ ]
CRYSTAL DATA:	$\begin{array}{ll} Pnab \ (\text{No. 60}) \ \overline{\textbf{cba}} \ \text{setting} \\ a = 8.729 \ \text{\AA} & b = 31.326 \ \text{\AA} & c = 4.903 \ \text{\AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement}, \ R = 0.041 \end{array}$
REFERENCE:	V. Tazzoli, M. C. Domeneghetti, F. Mazzi and E. Cannillo <i>Eur. J. Mineral.</i> <b>7</b> 1339–1344 (1995).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	2	0	5.64	15.663	2	100.0	1	9	1	33.19	2.699	8	3.4	3	8	1	42.89	2.108	8	3.4
0	4	0	11.30	7.832	2	20.6	2	$\overline{7}$	1	34.02	2.635	8	15.7	4	4	0	43.03	2.102	4	0.5
1	2	0	11.61	7.625	4	6.7	0	12	0	34.35	2.610	2	1.4	2	3	2	43.20	2.094	8	1.1
1	4	0	15.20	5.829	4	24.3	3	6	0	35.31	2.542	4	1.1	0	8	2	43.56	2.078	4	1.8
0	1	1	18.31	4.844	4	4.8	1	10	1	35.53	2.527	8	6.1	2	4	<b>2</b>	43.91	2.062	8	3.5
1	6	0	19.81	4.481	4	2.2	2	8	1	35.84	2.505	8	4.9	3	9	1	44.60	2.032	8	1.0
0	3	1	20.01	4.438	4	2.7	1	12	0	35.91	2.501	4	0.6	2	5	<b>2</b>	44.80	2.023	8	0.8
2	0	0	20.35	4.365	2	3.3	3	1	1	36.01	2.494	8	2.9	1	8	2	44.84	2.021	8	0.8
1	1	1	20.97	4.236	8	1.9	3	2	1	36.36	2.471	8	0.9	4	6	0	45.02	2.013	4	1.1
2	2	0	21.13	4.204	4	0.1	0	11	1	36.49	2.463	4	1.2	4	0	1	45.49	1.994	4	0.5
1	2	1	21.55	4.124	8	20.9	0	0	2	36.66	2.451	2	0.2	2	14	0	45.56	1.991	4	0.1
1	3	1	22.47	3.956	8	20.7	3	3	1	36.94	2.433	8	0.4	4	1	1	45.59	1.990	8	1.8
0	8	0	22.71	3.916	2	34.8	0	2	2	37.12	2.422	4	0.4	1	14	1	45.77	1.982	8	0.3
0	5	1	23.03	3.861	4	0.6	3	4	1	37.74	2.384	8	2.3	2	6	2	45.87	1.978	8	6.5
2	4	0	23.33	3.812	4	20.4	2	9	1	37.81	2.379	8	7.1	4	2	1	45.88	1.978	8	0.7
1	4	1	23.71	3.752	8	1.1	1	1	2	38.24	2.354	8	0.7	4	3	1	46.36	1.958	8	1.3
1	8	0	24.92	3.573	4	0.7	0	4	2	38.48	2.340	4	6.8	0	16	0	46.38	1.958	2	0.7
1	5	1	25.22	3.531	8	0.8	3	8	0	38.55	2.335	4	1.3	3	10	1	46.45	1.955	8	2.6
2	6	0	26.62	3.349	4	1.0	1	2	2	38.58	2.334	8	0.6	1	9	2	46.49	1.953	8	0.3
1	6	1	26.96	3.308	8	0.2	1	3	2	39.13	2.302	8	2.2	2	13	1	46.88	1.938	8	4.6
0	7	1	26.97	3.305	4	4.1	1	4	2	39.89	2.260	8	0.6	4	4	1	47.03	1.932	8	3.3
2	0	1	27.36	3.260	4	30.6	2	10	1	39.91	2.259	8	3.4	0	10	2	47.07	1.931	4	4.8
2	1	1	27.51	3.242	8	5.4	3	6	1	39.95	2.256	8	3.9	2	7	2	47.12	1.929	8	1.0
2	2	1	27.95	3.192	8	10.6	2	12	0	40.25	2.240	4	0.2	0	15	1	47.31	1.921	4	0.5
0	10	0	28.49	3.133	2	1.0	0	14	0	40.31	2.238	2	0.3	4	8	0	47.71	1.906	4	0.3
2	3	1	28.69	3.112	8	8.8	1	12	1	40.49	2.228	8	5.1	1	10	2	48.28	1.885	8	0.4
2	4	1	29.68	3.010	8	3.2	1	5	2	40.86	2.209	8	0.7	3	11	1	48.42	1.880	8	0.1
1	10	0	30.31	2.948	4	7.7	3	7	1	41.34	2.184	8	0.2	1	15	1	48.51	1.876	8	1.9
2	8	0	30.67	2.915	4	0.6	4	0	0	41.37	2.182	2	1.4	2	8	2	48.52	1.876	8	0.5
2	5	1	30.92	2.892	8	43.9	1	14	0	41.67	2.167	4	1.5	3	1	2	48.65	1.871	8	0.3
3	2	0	31.27	2.861	4	2.5	0	13	1	41.77	2.163	4	3.7	4	6	1	48.90	1.863	8	0.9
0	9	1	31.52	2.838	4	8.5	4	2	0	41.79	2.161	4	3.9	2	14	1	49.40	1.845	8	0.8
2	6	1	32.38	2.765	8	1.3	1	6	2	42.01	2.151	8	0.1							
3	4	0	32.84	2.728	4	0.2	2	0	2	42.28	2.137	4	2.0							



CHEMICAL COMPOSITION:					$ (C_7H_{14}NF)_{192} $ [Ga ₇₆₈ P ₇₆₈ O ₂₉₇₆ (OH) ₁₉₂ ] C ₇ H ₁₄ NF = quinuclidinium fluoride															
REFINED COMPOSITION:						$ F_{192} $ [Ga ₇₆₈ P ₇₆₈ O ₃₁₆₈ ]														
CRYSTAL DATA:						$\begin{array}{ll} Fm\overline{3}c \ (\text{No. 226}) \\ a = 51.7120 \ \text{\AA} & b = 51.7120 \ \text{\AA} & c = 51.7120 \ \text{\AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement, } R_{\rm w} = 0.076 \end{array}$														
REFERENCE:						M. Estermann, L. B. McCusker, Ch. Baerlocher, A. Merrouche and H. Kessler, <i>Nature</i> <b>352</b> 320–322 (1991).														
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
2	0	0	3.42	25.856	6	100.0	10	10	2	24.59	3.621	24	0.7	16	10	4	33.42	2.681	48	0.4
2	2	0	4.83	18.283	12	15.7	12	8	0	24.83	3.586	24	0.8	18	6	4	33.60	2.667	48	0.1
2	2	2	5.92	14.928	8	11.8	14	4	0	25.07	3.552	24	0.3	18	8	0	34.15	2.625	24	0.2
4	0	0	6.84	12.928	6	8.6	12	8	2	25.07	3.552	48	0.2	16	10	6	34.33	2.612	48	0.1
4	2	0	7.65	11.563	24	1.2	12	6	6	25.31	3.519	24	1.7	14	14	0	34.33	2.612	12	0.3
4	2	2	8.38	10.556	24	5.2	12	8	4	25.78	3.455	48	0.1	18	8	2	34.33	2.612	48	0.2
4	4	0	9.67	9.141	12	18.4	14	4	4	26.02	3.425	24	0.8	15	11	7	34.47	2.602	48	0.6
6	0	0	10.26	8.619	6	15.3	10	8	8	26.02	3.425	24	0.3	15	13	3	34.83	2.576	48	0.2
6	2	0	10.82	8.170	24	0.4	14	0 10	2	26.48	3.300	48	0.4	10	12	2	34.87	2.573	48	0.1
4	2 4	2 1	11.55	7.190	24 0	1.2	10	10	0	20.40 97.16	3.300 2.904	24 19	0.2	14 14	14	0	04.07 25.05	2.073	40	1.0
4	4	4	11.00	7.404 7 171	0	15.7	14	10	2	27.10	3.204 2.207	40	0.2	14 16	14 19	4	33.03 25.40	2.000	24 19	0.2
6	4	0	12.34	6.010	24 19	3.0 1 4	14	10	0	21.02	3.207 2 1 9 2	24	0.5	10	12	4	55.40 25 52	2.000	40	0.4
0	4	2	12.01 13.70	6.464	40 6	1.4	10	10	0 2	28.04	0.100 2.192	24 18	0.0	19 16	10	ა დ	35.58	2.020 2.523	40	0.0
0	0	0	13.70	6.404	24	1.0	14	0	2	20.04 28.47	3 1 2 6	40 94	0.2	10	10	0	35.30	2.020 9.511	40 94	0.0
6	2 1	4	14.12 14.19	6 271	24	2.9	10	4 Q	8	20.47	3 1 2 6	24	0.4	10	10	10	36 44	2.011 2.465	24 18	0.1
8	4 9	4 9	14.12 14.53	6.004	24 94	1.5	12	4	2	28.41	3.130	24 18	0.9	14	14	10	30.44 37 19	2.400 2.400	40	0.2
6	6	0	14.00 1/1.53	6.094	24 19	0.0	10	8	1	28.08	3 113	40	$\frac{0.2}{2.5}$	10	10	10	37.12 37.12	2.422	24	0.5
8	4	4	16.80	5.054	24	0.4	12	10	6	28.89	3 090	48	$\frac{2.0}{0.2}$	10	10	6	37.12 37.29	2.422 2.411	24 48	0.2
8	6	0	10.00 17 15	5.270 5.171	24	0.2	12	12	0	20.05	3.050 3.047	12	0.2 0.4	20	8	0	37.25 37.46	2.411 2 401	24	0.0
8	6	2	17.10 17.49	5 071	48	0.0	16	6	Ő	29.51	3 026	24	0.1	14	12	12	38 29	2.101 2.351	24	0.2
6	6	6	17.43 17.82	4976	8	0.1	14	8	6	29.02	3.020 3.006	48	0.3	22	0	12	38.29	2.351 2.351	6	0.2 0.5
10	4	0	18.48	4 801	24	1.3	14	10	0	29.72	3.006	24	0.2	18	12	4	38 29	2.001 2.351	48	0.0
10	4	2	18.80	4.721	48	0.1	17	3	1	29.88	2.991	48	0.2	22	2	0	38.45	2.341	24	0.6
8	8	0	19.42	4 571	12	0.1	15	g	1	30.28	2.001 2.951	48	0.1	22	4	2	39 11	2.303	48	0.1
8	8	$\frac{1}{2}$	19.72	4 501	24	0.0	16	6	4	30.33	2.001 2.947	48	0.1	20	10	2	39 11	2.303	48	0.1
12	Ő	0	20.61	4.309	6	0.2	14	10	4	30.53	2.928	48	0.3	14	14	$12^{-12}$	40.38	2.234	$\overline{24}$	0.3
8	8	4	20.61	4.309	24	3.7	15	9	3	30.68	2.914	48	0.1	24	0	0	41.93	2.155	6	0.1
10	6	4	21.18	4.194	48	1.2	17	5	3	31.08	2.877	48	0.5	20	14	4	43.28	2.090	48	0.1
11	5	3	21.39	4.154	48	0.5	12	12	6	31.13	2.873	24	0.2	18	16	8	44.46	2.038	48	0.2
9	7	5	21.39	4.154	48	0.1	16	8	2	31.13	2.873	48	0.6	18	18	0	44.60	2.031	12	0.1
12	4	0	21.74	4.088	24	0.4	18	4	0	31.91	2.804	24	0.4	16	16	12	44.89	2.019	24	0.1
8	8	6	22.01	4.038	24	0.7	14	12	0	31.91	2.804	24	0.2	20	16	2	45.04	2.013	48	0.2
10	8	0	22.01	4.038	24	1.3	12	10	10	32.10	2.788	24	0.1	20	14	8	45.04	2.013	48	0.2
10	8	2	22.28	3.990	48	0.3	15	11	1	32.25	2.776	48	0.4	26	2	0	45.75	1.983	24	0.1
11	$\overline{7}$	1	22.48	3.955	48	0.3	12	12	8	32.48	2.756	24	0.4	26	4	2	46.32	1.960	48	0.2
12	4	4	22.81	3.898	24	0.2	15	9	$\overline{7}$	32.63	2.745	48	0.1	16	16	14	46.74	1.943	24	0.1
11	7	3	23.01	3.865	48	0.4	15	11	3	32.63	2.745	48	0.4	26	6	0	46.88	1.938	24	0.1
13	3	1	23.01	3.865	48	0.3	16	8	6	32.67	2.741	48	0.1	20	16	8	47.16	1.927	48	0.2
12	6	0	23.07	3.854	24	0.2	18	4	4	32.67	2.741	24	0.4	18	16	12	47.30	1.922	48	0.2
10	8	4	23.07	3.854	48	0.1	18	6	0	32.86	2.725	24	0.5	20	14	12	47.85	1.901	48	0.2
12	6	2	23.33	3.812	48	0.2	16	10	2	32.86	2.725	48	1.0	22	14	8	47.99	1.896	48	0.1
14	0	0	24.09	3.694	6	0.6	13	11	9	33.37	2.685	48	0.1	22	16	4	48.40	1.881	48	0.3
10	10	0	24.34	3.657	12	0.4	19	3	1	33.37	2.685	48	0.4	22	14	10	49.21	1.852	48	0.2
14	2	0	24.34	3.657	24	0.1	15	11	5	33.37	2.685	48	0.2	28	0	0	49.34	1.847	6	0.2


# CIT-1

## CHEMICAL COMPOSITION: [Si₅₆O₁₁₂]

REFINED COMPOSITION: [Si₅₆O₁₁₂]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 22.6242 Å b = 13.3503 Å c = 12.3642 Å  $\alpha = 90^{\circ}$   $\beta = 68.913^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.136$ ,  $R_{\rm F} = 0.106$ 

REFERENCE: R. F. Lobo and M. E. Davis,

J. Am. Chem. Soc. 117 3766–3779 (1994).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	7.66	11.536	2	40.5	-4	0	<b>2</b>	26.68	3.341	2	2.0	9	1	3	37.65	2.389	4	0.4
1	1	0	7.84	11.283	4	100.0	0	4	0	26.71	3.338	2	6.6	5	1	5	37.70	2.386	4	0.2
<b>2</b>	0	0	8.38	10.555	2	3.3	6	0	3	27.52	3.241	2	0.2	-1	5	2	38.01	2.367	4	0.2
2	0	1	9.10	9.722	<b>2</b>	23.4	0	4	1	27.83	3.206	4	0.5	-4	4	2	38.11	2.361	4	0.3
1	1	1	9.85	8.975	4	0.8	6	2	2	27.91	3.197	4	1.1	1	1	5	38.28	2.351	4	0.1
-1	1	1	11.98	7.387	4	1.3	2	4	1	28.27	3.157	4	0.9	-3	1	4	38.35	2.347	4	0.2
-2	0	1	13.25	6.681	2	8.0	7	1	1	28.56	3.125	4	0.6	-1	3	4	38.71	2.326	4	0.1
0	<b>2</b>	0	13.26	6.675	2	2.9	6	2	0	28.68	3.112	4	1.4	9	1	0	38.99	2.310	4	0.2
3	1	1	13.85	6.394	4	0.7	2	0	4	29.01	3.078	2	1.7	2	4	4	39.84	2.263	4	0.2
3	1	0	14.23	6.225	4	2.2	5	3	0	29.16	3.063	4	0.9	-6	4	1	39.89	2.260	4	0.2
2	0	<b>2</b>	14.61	6.062	2	1.8	5	3	<b>2</b>	29.23	3.056	4	1.1	7	3	4	40.12	2.248	4	0.1
0	<b>2</b>	1	15.34	5.778	4	1.0	4	0	4	29.47	3.031	2	0.3	1	5	3	40.47	2.229	4	0.2
0	0	<b>2</b>	15.36	5.768	2	1.4	-4	2	<b>2</b>	29.91	2.987	4	0.3	0	6	0	40.54	2.225	2	0.7
2	<b>2</b>	0	15.71	5.642	4	0.2	-2	4	1	29.93	2.986	4	1.2	6	2	5	40.59	2.223	4	0.2
4	0	1	15.75	5.625	<b>2</b>	1.7	7	1	0	30.39	2.941	4	0.1	-3	5	2	41.19	2.191	4	0.1
4	0	0	16.80	5.277	<b>2</b>	1.7	-2	2	3	30.55	2.926	4	0.9	10	2	2	42.17	2.143	4	0.1
-3	1	1	18.22	4.869	4	0.3	2	4	<b>2</b>	30.58	2.924	4	0.2	-8	0	2	42.49	2.127	2	0.3
4	0	<b>2</b>	18.25	4.861	<b>2</b>	0.7	6	2	3	30.67	2.915	4	0.5	4	0	6	43.94	2.061	2	1.3
-2	2	1	18.79	4.722	4	0.2	-3	3	2	30.78	2.905	4	1.1	8	2	5	43.96	2.060	4	0.1
2	<b>2</b>	<b>2</b>	19.78	4.488	4	1.4	-3	1	3	30.98	2.886	4	0.2	4	6	0	44.17	2.050	4	0.6
-2	0	<b>2</b>	20.02	4.435	<b>2</b>	0.1	4	4	1	31.16	2.870	4	0.7	7	5	2	44.27	2.046	4	0.2
0	<b>2</b>	<b>2</b>	20.35	4.364	4	0.4	5	1	4	31.35	2.853	4	0.3	11	1	2	44.59	2.032	4	0.1
1	3	0	20.39	4.354	4	10.8	4	4	0	31.72	2.821	4	0.7	9	1	5	44.60	2.032	4	0.2
4	2	1	20.65	4.302	4	0.2	8	0	<b>2</b>	31.81	2.813	2	0.2	-2	4	4	44.63	2.030	4	0.1
5	1	1	20.73	4.285	4	0.2	-5	3	1	32.13	2.785	4	0.4	3	1	6	44.68	2.028	4	0.1
4	<b>2</b>	0	21.46	4.140	4	2.7	-1	3	3	32.18	2.782	4	0.4	5	1	6	44.72	2.026	4	0.2
2	0	3	21.56	4.121	<b>2</b>	0.6	5	3	3	32.26	2.775	4	0.4	7	3	5	44.85	2.021	4	0.1
5	1	0	22.08	4.025	4	8.1	4	4	2	32.54	2.751	4	0.4	10	2	0	45.04	2.013	4	0.2
5	1	<b>2</b>	22.17	4.009	4	0.9	-4	0	3	33.41	2.682	2	1.0	7	5	0	45.37	1.999	4	0.3
4	<b>2</b>	<b>2</b>	22.63	3.929	4	0.1	-1	1	4	33.52	2.674	4	0.3	-1	3	5	45.85	1.979	4	0.1
1	1	3	22.95	3.874	4	2.0	8	0	3	33.57	2.669	2	0.8	-5	5	2	45.91	1.977	4	0.1
3	1	3	22.99	3.868	4	3.5	8	0	0	33.97	2.639	2	0.3	-3	1	5	46.10	1.969	4	0.3
0	0	3	23.13	3.845	2	5.0	-7	1	1	33.99	2.637	4	0.3	7	1	6	46.48	1.954	4	0.1
4	0	3	23.21	3.833	<b>2</b>	7.2	-4	4	1	34.14	2.626	4	0.3	10	0	5	46.72	1.944	2	0.2
3	3	0	23.66	3.761	4	0.2	-1	5	1	35.10	2.557	4	0.1	-9	1	2	47.29	1.922	4	0.4
-2	<b>2</b>	<b>2</b>	24.09	3.694	4	0.3	7	1	4	35.11	2.556	4	0.6	11	1	0	47.89	1.899	4	0.2
-3	1	2	24.14	3.686	4	1.7	0	4	3	35.62	2.521	4	0.8	1	$\overline{7}$	0	47.89	1.899	4	0.4
6	0	<b>2</b>	24.44	3.642	2	2.0	4	4	3	35.67	2.517	4	0.7	-8	0	3	48.35	1.883	2	0.1
-4	<b>2</b>	1	24.81	3.588	4	0.6	7	3	0	35.97	2.496	4	0.1	-10	2	1	48.51	1.877	4	0.2
6	0	0	25.31	3.518	<b>2</b>	0.9	3	5	0	35.97	2.496	4	0.5	10	2	5	48.78	1.867	4	0.2
2	<b>2</b>	3	25.40	3.507	4	1.2	4	0	5	36.46	2.464	2	0.3	11	3	2	48.79	1.866	4	0.2
3	3	2	25.67	3.471	4	0.3	8	2	0	36.62	2.454	4	0.4	9	3	5	48.80	1.866	4	0.2
-5	1	1	25.82	3.450	4	0.9	6	4	0	37.13	2.421	4	1.3	-4	6	2	49.20	1.852	4	0.1
5	1	3	25.98	3.430	4	0.2	3	5	2	37.38	2.406	4	0.3	3	$\overline{7}$	0	49.52	1.841	4	0.1
-1	3	<b>2</b>	26.55	3.358	4	0.4	-5	1	3	37.48	2.400	4	0.2	6	6	3	49.70	1.834	4	0.2



CHEMICAL COMPOSITION:  $|Na_{12}(H_2O)_{12}|$  [Zn₁₂P₁₂O₄₈]

REFINED COMPOSITION:  $|Na_{6.06}O_{9.12}|$  [Zn₁₂P₁₂O₄₈]

CRYSTAL DATA:  $P6_122$  (No. 178) a = 10.4797 Å b = 10.4797 Å c = 15.089 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 120.0^{\circ}$ X-ray single crystal refinement, R = 0.0599,  $R_{\rm w} = 0.0529$ 

REFERENCE: W. T. A. Harrison, T. E. Gier, G. D. Stucky, R. W. Broach and R. A. Bedard, *Chemistry of Materials* 8 145–151 (1996).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	9.75	9.076	6	18.7	2	1	3	31.57	2.834	24	10.6	3	1	4	43.21	2.094	24	1.4
1	0	1	11.38	7.777	12	100.0	3	0	2	31.87	2.808	12	19.2	3	2	0	43.46	2.082	12	0.6
1	0	2	15.27	5.802	12	21.7	2	<b>2</b>	0	34.22	2.620	6	13.4	4	0	3	43.77	2.068	12	1.4
1	1	0	16.92	5.240	6	9.6	3	0	3	34.60	2.592	12	1.7	3	<b>2</b>	1	43.90	2.063	24	2.6
<b>2</b>	0	0	19.56	4.538	6	0.2	2	<b>2</b>	1	34.75	2.581	12	0.4	2	1	6	44.68	2.028	24	1.5
1	0	3	20.18	4.399	12	0.6	2	1	4	35.37	2.538	24	1.5	3	2	2	45.17	2.007	24	0.8
<b>2</b>	0	1	20.44	4.346	12	0.6	3	1	0	35.67	2.517	12	0.7	1	1	7	45.50	1.993	12	0.3
1	1	<b>2</b>	20.64	4.304	12	15.4	0	0	6	35.70	2.515	2	2.8	2	<b>2</b>	5	45.87	1.978	12	0.4
<b>2</b>	0	2	22.87	3.889	12	7.2	3	1	1	36.18	2.483	24	3.7	4	1	1	46.23	1.964	24	0.2
1	1	3	24.53	3.629	12	0.3	2	<b>2</b>	2	36.30	2.475	12	0.8	2	0	7	46.65	1.947	12	0.1
2	1	0	25.97	3.430	12	2.2	3	1	2	37.67	2.388	24	0.4	4	0	4	46.72	1.944	12	0.9
2	0	3	26.45	3.369	12	0.6	3	0	4	38.13	2.360	12	5.2	3	0	6	46.98	1.934	12	0.3
2	1	1	26.65	3.345	24	12.7	4	0	0	39.73	2.269	6	0.5	3	1	5	47.01	1.933	24	5.1
<b>2</b>	1	<b>2</b>	28.59	3.123	24	11.7	1	1	6	39.76	2.267	12	0.9	3	<b>2</b>	3	47.25	1.924	24	0.4
1	1	4	29.17	3.061	12	23.5	2	1	5	39.78	2.266	24	3.4	4	1	2	47.46	1.916	24	5.0
3	0	0	29.53	3.025	6	6.5	3	1	3	40.06	2.251	24	1.7	1	0	8	49.35	1.847	12	0.8
3	0	1	30.13	2.966	12	0.9	4	0	1	40.19	2.244	12	0.1	4	1	3	49.46	1.843	24	0.3
2	0	4	30.82	2.901	12	0.5	4	0	2	41.56	2.173	12	0.1	2	1	$\overline{7}$	49.97	1.825	24	0.9
1	0	5	31.23	2.864	12	14.6	2	2	4	41.99	2.152	12	1.1							



CHEMICAL COMPOSITION:  $|Na_{12}(H_2O)_{12}|$  [Zn₁₂P₁₂O₄₈]

REFINED COMPOSITION:  $|Na_{2.04}O_{4.08}|$  [Zn₁₂P₁₂O₄₈]

CRYSTAL DATA:  $P6_522$  (No. 179) a = 10.412 Å b = 10.412 Å c = 15.184 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 120.0^{\circ}$ X-ray single crystal refinement, R = 0.0690,  $R_{\rm w} = 0.0810$ 

REFERENCE: W. T. A. Harrison, T. E. Gier, G. D. Stucky, R. W. Broach and R. A. Bedard, *Chemistry of Materials* 8 145–151 (1996).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	9.81	9.017	6	10.9	3	0	2	32.03	2.795	12	14.0	4	0	2	41.80	2.161	12	0.3
1	0	1	11.41	7.753	12	100.0	2	2	0	34.45	2.603	6	9.5	2	2	4	42.09	2.147	12	0.9
1	0	2	15.26	5.808	12	23.8	3	0	3	34.71	2.584	12	1.7	3	1	4	43.32	2.088	24	1.4
1	1	0	17.03	5.206	6	16.4	2	2	1	34.97	2.566	12	0.3	3	2	0	43.76	2.069	12	0.2
1	0	3	20.12	4.414	12	1.5	2	1	4	35.39	2.536	24	1.4	4	0	3	43.97	2.059	12	1.4
2	0	1	20.55	4.322	12	0.6	0	0	6	35.47	2.531	2	2.0	3	2	1	44.18	2.050	24	2.3
1	1	2	20.69	4.294	12	11.3	3	1	0	35.91	2.501	12	0.5	2	1	6	44.60	2.032	24	0.9
2	0	2	22.94	3.877	12	6.6	3	1	1	36.41	2.468	24	2.4	1	1	7	45.29	2.002	12	0.3
1	1	3	24.53	3.629	12	0.1	2	2	<b>2</b>	36.49	2.462	12	0.5	3	2	2	45.44	1.996	24	0.8
2	1	0	26.15	3.408	12	1.6	1	0	6	36.89	2.437	12	0.2	2	2	5	45.92	1.976	12	0.2
2	1	1	26.81	3.325	24	12.8	3	1	2	37.88	2.375	24	0.3	4	0	4	46.87	1.938	12	0.8
2	1	2	28.71	3.109	24	9.6	3	0	4	38.19	2.356	12	3.8	3	0	6	46.93	1.936	12	0.6
1	1	4	29.11	3.067	12	18.8	2	2	3	38.91	2.315	12	0.1	3	1	5	47.07	1.931	24	3.5
3	0	0	29.72	3.006	6	6.7	1	1	6	39.60	2.276	12	1.4	3	2	3	47.48	1.915	24	0.3
3	0	1	30.31	2.948	12	0.6	2	1	5	39.75	2.267	24	3.6	4	1	2	47.75	1.905	24	4.1
2	0	4	30.79	2.904	12	0.4	4	0	0	39.99	2.254	6	0.4	1	0	8	49.05	1.857	12	0.6
1	0	5	31.07	2.878	12	12.8	3	1	3	40.22	2.242	24	0.7	4	1	3	49.71	1.834	24	0.5
2	1	3	31.65	2.827	24	4.1	4	0	1	40.45	2.230	12	0.1	2	1	$\overline{7}$	49.83	1.830	24	0.5



CF	IEN	МIС	CAL C	OMPC	SIT	ION:	Na _{0.42} I Elba, It	K _{0.9} aly	$_{2}\mathrm{Cs}$	5 _{0.11} Ca	$_{1.54} m{Sr}_{0.}$	. ₁₂ Ba	a _{0.01} (H	$_{2}O)_{12.56}$	[S	i _{18.9}	$_{96}Al_{4.86}$	₅ Fe _{0.02}	O ₄₈ ]	
Ι	REF	FIN	ED CO	ЭМРО	SIT	ION:	$ \mathbf{K}_{0.62}\mathbf{C} $	$a_{2.7}$	6(H	$[_{2}O)_{12} $	$[Si_{19.2}]$	$Al_{4.3}$	₈ O ₄₈ ]							
			CR	YSTAI	L DA	ATA:	$C12/m$ $a = 18.4$ $\alpha = 90^{\circ}$ X-ray si	1 ( 676	No. Å le c:	$b = \beta = \beta$ rystal p	nique a 7.518 107.87 refinem	axis Å 7° nent,	<b>b</b> , cell c = 1 $\gamma =$ $R_{\rm w} =$	choice 1 10.246 Å 90° 0.06						
				REFE	REN	NCE:	G. Vezz Z. Kris	alir tall	ni, <i>ogr</i> .	. 166 (	63-71 (	(1984	4).							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	9.07	9.752	2	3.8	5	1	1	31.64	2 828	4	0.3	5	3	0	44 22	2.048	4	0.8
2	0	0	9.95	8 887	2	69.6	1	1	3	31 78	2.816	4	1.3	Ő	2	4	44 28	2.045	4	1.2
1	1	0	12.78	6.924	4	50.3	2	0	3	32.09	2.789	2	0.2	-2	0	5	44.39	2.041	2	4.6
-1	1	1	14.78	5.994	4	25.9	-4	2	2	32.93	2.720	4	11.6	8	0	1	44.51	2.035	2	0.2
1	1	1	16.56	5.352	4	9.0	2	2	2	33.49	2.676	4	13.4	-7	1	4	44.56	2.033	4	0.2
-2	0	2	17.86	4.965	2	29.9	-6	0	3	34.12	2.627	2	1.8	-4	0	5	44.64	2.030	2	0.1
0	0	2	18.19	4.876	$\frac{-}{2}$	45.5	4	$\overset{\circ}{2}$	1	34.27	2.616	4	1.0	5	1	3	44.82	2.022	4	0.8
-3	1	1	19.05	4.659	4	2.0	-2	0	4	35.05	2.560	2	11.0	-5	3	2	44.86	2.020	4	3.8
3	1	0	19.07	4.654	4	2.3	-2	$\overset{\circ}{2}$	3	35.55	2.525	4	4.9	-1	3	3	45.00	2.014	4	0.4
-4	0	1	19 24	4 613	2	<u>-</u> .s	-7	1	1	35 75	2.512	4	14	-3	3	3	45.39	1 998	4	0.4
4	0	0	19.98	4 444	2	2.6	-4	0	4	36.18	2.012 2.483	2	2.7	3	3	2	45 44	1 996	4	3.4
-1	1	2	20.99	4 232	4	2.0 3.4	1	3	0	36.20	2.481	4	$\frac{2.1}{1.2}$	-9	1	2	45.57	1 990	4	1.0
-4	0	2	22.56	3 941	2	32.1	-7	1	2	36.53	$\frac{2.101}{2.460}$	4	0.6	-9	1	1	45.60	1 989	4	1.0
-3	1	2	23.02	3 863	4	87	. 0	2	3	36.54	2.459	4	6.8	-3	1	5	45 91	1.000	4	0.2
3	1	1	23.08	3854	4	17	Ő	0	4	36.87	2.438	2	0.6	3	1	4	46.00	1 973	4	1.5
2	0	2	23.35	3 810	2	38.7	-1	3	1	37.00	2.430	4	1.3	-8	0	4	46.06	1.070	2	1.0
1	1	2	23.54	3.780	4	12.6	-3	1	4	37.28	2.412	4	1.4	-8	2	2	46.17	1.966	4	2.6
0	2	0	23.67	3.759	2	7.8	3	1	3	37.37	2.406	4	0.8	7	1	2	46.71	1.945	4	1.5
4	0	1	24.43	3 644	2	8.6	-4	2	3	37.47	$\frac{2.100}{2.400}$	4	4.8	-1	1	5	46.86	1 939	4	0.8
0	2	1	25.39	3.507	4	9.0	5	1	2	37 55	2.395	4	3.8	5	3	1	46.91	1.937	4	11
2	2	0	25.00 25.73	3462	4	100.0	-1	1	4	37.62	$\frac{2.000}{2.391}$	4	1.2	1	3	3	47.01	1 933	4	0.3
-2	0	3	26.14	3409	2	22.2	1	3	1	37.02	2.001 2.381	4	0.5	-6	2	4	47.04	1.932	4	1.9
-2	2	1	26.11 26.27	3 393	4	92	-6	2	2	38.65	2.301 2.329	4	0.0	6	2	2	47.16	1.002 1 927	4	1.9
-5	1	1	26.69	3 340	4	16.1	6	2	0	38 70	2.025 2.327	4	0.2	-6	0	5	47 29	1.921	2	0.5
-0	0	3	20.03 27.44	3.251	2	3.8	4	0	3	39.03	2.308	2	47	-0	1	5	47.34	1.922	4	0.0
5	1	0	27.44 27.76	3.201	4	53.5	-7	1	3	39.60	2.300 2.276	2 4	3.8	-0 _0	1	3	47.54	1.920	4	0.1
-4	0	3	21.10	3.214 3.119	2	4.6	-5	1	4	39.73	2.210 2.269	т Д	0.3	-5	2	0	47.52	1 913	4	0.1
-5	1	2	20.02 28.72	3 100	1	1.0	-6	0	1	40.04	2.200 2.252	2	0.6	Q Q	1	0	47.60	1.010	1	1 1
-0	1	3	28.12	3 088		6.7	-0	1	- 1	40.04	2.202 2.218	1	0.0	1	0	1	47.74	1 905	2	1.1
-1	1	3	20.51	3.000		4.5	1	1	1	40.00	2.210 2 102		0.7	-5	3	ч 2	18 14	1.505	1	0.2
3	1	2	29.56	3 022	т Д		-3	3	2	41 22	2.192	т 4	0.1	-0 9	2	4	48 15	1 890	т 4	2.5
-2	2	2	29.81	2.997	4	1.3	3	3	1	41 26	2.188	4	0.3	0	4	0	48 43	1.880	2	11 9
0	2	2	30.02	2.001 2.977	4	1.0	5 9	n	1	41.20	2.100 2.186	2	17	-10	0	2	48.85	1 864	2	1 0
-6	ے 1	2 2	30.11	2.911	+ 9	21 Q	2 1	ર	-1 9	41 52	2.100 2.174	2 /	1 1	-10 _10	0	∠ 1	49.00	1 859	2	1.0
-0 6	0	ے 1	30.17	2.900	2	24.0 15	1 _8	0	∠ ૧	41.60	2.174 2 171	+ 9	1.1 0.3	01-	1	1	49.20	1.846	2 /	1.0
_/	2	1	30.68	2.302 2.01/	2 /	1.0 0.9	-0 6	2	1	42.04	$\frac{2.171}{2.1/1}$	2 /	0.5	0	-± /	0	49.50	1 830	-± /	0.4
± /	ے 1	1 9	31.11	2.314	+ 9	10.2	0 0	2	т Л	42.04	2.149	-± /	0.0	20	-± /	1	40.88	1 898	-± /	0.4
-± -1	2	0	31 16	2.014 2.870	2 4	20.7	-2 _A	$\frac{2}{2}$	-1 1	43 60	2.110 2.072	-± 4	1.4	-2 _7	-± 3	1	49.00 49.96	1.020	-± -1	2.8
т	4	0	01110	4.010	т	20.4		4	т	10.00	4.014	т	1.T	- 1		-	10.00	1.040	- T	<i>4.0</i>



DDR

REFINED COMPOSITION:  $|C_{69}N_6|$  [Si₁₂₀O₂₄₀]

CRYSTAL DATA:	$R\overline{3}m$ (No. 166)	hexagonal settin	ng
	a = 13.860  Å	$b=13.860~{\rm \AA}$	c=40.891 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray single cry	ystal refinement,	$R_{\rm w} = 0.066$

**REFERENCE:** H. Gies,

Z. Kristallogr. 175 93–104 (1986).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	3	6.48	13.630	2	23.5	0	4	2	30.10	2.969	6	2.0	5	1	1	41.97	2.153	12	0.8
1	0	1	7.68	11.517	6	40.5	1	3	7	30.92	2.892	12	2.1	1	5	2	42.15	2.144	12	0.2
0	1	2	8.54	10.351	6	12.9	4	0	4	31.06	2.879	6	3.2	1	<b>2</b>	17	42.54	2.125	12	0.4
1	0	4	11.37	7.783	6	21.1	1	2	11	31.10	2.875	12	0.9	1	0	19	42.68	2.118	6	0.1
1	1	0	12.77	6.930	6	18.2	0	1	14	31.52	2.838	6	2.4	2	4	$\overline{7}$	42.76	2.115	12	1.5
0	0	6	12.99	6.815	2	18.0	0	4	5	31.76	2.817	6	0.7	5	1	4	42.87	2.109	12	0.2
0	1	5	13.10	6.759	6	0.6	2	2	9	32.50	2.755	12	0.3	0	4	14	43.22	2.093	6	0.2
1	1	3	14.34	6.177	12	17.5	3	2	1	32.59	2.747	12	1.9	4	1	12	43.58	2.077	12	0.9
0	2	1	14.92	5.938	6	1.1	4	0	7	33.57	2.669	6	4.5	1	4	12	43.58	2.077	12	0.8
2	0	2	15.39	5.759	6	58.5	3	2	4	33.71	2.659	12	0.3	3	2	13	43.69	2.072	12	0.3
1	0	$\overline{7}$	16.88	5.253	6	7.5	2	0	14	34.14	2.626	6	1.0	0	5	10	43.72	2.070	6	0.1
0	<b>2</b>	4	17.13	5.176	6	100.0	2	3	5	34.36	2.610	12	0.2	3	3	9	43.97	2.059	12	0.6
1	1	6	18.26	4.859	12	26.1	3	0	12	34.57	2.594	6	0.5	5	1	$\overline{7}$	44.81	2.022	12	0.8
2	0	5	18.34	4.838	6	19.9	0	3	12	34.57	2.594	6	0.4	0	1	20	44.98	2.016	6	0.5
0	1	8	18.87	4.703	6	48.7	2	1	13	34.70	2.585	12	2.5	1	5	8	45.67	1.986	12	0.4
0	0	9	19.54	4.543	2	5.0	4	1	3	34.88	2.572	12	0.6	<b>2</b>	4	10	45.74	1.984	12	1.5
2	1	1	19.69	4.509	12	46.7	1	0	16	35.93	2.500	6	2.0	0	6	3	45.84	1.979	6	1.4
1	<b>2</b>	2	20.05	4.429	12	3.1	3	2	$\overline{7}$	36.06	2.491	12	2.6	6	0	3	45.84	1.979	6	0.7
0	2	7	21.22	4.186	6	5.1	4	1	6	36.76	2.445	12	0.2	0	3	18	45.94	1.976	6	2.6
2	1	4	21.43	4.147	12	27.4	1	4	6	36.76	2.445	12	6.6	3	0	18	45.94	1.976	6	3.0
3	0	0	22.22	4.001	6	10.0	2	2	12	37.00	2.430	12	1.4	4	3	1	46.05	1.971	12	3.3
1	2	5	22.41	3.967	12	9.4	2	3	8	37.08	2.424	12	9.2	3	1	17	46.58	1.950	12	1.5
2	0	8	22.85	3.891	6	2.0	4	0	10	37.16	2.419	6	0.3	0	0	21	46.64	1.947	2	2.1
1	0	10	22.98	3.871	6	7.5	0	5	1	37.53	2.396	6	4.4	4	0	16	46.68	1.946	6	1.5
3	0	3	23.17	3.839	6	9.9	5	0	2	37.73	2.384	6	0.5	4	3	4	46.89	1.938	12	1.0
0	3	3	23.17	3.839	6	9.4	0	2	16	38.28	2.351	6	3.4	4	2	11	46.92	1.936	12	3.1
1	1	9	23.41	3.800	12	14.6	0	4	11	38.56	2.335	6	4.4	5	2	0	47.29	1.922	12	0.5
2	1	7	24.85	3.583	12	9.8	3	3	0	38.99	2.310	6	3.9	6	0	6	47.36	1.920	6	2.7
2	2	0	25.71	3.465	6	12.5	5	0	5	39.11	2.303	6	9.8	0	6	6	47.36	1.920	6	0.6
0	3	6	25.82	3.450	6	10.6	1	3	13	39.41	2.286	12	0.1	3	4	5	47.39	1.918	12	0.1
3	0	6	25.82	3.450	6	2.7	3	2	10	39.45	2.284	12	1.6	3	3	12	47.55	1.912	12	0.6
0	0	12	26.15	3.408	2	17.4	3	3	3	39.57	2.278	12	2.1	2	5	3	47.79	1.903	12	0.3
1	2	8	26.26	3.393	12	43.4	0	0	18	39.67	2.272	2	0.5	5	2	3	47.79	1.903	12	0.1
0	2	10	26.37	3.379	6	8.9	4	1	9	39.72	2.269	12	1.9	4	1	15	48.18	1.889	12	0.1
2	2	3	26.54	3.358	12	53.9	2	4	1	39.80	2.265	12	0.4	1	4	15	48.18	1.889	12	0.3
1	3	1	26.87	3.318	12	42.2	4	2	2	39.99	2.255	12	0.7	0	4	17	48.50	1.877	6	0.6
3	1	2	27.14	3.286	12	2.4	3	0	15	40.02	2.253	6	3.0	1	5	11	48.83	1.865	12	0.3
1	3	4	28.19	3.165	12	1.3	0	3	15	40.02	2.253	6	2.2	1	2	20	48.86	1.864	12	1.1
2	0	11	28.24	3.160	6	13.8	2	0	17	40.40	2.233	6	2.8	2	5	6	49.26	1.850	12	1.2
3	1	5	28.96	3.083	12	8.7	0	5	7	40.63	2.220	6	1.7	5	2	6	49.26	1.850	12	0.2
1	1	12	29.20	3.058	12	18.9	2	4	4	40.74	2.215	12	0.3	3	4	8	49.51	1.841	12	1.0
1	0	13	29.35	3.043	6	0.9	2	3	11	40.78	2.213	12	3.2	2	4	13	49.54	1.840	12	4.0
2	1	10	29.41	3.037	12	11.7	5	0	8	41.56	2.173	6	0.4	6	0	9	49.80	1.831	6	0.1
3	0	9	29.75	3.003	6	11.3	4	0	13	41.59	2.171	6	0.1	0	6	9	49.80	1.831	6	2.0
4	0	1	29.85	2.993	6	8.4	1	1	18	41.85	2.159	12	2.4	1	6	1	49.87	1.829	12	2.0



CHEMICAL COMPOSITION:  $|(C_{16}H_{38}N_2)_{7.92}(H_2O)_{40.26}|$  [Mg_{14.52}Al_{51.48}P₆₆O₂₆₄]  $C_{16}H_{38}N_2^{2+} = decame thonium ion$ 

 $|C_{23}|$  [Si₁₃₂O₂₆₄] **REFINED COMPOSITION:** 

> CRYSTAL DATA: P6/mmm (No. 191)  $b=22.351~{\rm \AA}$ a = 22.351 Åc = 21.693 Å $\beta = 90^{\circ}$  $\gamma = 120^\circ$  $\alpha = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.122$

**REFERENCE**:

P. A. Wright, R. H. Jones, S. Natarajan, R. G. Bell, J. Chen, M. B. Hursthouse and J. M. Thomas,

J. Chem. Soc., Chem. Comm. 633-635 (1993).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	4.07	21.693	2	6.3	4	2	0	24.33	3.658	12	0.2	2	0	8	34.34	2.611	12	0.6
1	0	0	4.56	19.357	6	39.6	5	0	2	24.41	3.646	12	0.2	6	2	2	34.42	2.606	24	0.2
1	0	1	6.12	14.443	12	18.5	4	0	4	24.66	3.611	12	1.6	6	1	4	34.60	2.593	24	0.3
1	1	0	7.91	11.175	6	100.0	4	<b>2</b>	1	24.68	3.607	24	1.2	5	3	3	34.73	2.583	24	0.8
0	0	<b>2</b>	8.15	10.846	2	39.2	3	<b>2</b>	4	25.93	3.436	24	1.8	7	0	3	34.73	2.583	12	1.0
1	1	1	8.90	9.935	12	4.2	$\overline{5}$	1	1	25.96	3.433	24	0.3	4	2	6	34.89	2.571	24	0.5
2	0	0	9.14	9.678	6	0.2	2	2	5	26.00	3.427	12	0.2	4	3	5	34.97	2.566	24	0.5
1	Õ	2	9.35	9.462	12	0.2	2	0	6	26.31	3.387	$12^{$	0.5	7	1	Õ	35.00	2.564	$12^{-1}$	0.2
2	ŏ	1	10.01	8.839	12	20.1	3	ĭ	5	26.41	3.374	24	0.4	7	1	1	35.25	2.546	24	0.2
1	1	2	11.37	7 783	12	19	5	1	2	26.93	3 311	24	0.5	3	2	7	35.32	2.541	24	0.2
2	1	õ	12.10	7 316	$12^{12}$	4.5	4	2	3	20.00 27.32	3.264	24	1.1	4	1	7	35.02	2.011 2.499	24	0.2
2	Ō	2	12.10 12.26	7 221	$12^{12}$	2.6	2	1	6	27.52	3.201	24	1.1	7	Ō	4	36.47	2.463	12	0.6
1	0	2	12.20 13.07	6 774	12	2.0	6	0	0	27.65	3 226	6	1.0	6	1	5	36.83	2.100 2.441	24	0.0
1 2	0	0	13.07 13.79	6 452	6	0.7	6	0	1	27.00 27.06	3.220	12	$^{4.0}$	6	3	0	36.86	2.441 2 430	24 19	0.0
ე ვ	0	1	14.39	6 184	19	1.6	5	0	1	21.90	3.191 3.151	12	0.2	8	0	0	30.00 37.16	2.439	6	0.0
ე ე	1	1 9	14.52	6.065	24	1.0	4	3	- <del>1</del>	20.02	3 1 4 8	24	0.5	7	1	3	37.10	2.420	24	0.2
2	1	2	15.00	0.000 5 702	24 19	0.4 5 0	4 E	ა 1	1	20.00	0.140 9.199	24	0.5	c I	1	ა 4	37.21	2.410	24	0.0
2	0	3	15.50	0.795 E E 00	12	0.0	ວ ຈ	1	3 E	20.49	3.133 2.102	24	1.4	0	2	4	37.30	2.400	24 19	1.1
2	2	0	15.80	0.088 F F 4F	0	0.8	3	2	Э 0	28.11	3.103	24 10	0.9	8	0	1	31.40	2.405	12	0.2
3	0	2	10.98	5.545	12	0.3	5	2	0	28.80	3.100	12	1.3	(	2	0	38.05	2.300	12	0.4
0	0	4	16.34	5.423	2	0.9	0	0	7	28.81	3.099	2	1.2	1	0	5	38.61	2.332	12	0.2
2	2	1	16.38	5.411	12	4.0	6	0	2	28.87	3.092	12	0.2	3	2	8	38.91	2.314	24	0.3
3	1	0	16.51	5.369	12	0.6	5	2	1	29.10	3.068	24	1.1	6	3	3	38.98	2.311	24	0.2
1	0	4	16.98	5.222	12	2.8	4	2	4	29.45	3.033	24	1.7	5	5	0	40.35	2.235	6	0.4
3	1	1	17.01	5.211	24	0.8	3	1	6	29.79	2.999	24	0.2	7	0	6	41.09	2.196	12	0.2
2	1	3	17.24	5.143	24	0.3	1	1	7	29.92	2.986	12	0.3	3	3	8	41.18	2.192	12	0.3
1	1	4	18.18	4.879	12	0.2	5	2	2	29.98	2.980	24	0.3	7	3	0	41.46	2.178	12	0.2
4	0	0	18.33	4.839	6	1.5	6	1	0	30.28	2.952	12	0.9	9	0	0	42.01	2.151	6	0.5
2	0	4	18.76	4.731	12	0.5	2	0	7	30.28	2.951	12	0.7	5	1	8	42.27	2.138	24	0.3
4	0	1	18.79	4.723	12	0.2	6	0	3	30.34	2.946	12	0.3	6	4	3	42.59	2.123	24	0.3
2	2	3	20.08	4.421	12	0.2	5	1	4	30.54	2.927	24	0.7	2	0	10	42.71	2.117	12	0.2
2	1	4	20.38	4.357	24	8.1	6	1	1	30.56	2.925	24	0.4	8	0	5	42.79	2.113	12	0.4
3	<b>2</b>	1	20.41	4.350	24	1.2	4	3	3	30.70	2.913	24	1.4	8	2	1	43.03	2.102	24	0.3
0	0	5	20.47	4.339	2	0.6	2	1	$\overline{7}$	31.35	2.854	24	0.4	9	1	0	44.66	2.029	12	0.2
1	0	5	20.98	4.234	12	0.4	3	<b>2</b>	6	31.92	2.804	24	0.4	7	3	4	44.85	2.021	24	0.6
4	1	0	21.03	4.224	12	12.3	4	<b>2</b>	5	32.00	2.797	24	3.6	7	4	0	45.17	2.007	12	0.6
4	1	1	21.43	4.146	24	1.8	4	4	0	32.03	2.794	6	1.2	6	1	8	45.42	1.997	24	0.5
4	0	3	22.10	4.022	12	1.8	3	0	7	32.04	2.793	12	0.2	1	0	11	46.27	1.962	12	0.2
2	Õ	$\tilde{5}$	22.46	3.959	12	6.3	$\tilde{7}$	Ő	1	32.64	2.743	12	0.2	9	1	3	46.48	1.954	24	0.2
4	1	2	22.59	3.936	$24^{$	2.0	6	1	3	32.77	2.733	$24^{$	0.4	7	3	$\tilde{5}$	46.67	1.946	$24^{$	0.3
2	2	4	22.85	3 892	12	0.3	4	4	2	33 11	2,706	12	0.3	6	2	8	47 67	1 908	24	0.5
5	õ	0	22.00	3 871	6	3.4	5	2	1	33.20	2.100 2.601	24	0.0	2	1	11	47 76	1.000	24	0.0
3	1	4	23.31	3 815	24	2.1	1	ő	8	33.37	2.001 2.685	12	0.2	3	1	11	49.22	1.851	24	0.1
2	1	т Қ	20.01	3 729	24	56	6	ວ ວ	0	22.28	2.000	19	0.0	8	Т	1	40.22	1.8/18	24	0.2
2	3 T	0	20.04	3 795	24 6	3.0	5	 २	2	22 11	2.004	14 24	0.2	0	ე	4 2	49.94	1 8/1	24 94	0.0
ე ვ	ວ ຈ	1	20.09 94 94	3 671	19	0.0	5 6	ວ ົ	∠ 1	2264	2.000	24 94	0.2	9 Q	∠ ∕	0	49.42	1 890	24 19	0.0
0	0	T	24.24	0.071	14	0.4	U	4	T	00.04	2.004	<b>4</b> 4	0.2	0	4	U	49.00	1.049	14	0.4



CHEMICAL COMPOSITION:	$ (\mathrm{NH}_3(\mathrm{CH}_2)_2\mathrm{NH}_3)_{16}  [\mathrm{Mg}_{32}\mathrm{P}_{32}\mathrm{O}_{128}]$
	$\rm NH_2(\rm CH_2)_2\rm NH_2 = ethylenediamine$

REFINED COMPOSITION: |C₃₂N₃₂| [Mg₃₂P₃₂O₁₂₈]

CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 20.9098 Å b = 17.8855 Å c = 14.7913 Å  $\alpha = 90.0^{\circ}$   $\beta = 134.842^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray single crystal refinement, R = 0.1007,  $R_{\rm w} = 0.0994$ 

REFERENCE: K. O. Kongshaug, H. Fjellvåg and K. P. Lillerud, Chemistry of Materials **12** 1095–1099 (2000).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
-1	1	1	7.76	11.398	4	1.2	-7	1	5	33.02	2.713	4	0.8	-8	4	4	39.95	2.256	4	1.0
2	0	0	11.94	7.413	2	73.7	2	4	2	33.64	2.664	4	8.0	-5	3	6	40.02	2.253	4	1.7
-2	0	2	11.97	7.396	2	71.1	-2	4	4	33.67	2.662	4	13.6	-7	3	6	40.06	2.251	4	0.8
2	2	0	15.53	5.707	4	30.3	-6	4	2	33.69	2.660	4	12.5	0	8	0	40.34	2.236	2	12.3
-2	2	2	15.55	5.699	4	28.5	-6	4	4	33.72	2.658	4	6.5	2	6	2	40.69	2.217	4	11.5
0	0	2	16.91	5.244	2	19.5	0	0	4	34.20	2.622	2	13.8	-6	6	2	40.74	2.215	4	0.6
-4	0	2	16.96	5.227	2	21.7	-8	0	4	34.31	2.614	2	11.1	-6	6	4	40.76	2.214	4	10.7
0	2	2	19.62	4.524	4	1.2	0	6	2	34.61	2.591	4	6.9	2	4	3	40.80	2.212	4	0.8
-4	2	2	19.67	4.513	4	1.4	-4	6	2	34.64	2.589	4	6.6	-8	4	5	40.93	2.205	4	0.9
0	4	0	19.86	4.471	2	97.4	3	5	1	35.38	2.537	4	2.1	0	8	1	41.29	2.187	4	1.4
2	2	1	21.39	4.155	4	17.9	-5	5	1	35.41	2.535	4	1.5	-2	8	1	41.29	2.186	4	1.3
-2	2	3	21.42	4.149	4	29.7	-5	5	4	35.45	2.532	4	1.5	3	5	2	41.36	2.183	4	0.6
-4	2	1	21.42	4.149	4	27.2	-1	$\overline{7}$	1	35.66	2.518	4	0.5	-7	5	5	41.47	2.177	4	0.8
-4	2	3	21.45	4.142	4	21.1	0	2	4	35.68	2.516	4	2.6	6	4	0	41.76	2.163	4	2.4
0	4	1	21.60	4.113	4	1.7	2	6	1	35.68	2.516	4	6.5	-6	4	6	41.84	2.159	4	3.5
-2	4	1	21.62	4.111	4	1.2	-4	6	1	35.70	2.515	4	0.9	-9	3	5	41.97	2.153	4	0.5
-5	1	3	22.25	3.996	4	0.5	-2	6	3	35.70	2.515	4	0.9	4	6	1	43.46	2.082	4	0.5
2	4	0	23.23	3.829	4	75.2	-4	6	3	35.72	2.513	4	7.3	4	4	2	43.57	2.077	4	3.5
-2	4	2	23.25	3.826	4	74.9	-8	2	4	35.79	2.509	4	2.6	-4	4	6	43.63	2.074	4	5.3
4	2	0	26.02	3.424	4	100.0	6	0	0	36.36	2.471	2	0.8	-8	4	<b>2</b>	43.63	2.074	4	4.8
-4	2	4	26.08	3.417	4	97.4	-6	0	6	36.45	2.465	2	0.9	-8	4	6	43.70	2.071	4	2.8
0	4	2	26.19	3.402	4	30.5	-2	2	5	36.76	2.445	4	0.5	0	8	2	44.03	2.057	4	3.0
-4	4	2	26.23	3.398	4	32.6	4	4	1	36.86	2.438	4	0.8	-2	0	6	44.05	2.056	2	0.8
1	3	2	26.32	3.387	4	1.2	-4	4	5	36.92	2.435	4	0.7	-4	8	2	44.05	2.056	4	2.9
-1	3	3	26.33	3.385	4	1.7	-6	4	5	36.95	2.433	4	0.9	-10	0	4	44.14	2.052	2	0.8
-5	3	2	26.37	3.380	4	1.3	5	1	1	37.21	2.416	4	1.2	0	2	<b>5</b>	44.36	2.042	4	0.6
-5	3	3	26.38	3.378	4	2.1	-7	1	1	37.25	2.414	4	2.2	6	2	1	44.36	2.042	4	3.8
<b>2</b>	0	2	26.87	3.318	2	83.4	-5	1	6	37.30	2.411	4	1.1	-6	2	$\overline{7}$	44.46	2.038	4	0.6
-2	0	4	26.91	3.313	2	21.1	1	$\overline{7}$	1	37.73	2.384	4	0.7	-8	2	7	44.50	2.036	4	3.1
-6	0	2	26.94	3.309	2	20.6	6	2	0	37.77	2.382	4	1.1	-2	2	6	45.26	2.003	4	4.0
-6	0	4	26.98	3.305	2	82.8	-6	2	6	37.86	2.377	4	1.5	-10	2	4	45.35	2.000	4	4.8
<b>2</b>	4	1	27.56	3.237	4	0.7	4	0	2	38.37	2.346	2	5.6	0	6	4	46.10	1.969	4	0.6
-4	4	3	27.61	3.231	4	0.7	-4	0	6	38.45	2.341	2	3.3	-8	6	4	46.19	1.965	4	0.6
-1	5	<b>2</b>	28.35	3.148	4	0.5	-8	0	<b>2</b>	38.45	2.341	2	3.5	1	5	4	46.71	1.945	4	0.9
2	2	2	28.70	3.111	4	0.5	-8	0	6	38.52	2.337	2	4.6	-9	5	5	46.84	1.940	4	0.8
-2	2	4	28.73	3.107	4	1.1	4	6	0	38.76	2.323	4	7.4	6	6	0	47.81	1.902	4	2.7
-6	2	2	28.76	3.104	4	0.9	-4	6	4	38.80	2.321	4	6.1	-6	6	6	47.88	1.900	4	2.7
3	3	1	28.98	3.081	4	0.7	-1	1	5	39.23	2.297	4	1.1	-10	4	5	48.03	1.894	4	0.5
-3	5	3	30.88	2.895	4	0.6	-9	1	5	39.35	2.290	4	1.9	8	0	0	49.16	1.853	2	14.1
4	2	1	32.36	2.766	4	0.7	-7	5	4	39.55	2.279	4	0.8	-8	0	8	49.28	1.849	2	16.6
2	6	0	32.37	2.766	4	18.4	4	2	2	39.72	2.269	4	4.3	4	6	2	49.44	1.843	4	3.0
-2	6	2	32.38	2.765	4	18.7	0	6	3	39.74	2.268	4	1.2	-4	6	6	49.50	1.841	4	0.6
3	1	2	32.89	2.723	4	0.5	-6	6	3	39.79	2.265	4	1.2	-8	6	2	49.50	1.841	4	1.0
-3	1	5	32.95	2.719	4	1.0	-8	2	6	39.87	2.261	4	4.2	-8	6	6	49.56	1.839	4	3.5
-7	1	2	32.96	2.717	4	1.0	5	3	1	39.94	2.257	4	1.4	-7	1	8	49.95	1.826	4	0.5



CHEMICAL COMPOSITION:	$ (N_2)_3(N_2)_2C_5H_{10}NH $ [Si ₃₄ O ₆₈ ]
	$C_5H_{10}NH = piperidine$

REFINED COMPOSITION:  $|C_{15.4}|$  [Si₃₄O₆₈]

REFERENCE: H. Gerke and H. Gies,

Z. Kristallogr. 166 11–22 (1984).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	Ĩ	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.41	11.936	6	37.1	2	2	2	30.47	2.934	12	0.1		5	1	0	42.15	2.144	12	0.1
0	0	1	7.90	11.190	2	5.9	2	1	3	31.11	2.875	24	2.9		3	1	4	42.30	2.137	24	0.1
1	0	1	10.84	8.164	12	14.3	3	1	2	31.40	2.849	24	4.8		4	1	3	42.32	2.136	24	0.1
1	1	0	12.85	6.891	6	15.3	3	<b>2</b>	0	32.70	2.738	12	1.4		1	1	5	42.47	2.129	12	0.8
2	0	0	14.84	5.968	6	14.4	1	0	4	32.88	2.724	12	2.2		2	0	5	43.17	2.096	12	0.1
1	1	1	15.10	5.868	12	35.6	3	0	3	32.91	2.721	12	0.9		4	2	2	43.24	2.092	24	0.3
0	0	<b>2</b>	15.84	5.595	2	15.3	3	<b>2</b>	1	33.69	2.660	24	0.1		4	0	4	44.39	2.041	12	0.6
2	0	1	16.84	5.266	12	100.0	4	0	2	34.05	2.633	12	1.3		5	0	3	45.09	2.011	12	0.1
1	0	2	17.51	5.066	12	33.5	1	1	4	34.60	2.592	12	0.1		2	1	5	45.23	2.005	24	0.1
2	1	0	19.68	4.512	12	16.9	4	1	1	35.38	2.537	24	2.6		5	1	2	45.30	2.002	24	0.2
1	1	2	20.45	4.344	12	0.4	2	0	4	35.44	2.533	12	4.7		6	0	0	45.60	1.989	6	0.3
2	1	1	21.23	4.184	24	11.5	2	2	3	35.47	2.531	12	1.0		4	3	0	46.26	1.962	12	1.0
2	0	2	21.77	4.082	12	3.0	3	2	2	36.53	2.460	24	9.1		6	0	1	46.35	1.959	12	0.6
3	0	0	22.34	3.979	6	8.0	5	0	0	37.68	2.387	6	6.6		3	2	4	46.40	1.957	24	0.5
3	0	1	23.73	3.749	12	33.1	2	1	4	37.84	2.378	24	1.7		3	3	3	46.42	1.956	12	0.8
0	0	3	23.86	3.730	2	6.2	5	0	1	38.56	2.335	12	2.6		3	0	5	46.56	1.951	12	1.3
1	0	3	25.01	3.560	12	6.0	4	0	3	38.64	2.330	12	1.8		4	3	1	47.01	1.933	24	0.2
2	1	2	25.36	3.512	24	48.3	3	3	0	39.22	2.297	6	4.7		4	2	3	47.08	1.930	24	4.0
2	2	0	25.86	3.446	6	18.8	3	0	4	39.37	2.288	12	8.0		5	2	0	47.57	1.911	12	0.1
3	1	0	26.93	3.311	12	25.1	4	2	0	39.97	2.256	12	0.7		4	1	4	47.71	1.906	24	0.2
2	2	1	27.08	3.293	12	16.2	3	3	1	40.07	2.250	12	0.3		5	2	1	48.31	1.884	24	0.3
1	1	3	27.18	3.280	12	20.7	0	0	5	40.30	2.238	2	0.4		6	0	2	48.57	1.874	12	2.9
3	0	2	27.51	3.243	12	0.2	4	2	1	40.81	2.211	24	0.9		0	0	6	48.83	1.865	2	1.3
3	1	1	28.11	3.175	24	1.2	3	2	3	40.88	2.207	24	4.4		3	1	5	49.14	1.854	24	0.6
2	0	3	28.21	3.163	12	15.7	5	0	2	41.11	2.196	12	1.1		4	3	2	49.20	1.852	24	0.6
4	0	0	29.94	2.984	6	1.6	2	2	4	41.58	2.172	12	1.0								



С	HE	MI	CAL C	СОМРО	SIT	ION:	$ ((Cp^*)_2)  \leq Cp^*)_2 C$	2Co CoC	$F_{0.0'}$ H =	₇₅ OH _{0.} = bis(pe	$_{25})_2 [Sentame$	Si ₆₄ C ethyl	) ₁₂₈ ] cyclop	entadie	nyl	)cob	$\operatorname{alt}(\operatorname{III})$	) hydro	oxide	9
	RE	FII	NED C	COMPO	SIT	ION:	$ \mathrm{Co}_2\mathrm{C}_{35} $	5  [S	Si ₆₄ C	<b>)</b> ₁₂₈ ]										
			CI	RYSTAI	L DA	ATA:	Pc (No a = 14. $\alpha = 90^{\circ}$ X-ray F	. 7) 970 Siet	uni 1 Å veld	que ax b = 8 $\beta = 1$ refiner	is <b>b</b> , ce 3.4761 102.65° nent, <i>l</i>	ell cł Å R _F =	noice 1 c = 30 $\gamma = 9$ = 0.041	$0.0278 \\ 0^{\circ}$ , $R_{\rm wp} =$	Å = 0.2	134				
				REFE	REN	ICE:	T. Wess $J. Am.$	ch	, Ch $em.$	. Baerl Soc. 1	locher, <b>21</b> 624	L. E 2–62	З. МсС 247 (19	busker a 99).	and	Е	J. Crey	ghton,		
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	2	6.03	14.649	2	62.1	1	2	0	21.84	4.070	4	19.6	-3	1	10	33.76	2.655	4	1.1
1	0	0	6.05	14.607	2	65.5	-2	1	6	22.19	4.006	4	3.6	-5	1	6	33.82	2.651	4	1.3
-1	0	2	7.55	11.704	2	77.3	-3	1	4	22.22	4.001	4	2.4	1	2	8	33.91	2.643	4	2.5
0	1	1	10.87	8.142	4	19.3	-1	2	2	22.31	3.985	4	25.4	4	2	2	33.96	2.640	4	2.8
0	1	2	12.06	7.337	4	3.0	-3	0	6	22.79	3.901	2	8.9	-4	0	10	34.81	2.577	2	1.6
1	1	0	12.07	7.331	4	2.4	1	1	6	22.97	3.872	4	16.8	1	3	4	35.06	2.559	4	3.2
0	0	4	12.08	7.325	2	10.1	3	1	2	23.00	3.866	4	14.0	-2	3	4	35.27	2.544	4	4.9
-1	1	1	12.12	7.303	4	12.5	1	2	2	23.03	3.861	4	5.4	5	0	4	35.49	2.530	2	1.7
2	0	0	12.12	7.303	2	9.2	-1	0	8	23.72	3.751	2	1.4	3	2	6	35.71	2.514	4	6.0
-1 0	0	4	12.27	7.211 7.106	2	0.9 4.2	2	0	4	24.04 24.06	3.702	2	1.1	-0 0	0	2 19	30.03 26 14	2.491	2	2.0
-2 1	1	2 1	12.30 12.77	6 035	2 1	4.0 & 1	0 0	0	4	24.00 24.30	3.099	2	2.9 15.4	-2	0	12	36.25	2.400 2.478	2	0.1 1 9
1	1	2	12.77 12.00	6 865	4	0.1 2.1	4	0	0	24.30 24.37	3.002 3.652	2	20.0	-0	3	4	36 58	2.470	2 1	2.6
0	1	2	12.50	6.401	4	2.1 6.1	-2	0	8	24.57	3.002 3.605	2	$\frac{20.0}{14.2}$	-1	2	10	36.68	2.450 2.450	4	2.0
-1	1	3	14.00	6 199	4	5.6	-2	0	4	24.05 24.75	3.598	$\frac{2}{2}$	14.2 12.6	0	$\frac{2}{3}$	6	36.00	2.400 2 446	4	10.9
1	0	4	14.67	6.039	2	22.3	-3	1	6	25.13	3.544	4	17.4	-5	2	2	36.76	2.445	4	1.8
2	Ő	2	14.69	6.030	2	22.5	1	2	4	25.68	3.469	4	2.3	3	3	0	36.78	2.444	4	8.2
-2	Õ	4	15.14	5.852	2	7.9	2	$\overline{2}$	2	25.69	3.467	4	2.4	-3	0	12	37.41	2.404	2	1.2
-2	1	1	15.80	5.609	4	3.7	1	0	8	26.35	3.382	2	12.2	-3	3	4	37.49	2.399	4	2.7
1	1	3	15.89	5.576	4	3.2	4	0	2	26.41	3.374	2	8.9	-6	0	6	37.50	2.399	2	2.0
2	1	1	16.79	5.279	4	2.2	-3	0	8	27.07	3.294	2	1.7	1	3	6	37.96	2.370	4	1.8
-2	1	3	17.06	5.198	4	2.5	-1	2	6	27.66	3.225	4	2.2	3	3	2	37.99	2.369	4	6.3
-1	0	6	17.85	4.970	2	10.6	-3	2	2	27.69	3.221	4	2.0	4	0	8	38.43	2.342	2	2.7
-3	0	2	17.89	4.957	2	11.4	0	2	6	27.87	3.201	4	4.1	6	1	0	38.47	2.340	4	1.0
1	1	4	18.04	4.918	4	5.9	3	2	0	27.91	3.197	4	4.3	-3	2	10	38.58	2.333	4	1.6
2	1	2	18.05	4.914	4	8.3	1	1	8	28.41	3.141	4	4.1	-5	2	6	38.63	2.331	4	1.3
0	0	6	18.17	4.883	2	24.5	4	1	2	28.47	3.135	4	4.3	1	2	10	38.96	2.312	4	1.3
3	0	0	18.22	4.869	2	27.6	3	0	6	28.58	3.123	2	11.7	-0	0	8	39.72	2.269	2	1.7
-1 0	1	5 4	18.31	4.844	4	2.1	-2	2	0	28.80	3.100	4	5.0	ა ე	3	4	40.10	2.245	4	2.0
-2 2	1	4	18.42	4.810	4 9	1.5	-3 1	2	4 10	28.82 20.76	3.098	4	0.8 11 0	-2	0	14	42.23	2.140 2.124	2	4.0
2	0	4	10.94 10.52	4.004	2	1.0	-1	0	10	29.70	3.002 2.003	2	5.0	-1	4	4	42.30	$2.134 \\ 9.110$	2	2.9
-2 -3	0	4	19.55	4.545	2	20.0	-0	1	8	29.00	2.333 2.844	4	0.9 2 3	-6	1	10	42.07	2.113 2 114	2	9.0 1.5
2	1	3	19.50	4.505	4	20.0	2 4	1	4	31.49	2.044 2.841	4	$\frac{2.5}{1.4}$	-0	1	12	44 13	2.114 2.052	4	1.0
-2	1	5	20.16	4.404	4	1.3	-3	0	10	32.02	2.795	2	1.9	-2	3	10	44.38	2.041	4	1.0
1	0	6	20.40	4.353	2	3.5	-5	Õ	6	32.07	2.791	$\overline{2}$	3.5	-4	3	8	44.58	2.033	4	1.3
1	1	5	20.42	4.350	4	1.8	0	2	8	32.31	2.771	4	1.8	7	1	Õ	44.73	2.026	4	1.6
3	0	2	20.44	4.344	2	2.3	0	1	10	32.33	2.769	4	1.5	3	0	12	45.03	2.013	2	3.7
-1	1	6	20.72	4.287	4	6.8	4	<b>2</b>	0	32.36	2.766	4	1.8	6	0	6	45.10	2.010	2	2.3
-3	1	2	20.76	4.279	4	9.3	-4	1	8	32.37	2.766	4	2.8	-5	3	6	45.69	1.985	4	1.7
0	<b>2</b>	0	20.96	4.238	2	100.0	5	1	0	32.42	2.762	4	1.1	1	1	14	46.41	1.956	4	1.9
0	1	6	21.00	4.231	4	32.0	1	0	10	32.46	2.759	2	3.9	7	1	2	46.53	1.952	4	1.6
3	1	0	21.04	4.222	4	32.2	5	0	2	32.54	2.752	2	7.2	-2	2	14	47.61	1.910	4	1.0
0	2	2	21.83	4.071	4	22.4	-2	2	8	32.61	2.746	4	1.3	-7	2	4	47.72	1.906	4	1.6
3	1	1	21.83	4.071	4	1.2	-4	2	4	32.65	2.743	4	1.6	-6	1	12	47.85	1.901	4	1.2



REFINED COMPOSITION:  $|K_2Ca_6Sr_2(H_2O)_{30}|$  [Si_{18.45}Al_{17.55}O₇₂]

CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 13.244 Å b = 13.244 Å c = 15.988 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.122

REFERENCE: B. Rüdinger, E. Tillmanns and G. Hentschel, Mineralogy and Petrology 48 147–152 (1993).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	, k	,	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.71	11.470	6	16.4	3	0	4	32.40	2.763	12	3.1	2	0	)	7 4	2.61	2.122	12	0.1
1	0	1	9.49	9.320	12	42.6	3	1	3	32.79	2.731	24	0.3	4	1		4 4	2.62	2.121	24	4.2
0	0	<b>2</b>	11.07	7.994	2	5.0	4	0	2	33.19	2.699	12	20.1	5	0	)	3 4	2.92	2.107	12	0.3
1	1	0	13.37	6.622	6	0.6	0	0	6	33.63	2.665	2	6.3	5	1		0 4	3.95	2.060	12	0.7
1	0	<b>2</b>	13.50	6.558	12	100.0	3	2	0	34.07	2.631	12	0.6	5	1		1 4	4.33	2.043	24	0.3
2	0	0	15.45	5.735	6	2.5	3	2	1	34.54	2.596	24	1.4	3	1		6 4	4.34	2.043	24	0.4
2	0	1	16.42	5.398	12	13.6	1	0	6	34.56	2.596	12	3.8	3	2	2	5 4	4.59	2.032	24	3.3
1	1	2	17.39	5.100	12	1.0	2	1	5	34.86	2.573	24	27.6	2	1		7 4	4.85	2.021	24	0.5
1	0	3	18.36	4.833	12	10.5	2	2	4	35.20	2.550	12	2.8	4	2	2	3 4	5.16	2.008	24	0.5
2	0	<b>2</b>	19.05	4.660	12	8.1	4	0	3	35.55	2.525	12	0.2	(	0	)	8 4	5.38	1.998	2	7.4
2	1	0	20.49	4.335	12	0.3	4	1	0	35.88	2.503	12	19.1	5	1		2 4	5.47	1.995	24	1.5
2	1	1	21.23	4.184	24	38.6	3	1	4	36.08	2.489	24	17.7	5	0	)	4 4	5.59	1.990	12	4.7
0	0	4	22.24	3.997	2	8.0	4	1	1	36.33	2.473	24	3.8	1	C	)	8 4	6.10	1.969	12	1.1
3	0	0	23.27	3.823	6	78.1	1	1	6	36.34	2.472	12	0.6	3	0	)	7 4	6.30	1.961	12	0.5
2	1	2	23.34	3.811	24	23.9	3	0	5	36.64	2.453	12	5.9	4	. (	)	6 4	6.52	1.952	12	3.2
1	0	4	23.57	3.774	12	59.8	2	0	6	37.21	2.417	12	1.2	3	3	;	4 4	7.03	1.932	12	2.1
3	0	2	25.83	3.449	12	5.1	4	1	2	37.66	2.389	24	1.3	1	1		8 4	7.52	1.913	12	0.2
1	1	4	26.04	3.422	12	0.4	3	2	3	38.14	2.359	24	2.7	6	0	)	0 4	7.57	1.912	6	0.2
2	1	3	26.50	3.363	24	0.5	4	0	4	38.64	2.330	12	2.4	4	- 2	2	4 4	7.73	1.905	24	1.7
2	2	0	26.93	3.311	6	1.1	2	1	6	39.70	2.270	24	7.0	6	0	)	1 4	7.93	1.898	12	0.2
2	0	4	27.19	3.279	12	1.0	3	1	5	39.98	2.255	24	0.9	4	: 3	5	1 4	8.62	1.873	24	1.5
3	1	1	28.61	3.120	24	17.5	1	0	7	40.26	2.240	12	0.4	5	2	2	6 4	8.63	1.872	24	2.6
3	0	3	28.74	3.107	12	1.0	3	3	0	40.88	2.207	6	34.8	6	0	)	2 4	8.99	1.859	12	0.5
1	0	5	28.99	3.080	12	4.5	5	0	2	40.93	2.205	12	0.3	Ę	2	2	0 4	9.64	1.837	12	0.4
2	2	2	29.19	3.059	12	0.4	3	2	4	41.07	2.198	24	4.5	4	: 3	5	2 4	9.68	1.835	24	5.7
3	1	2	30.24	2.956	24	13.4	3	0	6	41.30	2.186	12	10.2	5	1	-	4 4	9.80	1.831	24	0.2
2	1	4	30.42	2.939	24	21.1	4	2	0	41.67	2.168	12	0.6	5	2	2	1 4	9.99	1.825	24	0.6
4	0	0	31.19	2.867	6	0.6	4	2	1	42.07	2.148	24	1.1	4	1		6 4	9.99	1.824	24	13.2
4	0	1	31.70	2.822	12	35.0	4	0	5	42.34	2.135	12	1.3								
2	0	5	32.05	2.793	12	6.5	3	3	2	42.48	2.128	12	1.1								



CHEMICAL COMPOSITION:	$ Na_{8.1}((CH_3)_4N)_{2.2}(H_2O)_{25} $ [Si _{26.6} Al _{9.4} O ₇₂ ] (CH ₃ ) ₄ N = tetramethylammonium
<b>REFINED COMPOSITION:</b>	$ (H_2O)_{39.5} $ [Si _{26.6} Al _{9.4} O ₇₂ ]

CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 13.28 Å b = 13.28 Å c = 15.21 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray powder refinement, R = 0.19

REFERENCE: W. M. Meier and M. Groner,

J. Solid State Chem. **37** 204–218 (1981).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.69	11.501	6	2.5	2	1	4	31.25	2.862	24	35.8	3	3	2	42.54	2.125	12	5.3
1	0	1	9.64	9.174	12	64.2	4	0	1	31.67	2.825	12	56.3	3	0	6	42.76	2.115	12	1.9
0	0	2	11.64	7.605	2	13.0	3	1	3	33.18	2.700	24	0.1	5	0	3	43.19	2.095	12	0.2
1	1	0	13.33	6.640	6	46.9	3	0	4	33.18	2.700	12	1.6	4	1	4	43.19	2.095	24	0.3
1	0	2	13.96	6.344	12	15.4	4	0	2	33.31	2.689	12	21.8	4	2	2	43.29	2.090	24	1.0
2	0	0	15.41	5.750	6	0.7	<b>2</b>	0	5	33.32	2.689	12	0.9	4	0	5	43.30	2.090	12	3.2
<b>2</b>	0	1	16.48	5.379	12	12.9	3	2	0	33.98	2.638	12	0.9	5	1	0	43.83	2.066	12	0.1
1	1	2	17.73	5.002	12	0.6	3	2	1	34.50	2.600	24	8.4	5	1	1	44.25	2.047	24	1.1
1	0	3	19.13	4.639	12	1.9	4	1	0	35.78	2.510	12	12.2	2	0	$\overline{7}$	44.58	2.033	12	0.2
<b>2</b>	0	2	19.35	4.587	12	41.0	4	0	3	35.91	2.501	12	2.6	2	<b>2</b>	6	44.99	2.015	12	0.9
2	1	0	20.43	4.347	12	4.8	<b>2</b>	2	4	35.91	2.501	12	3.5	4	2	3	45.40	1.998	24	0.7
<b>2</b>	1	1	21.26	4.180	24	57.3	3	<b>2</b>	2	36.03	2.493	24	3.2	5	1	2	45.50	1.993	24	4.3
3	0	0	23.20	3.834	6	28.4	2	1	5	36.04	2.492	24	3.3	5	0	4	46.12	1.968	12	3.8
<b>2</b>	0	3	23.39	3.803	12	6.4	1	0	6	36.29	2.476	12	4.8	2	1	7	46.74	1.944	24	0.6
0	0	4	23.39	3.802	2	5.6	3	1	4	36.78	2.444	24	1.7	4	1	5	46.93	1.936	24	0.6
<b>2</b>	1	2	23.57	3.774	24	100.0	4	1	<b>2</b>	37.75	2.383	24	0.7	5	1	3	47.53	1.913	24	0.3
3	0	1	23.94	3.717	12	2.7	1	1	6	37.99	2.368	12	0.6	3	3	4	47.53	1.913	12	2.4
1	0	4	24.66	3.610	12	61.3	3	2	3	38.46	2.341	24	2.0	6	0	1	47.83	1.902	12	0.3
3	0	2	26.03	3.423	12	1.2	5	0	0	39.16	2.300	6	1.0	0	0	8	47.84	1.901	2	9.1
<b>2</b>	2	0	26.85	3.320	6	5.4	4	0	4	39.28	2.293	12	0.2	4	3	0	48.12	1.891	12	0.3
<b>2</b>	1	3	27.02	3.300	24	15.5	5	0	1	39.63	2.274	12	0.1	3	0	7	48.13	1.890	12	0.1
1	1	4	27.02	3.300	12	3.5	4	1	3	40.09	2.249	24	3.5	4	3	1	48.52	1.876	24	0.5
3	1	0	27.97	3.190	12	1.7	3	3	0	40.77	2.213	6	9.4	5	2	0	49.49	1.842	12	4.6
<b>2</b>	0	4	28.13	3.172	12	6.5	5	0	<b>2</b>	40.99	2.202	12	0.5	4	3	2	49.69	1.835	24	1.0
3	1	1	28.59	3.122	24	1.7	3	1	5	41.00	2.201	24	5.7	5	0	5	49.69	1.835	12	2.1
3	0	3	29.20	3.058	12	2.7	2	1	6	41.22	2.190	24	0.5	5	2	1	49.88	1.828	24	1.1
2	2	2	29.35	3.043	12	3.6	4	<b>2</b>	0	41.55	2.173	12	0.3	3	2	6	49.89	1.828	24	4.2
1	0	5	30.39	2.941	12	10.2	4	2	1	41.99	2.152	24	1.9	1	1	8	49.89	1.828	12	1.8
4	0	0	31.10	2.875	6	4.7	1	0	7	42.33	2.135	12	0.1							



CHEMICAL COMPOSITION:  $|Ba_2(H_2O)_7|$  [Si₆Al₄O₂₀] Bathurst, New Brunswick, Canada

REFINED COMPOSITION:  $|Ba_{1.95}(H_2O)_7|$  [Si₆Al₄O₂₀]

CRYSTAL DATA:  $P2_12_12$  (No. 18) a = 9.537 Å b = 9.651 Å c = 6.509 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron single crystal refinement,  $R_{\rm wp} = 0.070$ ,  $R_{\rm F^2} = 0.055$ 

REFERENCE: Å. Kvick and J. V. Smith,

J. Chem. Phys. **79** 2356–2362 (1983).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	13.05	6.784	4	1.4	0	2	2	33.20	2.698	4	0.4	1	0	3	42.74	2.116	4	2.8
0	0	1	13.60	6.509	2	90.4	2	0	<b>2</b>	33.33	2.688	4	0.6	1	1	3	43.81	2.067	8	16.3
0	1	1	16.43	5.396	4	34.9	2	3	0	33.60	2.667	4	5.2	2	3	2	43.89	2.063	8	8.0
1	0	1	16.49	5.376	4	46.3	3	2	0	33.76	2.655	4	5.9	3	<b>2</b>	2	44.02	2.057	8	7.6
0	2	0	18.39	4.826	2	53.7	1	2	<b>2</b>	34.55	2.596	8	41.2	2	4	1	44.32	2.044	8	6.9
<b>2</b>	0	0	18.61	4.768	2	43.7	2	1	2	34.64	2.590	8	49.6	4	2	1	44.62	2.031	8	6.9
1	1	1	18.89	4.697	8	86.1	2	3	1	36.41	2.468	8	6.0	0	<b>2</b>	3	45.86	1.979	4	3.7
1	2	0	20.63	4.306	4	9.0	3	2	1	36.55	2.458	8	7.8	2	0	3	45.95	1.975	4	5.3
2	1	0	20.78	4.275	4	4.0	0	4	0	37.27	2.413	2	1.5	1	2	3	46.89	1.938	8	8.4
0	2	1	22.94	3.876	4	5.6	4	0	0	37.73	2.384	2	1.4	2	1	3	46.96	1.935	8	8.4
2	0	1	23.12	3.847	4	1.6	2	2	2	38.33	2.348	8	2.9	4	0	2	47.26	1.923	4	0.2
1	2	1	24.79	3.591	8	100.0	0	3	2	39.38	2.288	4	35.2	3	4	0	47.30	1.922	4	1.4
2	1	1	24.92	3.573	8	86.7	3	0	2	39.63	2.274	4	29.6	4	3	0	47.46	1.916	4	2.1
2	<b>2</b>	0	26.27	3.392	4	20.6	0	4	1	39.85	2.262	4	3.1	1	4	2	47.89	1.899	8	7.4
0	0	2	27.40	3.254	2	11.1	3	3	0	39.87	2.261	4	34.2	1	5	0	48.09	1.892	4	2.0
0	1	<b>2</b>	28.95	3.084	4	15.0	4	0	1	40.28	2.239	4	2.5	4	1	2	48.25	1.886	8	8.5
1	0	2	28.99	3.080	4	13.3	1	3	2	40.55	2.225	8	1.7	5	1	0	48.66	1.871	4	1.9
1	3	0	29.30	3.048	4	29.3	3	1	2	40.76	2.213	8	1.9	3	3	2	49.06	1.857	8	2.0
3	1	0	29.58	3.019	4	30.2	1	4	1	41.00	2.201	8	20.9	0	5	1	49.24	1.851	4	5.7
2	2	1	29.70	3.008	8	20.8	4	1	1	41.40	2.181	8	18.0	3	4	1	49.45	1.843	8	10.4
1	1	2	30.46	2.934	8	35.5	0	0	3	41.62	2.170	2	4.7	4	3	1	49.61	1.838	8	11.3
0	3	1	31.01	2.884	4	1.2	2	4	0	41.96	2.153	4	12.6	5	0	1	49.82	1.830	4	5.8
3	0	1	31.31	2.857	4	1.5	4	2	0	42.28	2.138	4	13.8	2	2	3	49.89	1.828	8	18.1
1	3	1	32.43	2.761	8	84.4	3	3	1	42.31	2.136	8	12.3							
3	1	1	32.69	2.739	8	91.2	0	1	3	42.71	2.117	4	3.0							



### CHEMICAL COMPOSITION: |Na_{8.3}(H₂O)₆| [Si₇₆Al₂₀O₁₉₂]

REFINED COMPOSITION:  $|Na_{8.3}(H_2O)_6|$  [Si_{76.03}Al_{19.97}O₁₉₂]

CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 17.3864 Å b = 17.3864 Å c = 28.3459 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.181$ ,  $R_{wp} = 0.206$ ,  $R_{\rm F} = 0.074$ 

**REFERENCE**:

: Ch. Baerlocher, L. B. McCusker and R. Chiappetta, *Microporous Materials* **2** 269–280 (1994).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	5.87	15.057	6	100.0	4	0	2	24.47	3.638	12	0.4	5	1	2	33.74	2.656	24	0.2
0	0	2	6.24	14.173	2	41.5	2	1	6	24.49	3.635	24	0.1	4	2	4	33.95	2.641	24	1.2
1	0	1	6.65	13.297	12	29.6	3	1	4	24.75	3.598	24	2.1	3	2	7	34.12	2.628	24	0.6
1	0	2	8.57	10.320	12	0.2	2	0	7	24.97	3.566	12	0.3	5	1	3	34.50	2.600	24	1.9
1	1	0	10.18	8.693	6	9.9	3	2	0	25.79	3.454	12	0.7	4	1	7	35.17	2.551	24	0.2
1	0	3	11.05	8.003	12	12.7	1	0	8	25.83	3.449	12	0.7	1	0	11	35.34	2.540	12	0.4
<b>2</b>	0	0	11.75	7.529	6	2.7	3	0	6	25.90	3.440	12	0.2	6	0	0	35.78	2.510	6	0.1
1	1	2	11.94	7.410	12	6.1	3	1	5	26.51	3.362	24	1.4	6	0	3	37.06	2.425	12	0.2
<b>2</b>	0	1	12.16	7.276	12	1.5	3	2	2	26.56	3.356	24	0.3	6	0	4	38.04	2.366	12	0.4
0	0	4	12.49	7.086	2	0.3	4	1	0	27.14	3.286	12	1.7	0	0	12	38.10	2.362	2	0.4
2	0	2	13.32	6.649	12	0.7	1	1	8	27.18	3.281	12	2.1	6	0	5	39.26	2.295	12	0.7
1	0	4	13.81	6.412	12	2.1	3	2	3	27.49	3.244	24	0.9	4	2	8	40.66	2.219	24	0.1
2	0	3	15.05	5.888	12	0.6	3	0	7	28.32	3.152	12	0.3	4	4	0	41.55	2.173	6	0.5
2	1	0	15.57	5.691	12	7.0	3	1	6	28.53	3.129	24	0.2	5	1	8	42.03	2.150	24	0.3
2	1	1	15.88	5.580	24	3.8	3	2	4	28.75	3.105	24	1.6	6	1	5	42.47	2.128	24	0.1
1	0	5	16.71	5.306	12	1.2	5	0	0	29.66	3.011	6	0.1	7	0	2	42.51	2.127	12	0.1
2	1	2	16.79	5.281	24	0.8	5	0	1	29.84	2.995	12	0.1	4	0	11	42.51	2.126	12	0.6
2	0	4	17.18	5.160	12	6.1	5	0	2	30.34	2.946	12	0.2	4	3	7	42.82	2.112	24	0.4
3	0	1	17.95	4.942	12	0.1	2	0	9	30.77	2.906	12	0.3	5	3	3	43.13	2.097	24	0.1
2	1	3	18.20	4.875	24	2.5	3	3	0	30.86	2.898	6	1.3	2	0	13	43.19	2.094	12	0.1
3	0	2	18.76	4.731	12	1.4	3	0	8	30.89	2.895	12	1.4	6	2	2	43.82	2.066	24	0.3
0	0	6	18.78	4.724	2	0.2	5	0	3	31.17	2.869	12	3.4	6	0	8	44.23	2.048	12	0.5
2	0	5	19.60	4.529	12	0.4	3	3	2	31.51	2.839	12	0.2	6	2	3	44.43	2.039	24	0.3
1	0	6	19.69	4.508	12	1.0	0	0	10	31.56	2.835	2	1.6	2	0	14	46.44	1.955	12	0.2
2	1	4	20.01	4.437	24	0.7	4	2	1	31.60	2.831	24	0.2	3	1	13	47.01	1.933	24	0.2
3	0	3	20.03	4.432	12	0.1	4	2	2	32.08	2.790	24	0.5	7	1	4	47.35	1.920	24	0.2
2	2	0	20.43	4.347	6	3.8	3	2	6	32.10	2.788	24	0.3	6	3	0	47.95	1.897	12	0.3
1	1	6	21.41	4.151	12	0.3	1	0	10	32.13	2.786	12	0.3	5	4	3	48.17	1.889	24	0.2
3	1	1	21.51	4.131	24	0.2	5	0	4	32.30	2.772	12	1.5	1	0	15	48.55	1.875	12	0.1
2	1	5	22.13	4.016	24	1.0	2	2	8	32.60	2.746	12	1.0	5	1	11	48.82	1.866	24	0.3
2	0	6	22.21	4.002	12	1.5	4	2	3	32.87	2.725	24	0.3	5	4	4	48.96	1.860	24	0.1
1	0	7	22.74	3.910	12	2.0	5	1	0	33.13	2.704	12	0.3	5	2	10	49.64	1.837	24	0.1
3	1	3	23.29	3.820	24	4.4	3	1	8	33.16	2.702	24	0.6	7	2	1	49.66	1.836	24	0.1
4	0	0	23.63	3.764	6	2.1	1	1	10	33.24	2.695	12	0.2							
1	0	1	22.85	3 739	12	0.7	5	0	5	33 70	2650	12	07							



CHEMICAL COMPOSITION:	$ Na_{20}(C_{12}H_{24}O_6)_4(H_2O)_{22.6} $ [Si ₇₆ Al ₂₀ O ₁₉₂ ]
	$C_{12}H_{24}O_6 = 1,4,7,10,13,16$ -hexaoxacyclooctadecane (18-crown-6 ether)

REFINED COMPOSITION:  $|Na_{20}C_{60}O_{24}(H_2O)_{22.6}|$  [Si_{76.03}Al_{19.97}O₁₉₂]

CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 17.3741 Å b = 17.3741 Å c = 28.3646 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.037$ ,  $R_{wp} = 0.186$ ,  $R_{F} = 0.068$ 

REFERENCE: Ch. Baerlocher, L. B. McCusker and R. Chiappetta, Microporous Materials 2 269–280 (1994).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	5.87	15.046	6	100.0	4	1	0	27.16	3.283	12	3.3	4	2	$\overline{7}$	38.68	2.328	24	0.2
0	0	2	6.23	14.182	2	41.3	1	1	8	27.16	3.283	12	2.4	6	1	0	39.26	2.295	12	0.1
1	0	1	6.65	13.292	12	9.8	3	2	3	27.51	3.243	24	0.9	5	0	8	39.27	2.294	12	0.2
1	0	2	8.57	10.320	12	3.4	4	1	2	27.89	3.199	24	0.4	6	0	5	39.28	2.294	12	1.3
1	1	0	10.18	8.687	6	1.1	3	2	4	28.76	3.104	24	3.0	3	0	11	39.29	2.293	12	0.2
1	0	3	11.05	8.006	12	4.0	2	1	8	29.69	3.009	24	0.8	4	1	9	39.64	2.274	24	0.2
2	0	0	11.76	7.523	6	4.0	5	0	2	30.36	2.944	12	0.5	4	3	5	39.75	2.267	24	0.1
1	1	<b>2</b>	11.95	7.408	12	7.3	2	0	9	30.76	2.907	12	0.7	6	1	3	40.45	2.230	24	0.2
2	0	1	12.17	7.272	12	1.8	3	3	0	30.88	2.896	6	1.4	4	<b>2</b>	8	40.67	2.218	24	0.2
0	0	4	12.48	7.091	2	0.1	3	0	8	30.88	2.895	12	2.1	5	2	5	40.68	2.218	24	0.1
<b>2</b>	0	<b>2</b>	13.32	6.646	12	0.5	5	0	3	31.19	2.868	12	5.0	3	2	10	41.19	2.192	24	0.2
<b>2</b>	0	3	15.05	5.887	12	0.7	3	3	2	31.53	2.837	12	0.5	6	1	4	41.36	2.183	24	0.2
2	1	0	15.58	5.687	12	8.1	0	0	10	31.54	2.836	2	1.6	4	4	0	41.58	2.172	6	0.9
<b>2</b>	1	1	15.89	5.576	24	2.4	4	<b>2</b>	1	31.62	2.829	24	1.0	1	0	13	41.83	2.159	12	0.1
1	1	4	16.13	5.493	12	0.2	4	2	2	32.10	2.788	24	0.6	5	1	8	42.04	2.149	24	0.5
1	0	5	16.70	5.308	12	5.1	3	2	6	32.11	2.788	24	0.6	6	1	5	42.50	2.127	24	0.4
2	1	<b>2</b>	16.80	5.278	24	0.8	1	0	10	32.11	2.787	12	1.1	4	0	11	42.50	2.127	12	1.2
2	0	4	17.18	5.160	12	8.2	5	0	4	32.32	2.770	12	2.9	7	0	2	42.54	2.125	12	0.2
2	1	3	18.20	4.873	24	1.7	2	1	9	32.48	2.757	24	0.2	4	3	$\overline{7}$	42.83	2.111	24	0.8
3	0	2	18.77	4.728	12	4.5	2	2	8	32.60	2.747	12	2.2	5	3	3	43.16	2.096	24	0.2
0	0	6	18.77	4.727	2	0.1	4	2	3	32.89	2.723	24	0.5	7	0	3	43.16	2.096	12	0.1
2	0	5	19.60	4.530	12	0.9	5	1	0	33.15	2.702	12	0.6	2	0	13	43.17	2.096	12	0.3
1	0	6	19.68	4.510	12	2.6	3	1	8	33.15	2.702	24	0.3	4	4	4	43.58	2.077	12	0.2
2	1	4	20.01	4.437	24	1.9	1	1	10	33.23	2.696	12	1.1	2	2	12	43.59	2.076	12	0.1
3	0	3	20.04	4.431	12	0.2	3	3	4	33.42	2.681	12	0.2	3	2	11	43.82	2.066	24	0.1
2	2	0	20.45	4.344	6	7.6	3	0	9	33.58	2.669	12	0.2	6	2	2	43.86	2.064	24	0.5
2	2	2	21.39	4.153	12	0.8	5	0	5	33.71	2.658	12	1.9	6	0	8	44.24	2.047	12	0.4
1	1	6	21.40	4.152	12	0.2	5	1	2	33.76	2.655	24	0.4	6	2	3	44.46	2.038	24	0.3
3	1	1	21.52	4.129	24	0.8	4	2	4	33.97	2.639	24	1.0	4	3	8	44.67	2.029	24	0.3
2	1	5	22.13	4.016	24	2.0	3	2	7	34.12	2.628	24	0.9	4	1	11	44.68	2.028	24	0.3
2	0	6	22.21	4.003	12	2.9	5	1	3	34.52	2.598	24	2.0	5	1	10	46.41	1.957	24	0.1
1	0	7	22.73	3.913	12	4.5	4	0	8	34.77	2.580	12	0.3	2	0	14	46.41	1.956	12	0.3
3	1	3	23.30	3.818	24	6.5	4	1	7	35.18	2.551	24	0.7	3	1	13	46.99	1.934	24	0.2
4	0	0	23.65	3.762	6	3.8	1	0	11	35.31	2.542	12	0.6	7	1	4	47.38	1.919	24	0.3
3	0	5	23.68	3.758	12	0.3	2	1	10	35.36	2.538	24	0.3	4	1	12	47.39	1.918	24	0.1
4	0	1	23.86	3.729	12	1.3	5	1	4	35.55	2.525	24	0.3	7	0	7	47.91	1.899	12	0.2
4	0	2	24.48	3.636	12	0.7	6	0	0	35.81	2.508	6	0.7	6	3	0	47.99	1.896	12	0.4
3	1	4	24.75	3.597	24	5.5	6	0	2	36.38	2.469	12	0.3	5	4	3	48.21	1.888	24	0.2
3	2	0	25.81	3.452	12	0.6	5	1	5	36.84	2.440	24	0.3	7	1	5	48.41	1.880	24	0.1
1	0	8	25.82	3.451	12	1.3	6	0	3	37.09	2.424	12	0.2	1	0	15	48.52	1.876	12	0.1
3	0	6	25.90	3.440	12	0.2	5	2	0	37.32	2.409	12	0.3	5	1	11	48.81	1.866	24	0.3
3	2	1	26.00	3.427	24	0.1	4	3	3	37.58	2.393	24	0.3	4	3	10	48.85	1.864	24	0.2
3	1	5	26.52	3.362	24	1.5	6	0	4	38.06	2.364	12	0.5	5	0	12	49.00	1.859	12	0.1
3	2	2	26.58	3.354	24	0.6	0	0	12	38.07	2.364	2	0.8	4	4	8	49.20	1.852	12	0.1
4	0	4	26.83	3.323	12	0.2	1	0	12	38.55	2.335	12	0.4	7	0	8	49.59	1.838	12	0.2



CHEMICAL COMPOSITION:	$\begin{array}{l}  \mathrm{Na}_{1.06}\mathrm{K}_{0.1}\mathrm{Ca}_{2.59}(\mathrm{H}_{2}\mathrm{O})_{15.74}   [\mathrm{Si}_{17.71}\mathrm{Al}_{6.29}\mathrm{O}_{48}] \\ \mathrm{Teigarhorn,  Iceland} \end{array}$
REFINED COMPOSITION:	$ \mathrm{Na}_{1.04}\mathrm{Ca}_{2.56}(\mathrm{H}_{2}\mathrm{O})_{15.75}  \; [\mathrm{Si}_{17.76}\mathrm{Al}_{6.24}\mathrm{O}_{48}]$
CRYSTAL DATA:	$\begin{array}{ll} C12/m1~(\mbox{No. 12})~\mbox{unique axis } {\bf b},~\mbox{cell choice 1}\\ a=9.08~\mbox{\AA} & b=17.74~\mbox{\AA} & c=10.25~\mbox{\AA}\\ \alpha=90^\circ & \beta=124.54^\circ & \gamma=90^\circ\\ \mbox{X-ray single crystal refinement},~R_{\rm w}=0.16 \end{array}$

REFERENCE: A. J. Perrotta,

Mineral. Mag. 36 480–490 (1967).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	2	0	9.97	8.870	2	53.4	0	6	1	32.07	2.791	4	0.7	2	2	2	41.60	2.171	4	2.6
0	0	1	10.48	8.443	2	17.1	-3	1	3	32.11	2.788	4	15.2	0	0	4	42.84	2.111	2	0.2
-1	1	1	11.58	7.642	4	4.6	1	5	1	32.19	2.781	4	0.6	1	3	3	43.06	2.101	4	4.0
1	1	0	12.84	6.892	4	70.0	2	2	1	32.80	2.730	4	0.2	-4	0	1	43.22	2.093	2	3.2
0	2	1	14.48	6.116	4	1.5	-3	3	<b>2</b>	33.26	2.693	4	12.6	2	6	1	43.97	2.059	4	0.7
-1	1	<b>2</b>	18.02	4.924	4	73.6	1	3	<b>2</b>	33.34	2.687	4	15.2	-4	2	4	43.97	2.059	4	3.0
-1	3	1	18.30	4.848	4	12.7	0	2	3	33.40	2.683	4	6.3	0	2	4	44.10	2.053	4	3.5
1	3	0	19.13	4.639	4	9.3	-2	4	3	33.63	2.665	4	4.0	3	5	0	44.41	2.040	4	0.6
-2	0	1	19.78	4.489	2	15.4	-2	0	4	35.02	2.562	2	12.6	0	6	3	44.44	2.039	4	0.8
0	4	0	20.02	4.435	2	4.5	-3	3	3	35.23	2.547	4	5.4	-4	2	1	44.47	2.037	4	0.6
1	1	1	20.45	4.342	4	37.7	3	1	0	36.39	2.469	4	1.9	-2	0	5	44.63	2.030	<b>2</b>	3.3
-2	0	<b>2</b>	20.98	4.234	2	2.4	-2	2	4	36.50	2.462	4	7.8	-3	1	5	44.90	2.019	4	4.2
0	0	<b>2</b>	21.04	4.222	2	0.3	-1	7	1	37.03	2.428	4	0.6	-1	$\overline{7}$	3	44.95	2.016	4	1.0
-2	2	1	22.19	4.006	4	12.6	-1	5	3	37.03	2.428	4	11.8	-3	5	4	45.27	2.003	4	1.4
0	4	1	22.65	3.926	4	13.3	-2	6	2	37.09	2.424	4	8.0	-4	4	2	45.28	2.003	4	8.0
-1	3	<b>2</b>	22.96	3.873	4	100.0	0	6	2	37.12	2.422	4	0.5	-1	5	4	45.34	2.000	4	0.7
-2	<b>2</b>	<b>2</b>	23.28	3.821	4	11.0	2	4	1	37.32	2.409	4	2.8	2	4	2	45.37	1.999	4	3.8
0	<b>2</b>	<b>2</b>	23.34	3.812	4	32.9	-3	1	4	37.41	2.404	4	1.5	-2	8	1	45.63	1.988	4	0.4
<b>2</b>	0	0	23.79	3.740	2	14.8	1	7	0	37.47	2.400	4	0.3	-2	2	5	45.85	1.979	4	0.5
1	3	1	24.94	3.570	4	1.3	-1	1	4	37.48	2.400	4	1.5	3	3	1	46.05	1.971	4	1.3
2	<b>2</b>	0	25.85	3.446	4	83.0	0	4	3	37.86	2.376	4	0.3	-2	8	2	46.21	1.964	4	1.4
-2	0	3	26.75	3.333	2	10.7	2	6	0	38.83	2.319	4	4.4	0	8	2	46.24	1.963	4	3.5
-1	5	1	27.25	3.272	4	16.9	-3	5	<b>2</b>	39.13	2.302	4	0.7	-3	$\overline{7}$	2	46.76	1.943	4	3.4
-1	1	3	27.26	3.272	4	11.5	3	3	0	39.21	2.297	4	0.2	1	$\overline{7}$	2	46.82	1.940	4	5.3
1	5	0	27.83	3.206	4	44.5	-1	7	<b>2</b>	39.67	2.272	4	0.2	-2	6	4	46.92	1.936	4	2.0
-2	4	1	28.29	3.155	4	0.3	-4	0	3	39.99	2.254	2	3.9	-3	3	5	47.30	1.922	4	0.1
-2	2	3	28.61	3.120	4	0.2	-3	3	4	40.17	2.245	4	1.6	-4	4	4	47.60	1.910	4	3.7
-2	4	2	29.16	3.062	4	6.6	-4	0	<b>2</b>	40.17	2.245	2	0.2	2	8	0	47.68	1.907	4	3.3
0	4	<b>2</b>	29.20	3.058	4	0.7	-1	3	4	40.24	2.241	4	1.2	1	9	0	47.71	1.906	4	2.1
-3	1	<b>2</b>	29.96	2.982	4	9.4	-3	5	1	40.38	2.233	4	0.7	0	4	4	47.72	1.906	4	3.8
1	1	<b>2</b>	30.05	2.974	4	2.9	1	1	3	40.46	2.230	4	6.7	-3	$\overline{7}$	1	47.85	1.901	4	0.5
0	6	0	30.23	2.957	2	2.1	-2	4	4	40.66	2.219	4	9.7	-4	0	5	47.93	1.898	2	0.3
-1	5	2	30.65	2.917	4	50.1	0	8	0	40.69	2.217	2	0.3	-3	$\overline{7}$	3	48.26	1.886	4	0.1
-1	3	3	30.83	2.901	4	2.1	-2	6	3	40.80	2.212	4	4.5	4	0	0	48.70	1.870	2	16.8
2	0	1	31.17	2.870	2	0.7	-3	5	3	40.85	2.209	4	1.0	-4	2	5	49.08	1.856	4	0.8
<b>2</b>	4	0	31.29	2.859	4	42.8	1	7	1	40.92	2.206	4	0.6	-2	4	5	49.37	1.846	4	0.4
-3	1	1	31.53	2.837	4	3.6	-4	2	3	41.32	2.185	4	2.9	-1	9	2	49.55	1.840	4	3.4
0	0	3	31.79	2.814	<b>2</b>	1.1	-4	<b>2</b>	<b>2</b>	41.50	2.176	4	0.2							



CHEMICAL COMPOSITION:	$ K_{2.02}Na_{1.94}Ca_{1.25}Mg_{0.63}(H_2O)_{10.4} $ [Si _{26.16} Al _{9.31} Fe _{0.53} O ₇₂ ] Wenatchee, Washington, U.S.A.
REFINED COMPOSITION:	$ K_2Na_{1.86}Ca_{1.3}Mg_{0.7}(H_2O)_{6.12} $ [Si ₂₇ Al ₉ O ₇₂ ]
CRYSTAL DATA:	$\begin{array}{lll} P6_{3}/mmc \; (\text{No. 194}) \\ a = 13.27 \; \text{\AA} & b = 13.27 \; \text{\AA} & c = 15.05 \; \text{\AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 120^{\circ} \\ \text{X-ray single crystal refinement}, \; R = 0.15 \end{array}$
REFERENCE:	J. A. Gard and J. M. Tait, in <i>Proceedings of the Third International Conference on Molecular</i> .

in Proceedings of the Third International Conference on Molecular Sieves;
Recent Progress Reports, Zurich,
Ed. by J. B. Uytterhoeven (Leuven University Press) 94–99 (1973).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.69	11.492	6	100.0	3	1	2	30.46	2.935	24	0.9	5	0	<b>2</b>	41.06	2.198	12	0.4
1	0	1	9.68	9.134	12	23.6	1	0	5	30.70	2.912	12	0.5	3	3	<b>2</b>	42.61	2.122	12	1.5
0	0	<b>2</b>	11.76	7.525	2	13.3	4	0	0	31.13	2.873	6	8.2	1	0	7	42.79	2.113	12	0.2
1	1	0	13.34	6.635	6	24.9	2	1	4	31.46	2.844	24	18.0	3	0	6	43.11	2.098	12	0.9
1	0	2	14.07	6.295	12	6.5	4	0	1	31.71	2.822	12	8.1	5	0	3	43.30	2.090	12	0.3
2	0	0	15.42	5.746	6	4.6	3	1	3	33.30	2.690	24	0.8	4	<b>2</b>	<b>2</b>	43.36	2.087	24	1.1
2	0	1	16.51	5.368	12	4.3	4	0	2	33.38	2.684	12	4.2	5	1	1	44.29	2.045	24	0.3
1	0	3	19.30	4.598	12	5.3	2	0	5	33.61	2.666	12	0.9	5	1	2	45.57	1.991	24	1.1
2	0	<b>2</b>	19.44	4.567	12	7.9	3	<b>2</b>	1	34.54	2.597	24	0.2	3	1	6	46.04	1.971	24	0.2
2	1	0	20.45	4.344	12	11.2	0	0	6	35.80	2.508	2	0.9	5	0	4	46.29	1.961	12	0.7
2	1	1	21.29	4.173	24	7.1	4	1	0	35.81	2.508	12	5.1	2	1	7	47.17	1.927	24	0.2
3	0	0	23.22	3.831	6	9.0	4	0	3	36.02	2.493	12	0.3	4	1	5	47.17	1.927	24	0.4
2	0	3	23.54	3.779	12	1.4	2	2	4	36.09	2.488	12	0.8	5	1	3	47.64	1.909	24	0.2
0	0	4	23.65	3.762	2	2.2	3	<b>2</b>	2	36.10	2.488	24	2.4	3	3	4	47.70	1.907	12	0.2
2	1	<b>2</b>	23.65	3.762	24	15.1	<b>2</b>	1	5	36.31	2.474	24	1.3	4	0	6	48.16	1.890	12	0.9
1	0	4	24.90	3.576	12	13.3	4	1	1	36.32	2.474	24	0.2	4	3	0	48.16	1.889	12	0.1
3	0	2	26.10	3.414	12	0.6	1	1	6	38.36	2.346	12	0.3	0	0	8	48.38	1.881	2	2.9
2	<b>2</b>	0	26.87	3.317	6	4.0	<b>2</b>	0	6	39.19	2.299	12	0.1	4	<b>2</b>	4	48.39	1.881	24	0.2
2	1	3	27.15	3.284	24	3.7	5	0	0	39.19	2.298	6	0.3	4	3	1	48.57	1.875	24	0.3
1	1	4	27.25	3.273	12	1.0	4	0	4	39.46	2.283	12	0.3	1	0	8	49.07	1.857	12	0.9
3	1	0	27.99	3.187	12	0.8	5	0	1	39.67	2.272	12	0.4	5	2	0	49.53	1.840	12	1.4
2	0	4	28.35	3.148	12	6.5	4	1	3	40.20	2.243	24	0.4	4	3	2	49.76	1.832	24	0.2
3	1	1	28.63	3.118	24	0.7	3	3	0	40.80	2.212	6	1.7	5	0	5	49.92	1.827	12	0.6



CHEMICAL COMPOSITION:	$ (C_5H_{10}NH)_4(H_2O)_4 $ [Al ₁₈ P ₁₈ O ₇₂ ]
	$C_5H_{10}NH = piperidine$

REFINED COMPOSITION:  $|C_{24}O_{4.14}|$  [Al₁₈P₁₈O₇₂]

CRYSTAL DATA:  $P6_3/m$  (No. 176) a = 13.2371 Å b = 13.2371 Å c = 14.7708 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement,  $R_w = 0.081$ 

REFERENCE: J. J. Pluth, J. V. Smith and J. M. Bennett, Acta Cryst. C42 283–286 (1986).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.71	11.464	6	100.0	1	0	5	31.27	2.861	12	1.1	2	4	1	42.16	2.143	12	0.2
1	0	1	9.77	9.056	12	44.5	4	0	1	31.81	2.813	12	14.1	3	2	4	42.18	2.142	12	0.2
0	0	2	11.98	7.385	2	1.7	1	2	4	31.84	2.810	12	4.8	1	2	6	42.22	2.140	12	0.3
1	1	0	13.38	6.619	6	44.5	2	1	4	31.84	2.810	12	7.0	2	1	6	42.22	2.140	12	0.2
1	0	2	14.27	6.209	12	8.8	2	2	3	32.60	2.747	12	0.3	3	3	2	42.78	2.114	12	0.2
1	1	1	14.67	6.040	12	0.5	1	1	5	33.21	2.698	12	0.1	4	2	2	43.53	2.079	12	0.4
2	0	0	15.46	5.732	6	19.4	4	0	2	33.54	2.672	12	6.6	5	0	3	43.54	2.078	12	0.9
2	0	1	16.59	5.344	12	8.1	3	1	3	33.55	2.671	12	1.1	1	0	7	43.61	2.075	12	0.6
1	1	2	18.00	4.929	12	6.6	3	0	4	33.75	2.655	12	0.2	3	0	6	43.74	2.070	12	3.4
2	0	2	19.60	4.528	12	12.4	3	2	0	34.09	2.630	6	0.1	4	0	5	44.02	2.057	12	0.2
1	0	3	19.62	4.524	12	15.2	2	0	5	34.14	2.626	12	0.9	1	5	1	44.42	2.039	12	0.4
1	2	0	20.50	4.333	6	14.6	3	2	1	34.64	2.589	12	0.3	3	3	3	45.03	2.013	12	0.1
2	1	0	20.50	4.333	6	9.6	4	1	0	35.90	2.502	6	2.2	1	1	7	45.10	2.010	12	0.1
2	1	1	21.37	4.158	12	4.8	1	4	0	35.90	2.502	6	0.9	5	1	2	45.75	1.983	12	1.0
1	2	1	21.37	4.158	12	9.8	2	3	2	36.26	2.478	12	0.5	1	5	2	45.75	1.983	12	0.5
1	1	3	22.51	3.950	12	4.3	3	2	2	36.26	2.478	12	0.2	2	2	6	45.95	1.975	12	0.1
3	0	0	23.28	3.821	6	7.5	4	0	3	36.27	2.477	12	0.2	2	3	5	46.21	1.964	12	0.6
2	1	2	23.81	3.737	12	6.5	1	4	1	36.43	2.466	12	0.2	5	0	4	46.63	1.948	12	1.7
1	2	2	23.81	3.737	12	3.7	0	0	6	36.50	2.462	2	1.8	6	0	0	47.59	1.911	6	0.1
2	0	3	23.82	3.735	12	1.6	1	2	5	36.82	2.441	12	1.2	4	1	5	47.63	1.909	12	0.3
0	0	4	24.10	3.693	2	1.4	1	3	4	37.32	2.409	12	0.1	1	4	5	47.63	1.909	12	0.1
1	0	4	25.34	3.515	12	26.6	3	1	4	37.32	2.409	12	0.3	5	1	3	47.89	1.900	12	0.2
3	0	2	26.26	3.394	12	0.1	1	0	0	37.30	2.407	12	0.6	2	1	(	47.95	1.897	12	0.2
2	2	0	26.94	3.309	6 10	14.7	4	1	2	37.98	2.369	12	0.4	1	2	1	47.95	1.897	12	0.3
2	1	3 1	27.42	3.253	12	0.8	ა ი	0	5 9	38.52	2.337	12	0.1	ა კ	3	4	48.04	1.894	12	0.1
1	1	1	27.62	3.229	12	0.4	2	3	3	38.82	2.320	12	0.1	3	4	1	48.71	1.809	12	0.2
1	1	4	27.00	3.223 2.170	12	1.9	Э г	0	1	39.30	2.293	0	0.4	4	3		48.71	1.809	12	0.3
3	1	0	28.06	3.179	6 C	0.4	5	0	1	39.79	2.266	12	1.0	4	0	0	48.70	1.807	12	0.3
1	ろ 1	1	28.00	3.179	0	0.0	4	0	4	39.81	2.204	12	1.1	0	0 E	8	49.30	1.840	2	2.9
ა ი	1	1	28.12	3.108 2.104	12	1.0	1	4	ა ი	40.44	2.230	12	0.0	2 E	0 0	0	49.00	1.830	0	0.9
2	0	4	20.70	5.104 2.020	12	4.9	4	1	ა ი	40.44	2.230	12	0.8	ວ ຈ		0	49.00	1.000	19	2.4
2 1	2	2	29.00	0.020 0.020	12	0.1	ວ ະ	0	0 จ	40.90	2.200	10	0.2	ن ۱	49	2	49.94	1.020	12	1.1
3 T	ა 1	2 2	30.01 30.61	2.920 2.020	12 19	1.4 2.6	2 2	U Q	2 1	41.20 41.20	2.190 2.190	12 19	0.0	4	3	2	49.94	1.020	14	0.0
ა 4	1 T	∠ 0	30.01 21.91	2.920	14	2.0 8 8	ა ვ	ა 1	15	41.38	2.102	12 19	0.2							
4	0	U U	01.41	2.000	0	0.0	•)		• • •	41.14	2.104	14	0.1							





#### CHEMICAL COMPOSITION: [Al_{1.4}Si_{46.6}O₉₆]

### REFINED COMPOSITION: [Si₄₈O₉₆]

CRYSTAL DATA: Pnma (No. 62) a = 9.7998 Å b = 12.4116 Å c = 22.8606 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.056$ ,  $R_{\rm wp} = 0.0611$ 

REFERENCE: R. Millini, G. Perego, L. Carluccio, G. Bellussi, D. E. Cox, B. J. Campbell and A. K. Cheetham, in *Proc. of the 12th International Zeolite Conference*, Ed. by M. M. J. Treacy, B. K. Marcus, J. B. Higgins and M. E. Bisher (Materials Research Society: Warrendale) vol. I 541–548 (1999).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	2	7.73	11.430	2	51.5	2	3	0	28.23	3.161	4	1.8	4	0	2	37.54	2.396	4	1.2
0	1	1	8.11	10.908	4	41.6	0	1	7	28.26	3.158	4	0.4	2	4	4	37.75	2.383	8	1.9
1	0	1	9.82	9.007	4	91.2	3	0	2	28.42	3.141	4	6.2	0	5	3	38.13	2.360	4	0.5
1	0	<b>2</b>	11.90	7.440	4	2.7	2	3	1	28.50	3.131	8	2.8	4	1	2	38.26	2.352	8	0.5
1	1	1	12.14	7.290	8	43.9	3	1	1	28.52	3.129	8	0.9	4	0	3	38.60	2.332	4	0.4
0	1	3	13.64	6.494	4	100.0	Õ	4	0	28.77	3.103	$\tilde{2}$	8.1	3	Õ	7	39.00	2.310	4	0.5
1	1	$\tilde{2}$	13.88	6 381	8	86.5	ĩ	0	7	28.81	3 098	4	12.4	õ	ŏ	10	39.41	2.286	2	0.5
Ô	2	õ	14.27	6 206	2	71.3	1	$\frac{1}{2}$	6	28.97	3 082	8	07	$\frac{1}{2}$	4	5	39.63	2.200 2.274	8	0.6
1	õ	ž	14 73	6.016	1	13.2	0	3	5	20.01	3.068	4	1.0	2	<u> </u>	ă	30.08	2.211 2.255	4	1.0
0	0	1	15.70	5.010	л 9	2.0	3	1	2	20.11	3.000	8	3.4	2	4	1	40.28	2.200	8	1.0
0	0	4 9	16.00	5 454	4	2.0	ວ ງ	0	6	29.55	3 008	4	1.0	3 4	4 9	1 9	40.20	2.209	8	1.0
1	1	2	16.25	5.404	4	4.0	1	1	7	29.10	2.000	4	1.0	4± 1	2 0	10	40.50	2.200	4	0.0
1	1	ა 1	10.37	5.415	0	9.0 19.4	1	1	1	29.12	3.000	0	0.0	1	1	10	40.32	2.220	4	0.7
1	2	1	10.10	0.110	0	15.4	ა ი	0	ა ო	29.10	3.002	4	20.5	4	1	9	40.00	2.219	0	0.7
2	0	1	18.10	4.900	4	9.8	2	2	0 1	30.37	2.943	8	0.7	4	1	4	40.72	2.210	ð	1.0
2	0	1	18.52	4.791	4	2.1	1	4	1	30.47	2.934	8	0.6	3	4	2	40.88	2.207	8	0.5
1	2	2	18.62	4.766	8	4.7	2	1	6	30.58	2.923	8	4.4	1	4	7	41.17	2.192	8	3.5
1	1	4	19.35	4.587	8	65.8	3	2	1	31.19	2.868	8	1.1	3	4	3	41.87	2.158	8	2.1
2	1	0	19.48	4.558	4	13.2	1	4	2	31.23	2.864	8	1.0	4	1	5	42.49	2.128	8	0.6
2	0	2	19.71	4.504	4	1.8	3	0	4	31.55	2.836	4	0.8	3	3	6	42.50	2.127	8	0.6
2	1	1	19.86	4.470	8	27.7	3	2	2	31.93	2.802	8	2.3	1	3	9	42.78	2.114	8	0.9
0	1	5	20.70	4.290	4	4.4	1	2	7	32.29	2.772	8	0.8	2	0	10	43.69	2.072	4	0.6
2	1	2	20.98	4.233	8	1.1	2	3	4	32.36	2.766	8	1.6	0	6	0	43.76	2.069	2	1.5
0	2	4	21.13	4.204	4	2.0	3	1	4	32.38	2.765	8	1.3	4	0	6	43.94	2.061	4	0.6
1	0	5	21.45	4.143	4	7.3	1	4	3	32.47	2.758	8	1.2	2	4	$\overline{7}$	44.31	2.044	8	1.4
2	0	3	21.56	4.121	4	9.6	1	0	8	32.64	2.743	4	0.5	1	0	11	44.57	2.033	4	0.6
0	3	1	21.83	4.071	4	1.2	0	4	4	32.84	2.727	4	2.7	3	2	8	44.59	2.032	8	0.5
1	1	5	22.62	3.930	8	0.9	2	0	7	32.96	2.718	4	2.2	3	3	7	44.95	2.017	8	0.5
1	2	4	23.02	3.863	8	12.3	2	2	6	33.10	2.707	8	1.6	3	0	9	45.22	2.005	4	2.3
2	2	0	23.13	3.846	4	4.9	1	3	6	33.25	2.695	8	0.8	2	5	5	45.51	1.993	8	1.0
1	3	1	23.66	3.760	8	3.5	2	1	7	33.76	2.655	8	2.5	2	3	9	45.83	1.980	8	1.3
2	0	4	23.92	3.720	4	2.9	1	4	4	34.13	2.627	8	8.6	4	3	4	45.88	1.978	8	1.3
$\overline{2}$	2	2	24 42	3.645	8	81	2	4	0	34 20	2.621	4	1.5	1	3	10	46.31	1 960	8	25
0	3	3	24 48	3 636	4	30.3	2	3	5	34 49	2 600	8	1.5	5	õ	1	46 50	1 953	4	0.7
1	3	2	24 62	3 616	8	12.6	-3	1	5	3451	$\frac{2.000}{2.599}$	8	0.5	1	5	7	46.90	1 937	8	0.9
2	1	1	24.00	3 563	8	63	2 2	2	4	34 78	$2.000 \\ 2.570$	8	0.0	1	1	7	46.04	1.001	8	1.5
1	0	6	24.33	3.505 3.551	4	0.5	ວ ງ	4	4 9	25 19	2.575	8	47	4	2	5	40.34	1.330 1.014	8	1.0
1	0	5	25.00	2 446	4	1.7	2	4 9	2	25.00	2.000	0	4.7	4 5	ט 1	- 0 - 0	47.49	1.914	0	0.1
1 0	2	9 9	25.05	0.440 9.499	0	4.5	0	່ J 1	0	26.00	2.002	4	2.0	1	6	4	47.04	1.909	0	0.6
2 1	1	о С	20.90	0.400	0	14.7	1	1	9	30.09 96 17	2.400	4	3.0	T F	0	4	47.00	1.900	0	0.5
1	1	0	20.10	3.414	ð	1.7	1	4	0	30.17	2.484	8	1.0	o ₄	0	3	47.92	1.898	4	0.5
1	3	3	26.14	3.409	8	3.0	2	4	3	36.24	2.479	8	3.5	4	4	2	47.98	1.890	8	1.1
2	0	5	26.67	3.343	4	1.0	2	0	8	36.40	2.468	4	1.7	5	1	3	48.52	1.876	8	2.2
0	2	6	27.47	3.247	4	16.7	4	0	1	36.90	2.436	4	1.3	3	0	10	48.61	1.873	4	1.2
2	1	5	27.63	3.228	8	5.8	2	3	6	36.95	2.433	8	0.8	4	2	7	48.72	1.869	8	1.1
2	2	4	27.96	3.191	8	7.7	3	1	6	36.96	2.432	8	1.0	2	3	10	49.18	1.852	8	0.6
1	3	4	28.14	3.171	8	16.2	0	4	6	37.38	2.406	4	1.7	1	6	5	49.23	1.851	8	0.4


CHEMICAL COMPOSITION:	$ (H_2O)_{36.16} $	[Si ₁₁₂ O ₂₂₄ ]
-----------------------	--------------------	---------------------------------------

REFINED COMPOSITION: |O_{36.16}| [Si₁₁₂O₂₂₄]

CRYSTAL DATA: C a

 $\begin{array}{ll} Cmme \ (\text{No. 67}) \\ a = 13.695 \text{ Å} & b = 22.326 \text{ Å} & c = 20.178 \text{ Å} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray Rietveld limited refinement. No $R$-factor reported.} \end{array}$ 

REFERENCE:

E: N. A. Briscoe, D. W. Johnson, M. D. Shannon, G. T. Kokotailo and L. B. McCusker, *Zeolites* 8 74–76 (1988).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	1	h I	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	4.38	20.178	2	3.5	4	2	0	27.24	3.273	4	28.3		5 3	3	2	36.06	2.491	8	0.5
0	2	0	7.92	11.163	2	100.0	0	4	5	27.27	3.270	4	2.2	(	) (	2	8	36.52	2.460	4	3.7
1	1	1	8.75	10.105	8	64.0	2	6	0	27.28	3.269	4	3.5		1 9	9	1	37.10	2.423	8	1.0
0	0	2	8.76	10.089	2	5.3	0	6	3	27.39	3.256	4	0.9	:	3	1	7	37.10	2.423	8	0.5
0	2	1	9.05	9.768	4	8.4	1	5	4	27.46	3.248	8	19.1		2 8	8	3	37.27	2.412	8	4.5
1	1	2	11.59	7.633	8	9.1	4	0	2	27.51	3.242	4	0.6	ļ	5	1	4	37.58	2.393	8	2.3
0	2	2	11.82	7.485	4	4.1	1	1	6	27.60	3.232	8	4.1		1 !	5	7	37.72	2.385	8	0.6
2	0	0	12.93	6.847	2	12.5	2	6	1	27.64	3.227	8	1.7	4	4 1	2	6	38.37	2.346	8	0.7
2	0	1	13.66	6.484	4	2.1	3	5	1	28.31	3.153	8	7.3	:	3'	7	4	38.79	2.321	8	2.7
1	3	1	14.24	6.220	8	5.3	4	2	2	28.67	3.113	8	1.1		5 5	5	1	38.83	2.319	8	1.9
2	2	0	15.18	5.837	4	4.8	3	3	4	28.98	3.081	8	3.7	(	) 4	4	8	39.19	2.298	4	1.0
0	2	3	15.38	5.761	4	9.2	1	7	1	29.08	3.070	8	2.9	(	) 8	8	5	39.25	2.295	4	0.5
2	2	1	15.81	5.607	8	1.9	4	0	3	29.27	3.051	4	1.6	ļ	5	3	4	39.34	2.290	8	3.8
0	4	0	15.88	5.582	2	0.9	0	6	4	29.84	2.994	4	0.8		1 '	7	6	39.49	2.282	8	0.5
1	3	2	16.15	5.487	8	5.4	1	3	6	29.88	2.991	8	2.4	(	) (	6	7	39.55	2.279	4	0.8
0	4	1	16.48	5.379	4	3.1	1	7	2	30.10	2.969	8	0.7	(	6 (	0	1	39.74	2.268	4	0.6
2	2	2	17.55	5.052	8	2.1	2	4	5	30.29	2.951	8	1.0	(	) (	0	9	40.22	2.242	2	0.5
0	0	4	17.58	5.044	2	0.4	4	2	3	30.37	2.943	8	0.5		2 4	4	8	41.44	2.179	8	0.8
0	4	2	18.16	4.884	4	3.5	2	6	3	30.40	2.940	8	5.7	:	3 9	9	1	41.68	2.167	8	0.7
2	0	3	18.49	4.798	4	1.7	2	2	6	30.68	2.914	8	0.6	(	6 (	0	3	41.79	2.161	4	0.7
1	1	4	19.17	4.631	8	44.9	3	5	3	31.01	2.884	8	2.4	:	3 ;	5	7	42.24	2.139	8	1.5
2	2	3	20.14	4.408	8	6.2	0	0	7	31.02	2.883	2	1.1	4	4 (	6	5	42.29	2.137	8	0.6
3	1	1	20.34	4.366	8	18.3	1	7	3	31.73	2.820	8	0.7		2 10	0	0	42.59	2.123	4	1.4
2	4	0	20.53	4.326	4	63.6	0	2	7	32.07	2.791	4	0.5		5 5	5	4	42.67	2.119	8	0.5
0	4	3	20.68	4.295	4	14.4	0	8	0	32.07	2.791	2	0.4		1 '	7	7	42.80	2.113	8	0.5
2	4	1	21.00	4.230	8	0.4	0	8	1	32.38	2.764	4	0.8	(	3 ₄	4	0	42.80	2.113	4	1.8
3	1	2	21.74	4.089	8	2.0	4	2	4	32.61	2.746	8	1.0	ļ	5	3	6	44.36	2.042	8	0.5
0	0	5	22.03	4.036	2	0.8	3	5	4	33.21	2.697	8	7.7	(	) (	0	10	44.92	2.018	2	0.8
1	3	4	22.26	3.994	8	47.2	0	8	2	33.31	2.690	4	0.4	:	3	1	9	45.24	2.004	8	1.3
2	4	2	22.36	3.976	8	0.6	3	1	6	33.33	2.688	8	0.6	:	3 9	9	4	45.32	2.001	8	1.8
1	5	2	22.72	3.913	8	2.0	2	0	7	33.74	2.657	4	0.7		2 (	6	8	45.41	1.997	8	0.7
3	3	1	23.28	3.821	8	6.5	1	7	4	33.89	2.645	8	0.5	(	6 (	0	5	45.66	1.987	4	1.3
2	2	4	23.31	3.817	8	1.5	1	3	7	33.99	2.638	8	0.8		1 !	5	9	45.77	1.983	8	0.8
1	1	5	23.32	3.814	8	1.5	1	5	6	34.01	2.636	8	1.1		1 '	7	8	46.37	1.958	8	0.5
0	2	5	23.44	3.795	4	18.7	5	1	2	34.16	2.625	8	0.7	(	6 (	6	0	46.68	1.946	4	4.0
0	4	4	23.77	3.742	4	1.0	4	0	5	34.35	2.611	4	1.0	,	7	1	1	46.83	1.940	8	0.6
0	6	0	23.91	3.721	2	14.8	3	7	1	34.59	2.593	8	0.6	ļ	5 '	7	4	47.31	1.921	8	1.2
2	4	3	24.46	3.639	8	2.1	2	8	0	34.71	2.584	4	0.4	:	3 9	9	5	47.40	1.918	8	0.7
3	3	2	24.52	3.631	8	0.7	0	8	3	34.80	2.578	4	2.7	4	4 4	4	8	47.65	1.908	8	2.7
1	5	3	24.80	3.590	8	2.3	2	8	1	35.00	2.563	8	0.4	4	4 (	6	7	47.95	1.897	8	0.5
0	6	2	25.51	3.491	4	0.7	0	4	7	35.03	2.561	4	0.7		2 10	0	5	48.45	1.879	8	0.8
4	0	0	26.02	3.424	2	13.3	2	6	5	35.33	2.540	8	1.2	(	) 8	8	8	48.66	1.871	4	2.9
4	0	1	26.40	3.376	4	1.3	0	0	8	35.59	2.522	2	6.0	:	3 1	1	1	49.34	1.847	8	1.9
3	1	4	26.64	3.347	8	16.1	5	1	3	35.62	2.521	8	0.9	:	3 ;	5	9	49.69	1.835	8	1.2
2	2	5	26.86	3.319	8	2.7	4	6	0	35.63	2.519	4	2.1	ł	5 9	9	1	49.80	1.831	8	0.5

The space group symbol *Cmme* now replaces the older form, *Cmma*.





CHEMICAL COMPOSITION:	$ Na_{28.8}Ca_{14.4}(H_2O)_{263} $ [Si _{134.4} Al _{57.6} O ₃₈₄ ] Kaiserstuhl, Germany
REFINED COMPOSITION:	$ \mathrm{Na_{16}Ca_{16}(H_2O)_{42.7}}  [\mathrm{Si_{134.4}Al_{57.6}O_{384}}]$
CRYSTAL DATA:	$ \begin{array}{l} Fd\overline{3}m \ (\text{No. 227}) \ \text{origin at centre} \ (\overline{3}m) \\ a = 24.74 \ \text{\AA} \qquad b = 24.74 \ \text{\AA} \qquad c = 24.74 \ \text{\AA} \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement}, \ R = 0.13 \end{array} $
REFERENCE:	W. H. Baur, American Mineralogist <b>49</b> 697–704 (1964).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	6.19	14.284	8	100.0	7	3	1	27.70	3.221	48	0.5	8	6	2	37.06	2.426	48	0.3
<b>2</b>	<b>2</b>	0	10.11	8.747	12	1.4	8	0	0	28.87	3.092	6	0.2	10	2	0	37.06	2.426	24	0.3
3	1	1	11.86	7.459	24	2.0	7	3	3	29.55	3.022	24	0.5	6	6	6	37.79	2.381	8	0.6
4	0	0	14.32	6.185	6	0.5	8	2	<b>2</b>	30.66	2.916	24	1.1	7	7	5	40.43	2.231	24	0.2
3	3	1	15.61	5.676	24	4.5	6	6	0	30.66	2.916	12	0.7	8	8	0	41.29	2.187	12	0.5
4	<b>2</b>	2	17.56	5.050	24	0.3	5	5	5	31.31	2.857	8	2.0	11	3	1	41.79	2.162	48	0.2
5	1	1	18.64	4.761	24	2.7	7	5	1	31.31	2.857	48	0.3	9	7	1	41.79	2.162	48	0.3
4	4	0	20.30	4.373	12	2.5	8	4	0	32.37	2.766	24	1.1	10	6	0	42.62	2.121	24	0.2
4	4	<b>2</b>	21.55	4.123	24	0.4	9	1	1	32.98	2.716	24	0.5	11	3	3	43.11	2.098	24	0.2
6	<b>2</b>	0	22.73	3.912	24	0.2	7	5	3	32.98	2.716	48	0.5	9	7	3	43.11	2.098	48	0.2
5	3	3	23.58	3.773	24	5.6	8	4	<b>2</b>	33.19	2.699	48	0.1	8	8	4	43.92	2.062	24	0.5
4	4	4	24.93	3.571	8	0.2	6	6	4	33.99	2.637	24	1.3	12	4	2	47.04	1.932	48	0.3
7	1	1	25.72	3.464	24	0.1	9	3	1	34.58	2.593	48	1.0	10	8	2	47.64	1.909	48	0.1
5	5	1	25.72	3.464	24	0.5	8	4	4	35.55	2.525	24	0.1	13	3	1	49.28	1.849	48	0.1
6	4	<b>2</b>	26.97	3.306	48	2.4	7	5	5	36.12	2.486	24	0.1							



### CHEMICAL COMPOSITION: |Na₈₈| [Si₁₀₄Al₈₈O₃₈₄]

REFINED COMPOSITION: |Na_{92.9}| [Si_{103.68}Al_{88.32}O₃₈₄]

CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre ( $\overline{3}$ ) a = 25.099 Å b = 25.099 Å c = 25.099 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.046

REFERENCE: D. H. Olson,

Zeolites **15** 439–443 (1995).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	6.10	14.491	8	100.0	5	5	5	30.85	2.898	8	4.5	11	1	3	41.16	2.193	24	0.1
2	2	0	9.97	8.874	12	12.7	8	0	4	31.89	2.806	12	0.5	9	1	7	41.16	2.193	24	0.1
3	1	1	11.69	7.568	24	8.0	8	4	0	31.89	2.806	12	0.7	10	4	4	41.33	2.185	24	0.1
4	0	0	14.11	6.275	6	0.1	7	5	3	32.50	2.755	24	0.2	11	3	3	42.46	2.129	24	1.0
3	3	1	15.39	5.758	24	11.1	7	3	5	32.50	2.755	24	0.1	12	0	0	43.26	2.092	6	0.3
5	1	1	18.37	4.830	24	0.4	6	6	4	33.49	2.676	24	2.7	8	8	4	43.26	2.092	24	0.3
4	4	0	20.01	4.437	12	2.4	9	1	3	34.07	2.631	24	0.5	9	9	1	46.17	1.966	24	0.2
5	3	1	20.94	4.243	24	0.4	9	3	1	34.07	2.631	24	0.5	12	4	2	46.32	1.960	24	0.2
4	4	2	21.24	4.183	24	0.2	8	4	4	35.03	2.562	24	0.3	8	8	6	46.32	1.960	24	0.2
6	<b>2</b>	0	22.40	3.969	12	0.2	7	5	5	35.59	2.523	24	0.3	12	2	4	46.32	1.960	24	0.2
5	3	3	23.24	3.828	24	7.7	8	<b>2</b>	6	36.51	2.461	24	0.1	10	2	8	46.92	1.936	24	0.3
6	2	<b>2</b>	23.51	3.784	24	0.5	10	<b>2</b>	<b>2</b>	37.23	2.415	24	0.3	10	8	2	46.92	1.936	24	0.4
6	4	<b>2</b>	26.58	3.354	24	2.8	6	6	6	37.23	2.415	8	0.6	9	9	3	47.36	1.919	24	0.2
6	2	4	26.58	3.354	24	2.0	11	1	1	39.83	2.263	24	0.8	11	3	7	48.53	1.876	24	0.2
$\overline{7}$	3	3	29.12	3.066	24	0.6	7	$\overline{7}$	5	39.83	2.263	24	0.3	9	$\overline{7}$	7	48.53	1.876	24	0.2
8	2	<b>2</b>	30.21	2.958	24	0.5	8	8	0	40.67	2.218	12	0.8	11	$\overline{7}$	3	48.53	1.876	24	0.2
6	6	0	30.21	2.958	12	0.4	11	3	1	41.16	2.193	24	0.2	9	9	5	49.67	1.835	24	0.2





### CHEMICAL COMPOSITION: |Na₈₈(H₂O)₂₂₀| [Si₁₀₄Al₈₈O₃₈₄]

REFINED COMPOSITION:  $|Na_{40.32}(H_2O)_{171.84}|$  [Si_{103.68}Al_{88.32}O₃₈₄]

CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre ( $\overline{3}$ ) a = 25.028 Å b = 25.028 Å c = 25.028 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.09

REFERENCE: D. H. Olson,

J. Phys. Chem. **74** 2758–2764 (1970).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	6.12	14.450	8	100.0	6	6	0	30.30	2.950	12	1.0	11	1	1	39.95	2.257	24	0.2
2	2	0	10.00	8.849	12	10.4	8	<b>2</b>	2	30.30	2.950	24	1.7	7	$\overline{7}$	5	39.95	2.257	24	0.3
3	1	1	11.73	7.546	24	3.8	7	1	5	30.94	2.890	24	0.4	8	8	0	40.79	2.212	12	1.1
<b>2</b>	2	2	12.25	7.225	8	0.2	7	5	1	30.94	2.890	24	0.4	11	1	3	41.29	2.187	24	0.3
3	3	1	15.43	5.742	24	6.5	5	5	5	30.94	2.890	8	5.7	11	3	1	41.29	2.187	24	0.3
4	2	2	17.36	5.109	24	0.1	6	6	2	31.15	2.871	24	0.2	9	5	5	41.29	2.187	24	0.1
3	3	3	18.42	4.817	8	0.3	8	0	4	31.98	2.798	12	1.6	9	$\overline{7}$	1	41.29	2.187	24	0.2
5	1	1	18.42	4.817	24	1.3	8	4	0	31.98	2.798	12	1.8	9	1	7	41.29	2.187	24	0.2
4	4	0	20.07	4.424	12	2.0	7	3	5	32.59	2.747	24	0.1	8	8	2	41.45	2.178	24	0.1
5	3	1	21.00	4.231	24	0.6	9	1	1	32.59	2.747	24	0.1	11	3	3	42.59	2.123	24	0.6
6	2	0	22.47	3.957	12	1.1	7	5	3	32.59	2.747	24	0.4	8	8	4	43.38	2.086	24	0.3
6	0	<b>2</b>	22.47	3.957	12	0.2	8	4	2	32.80	2.731	24	0.1	9	9	1	46.31	1.960	24	0.2
5	3	3	23.31	3.817	24	6.2	8	<b>2</b>	4	32.80	2.731	24	0.1	12	4	2	46.46	1.954	24	0.3
6	<b>2</b>	<b>2</b>	23.58	3.773	24	0.5	6	6	4	33.59	2.668	24	3.4	12	2	4	46.46	1.954	24	0.2
4	4	4	24.64	3.612	8	0.2	9	3	1	34.17	2.624	24	0.5	10	8	2	47.06	1.931	24	0.4
5	5	1	25.41	3.505	24	0.2	9	1	3	34.17	2.624	24	0.6	10	2	8	47.06	1.931	24	0.2
6	2	4	26.65	3.345	24	2.4	8	4	4	35.13	2.554	24	0.5	12	4	4	48.24	1.887	24	0.2
6	4	2	26.65	3.345	24	3.2	8	2	6	36.61	2.454	24	0.1	9	7	7	48.67	1.871	24	0.2
7	3	1	27.37	3.258	24	0.1	10	2	2	37.34	2.408	24	0.2	13	3	3	49.82	1.830	24	0.1
$\overline{7}$	3	3	29.21	3.058	24	1.2	6	6	6	37.34	2.408	8	1.2	9	9	5	49.82	1.830	24	0.2





### CHEMICAL COMPOSITION: |H_{18.9}| [Si_{173.1}Al_{18.9}O₃₈₄]

REFINED COMPOSITION: |Al_{5.6}O_{22.4}| [Si_{175.7}Al_{16.3}O₃₈₄]

CRYSTAL DATA:  $Fd\overline{3}m$  (No. 227) origin at centre  $(\overline{3}m)$ a = 24.188 Å b = 24.188 Å c = 24.188 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron Rietveld refinement,  $R_{\rm wp} = 0.1041$ ,  $R_{\rm I} = 0.0561$ 

REFERENCE: J. B. Parise, D. R. Corbin, L. Abrams and D. E. Cox, *Acta Cryst.* C40 1493–1497 (1984).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	6.33	13.965	8	100.0	5	5	1	26.31	3.387	24	0.5	8	6	<b>2</b>	37.93	2.372	48	0.2
2	2	0	10.34	8.552	12	8.7	6	4	<b>2</b>	27.60	3.232	48	4.1	9	5	1	38.50	2.338	48	0.1
3	1	1	12.14	7.293	24	5.8	7	3	3	30.24	2.955	24	0.9	6	6	6	38.69	2.327	8	0.4
4	0	0	14.65	6.047	6	0.8	8	2	<b>2</b>	31.38	2.851	24	0.5	8	6	4	40.15	2.246	48	0.2
3	3	1	15.97	5.549	24	9.0	6	6	0	31.38	2.851	12	1.1	11	1	1	41.40	2.181	24	0.2
4	2	2	17.97	4.937	24	0.7	7	5	1	32.04	2.793	48	0.4	8	8	0	42.27	2.138	12	0.4
5	1	1	19.07	4.655	24	4.4	5	5	<b>5</b>	32.04	2.793	8	2.5	9	$\overline{7}$	3	44.14	2.052	48	0.2
3	3	3	19.07	4.655	8	0.3	8	4	0	33.13	2.704	24	0.8	11	3	3	44.14	2.052	24	0.2
4	4	0	20.77	4.276	12	3.8	7	5	3	33.76	2.655	48	0.6	10	6	<b>2</b>	44.31	2.044	48	0.1
5	3	1	21.74	4.089	48	0.5	8	4	2	33.97	2.639	48	0.2	8	8	4	44.97	2.016	24	0.5
4	4	2	22.05	4.031	24	0.2	6	6	4	34.79	2.578	24	1.4	12	0	0	44.97	2.016	6	0.2
6	2	0	23.26	3.824	24	1.3	9	3	1	35.40	2.536	48	0.7	8	8	6	48.18	1.889	24	0.2
5	3	3	24.13	3.689	24	7.1	8	4	4	36.39	2.469	24	0.2	10	8	2	48.80	1.866	48	0.5
4	4	4	25.51	3.491	8	0.3	7	5	5	36.98	2.431	24	0.2							



# CHEMICAL COMPOSITION: [Si₁₉₂O₃₈₄]

REFINED COMPOSITION: [Si_{188.16}O₃₈₄]

CRYSTAL DATA:  $Fd\overline{3}m$  (No. 227) origin at centre  $(\overline{3}m)$ a = 24.2576 Å b = 24.2576 Å c = 24.2576 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron Rietveld refinement,  $R_{exp} = 0.022$ ,  $R_{wp} = 0.031$ 

REFERENCE: J. J. Hriljac, M. M. Eddy, A. K. Cheetham, J. A. Donohue and G. J. Ray, J. Solid State Chem. 106 66–72 (1993).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	6.31	14.005	8	100.0	7	3	1	28.26	3.158	48	0.2	8	6	4	40.03	2.252	48	0.2
<b>2</b>	2	0	10.31	8.576	12	18.6	7	3	3	30.16	2.964	24	1.5	11	1	1	41.28	2.187	24	0.4
3	1	1	12.10	7.314	24	12.5	8	2	2	31.29	2.859	24	0.7	7	$\overline{7}$	5	41.28	2.187	24	0.2
4	0	0	14.61	6.064	6	0.3	6	6	0	31.29	2.859	12	1.9	8	8	0	42.14	2.144	12	0.6
3	3	1	15.92	5.565	24	16.0	7	5	1	31.95	2.801	48	0.5	9	7	1	42.66	2.119	48	0.1
4	2	2	17.91	4.952	24	0.1	5	5	5	31.95	2.801	8	4.4	10	6	0	43.51	2.080	24	0.1
5	1	1	19.01	4.668	24	4.3	8	4	0	33.03	2.712	24	1.2	9	$\overline{7}$	3	44.01	2.058	48	0.1
3	3	3	19.01	4.668	8	0.2	7	5	3	33.66	2.663	48	0.5	11	3	3	44.01	2.058	24	0.5
4	4	0	20.71	4.288	12	6.4	8	4	2	33.87	2.647	48	0.1	10	6	2	44.18	2.050	48	0.2
5	3	1	21.67	4.100	48	0.3	6	6	4	34.69	2.586	24	2.4	12	0	0	44.84	2.021	6	0.3
4	4	2	21.98	4.043	24	0.1	9	3	1	35.29	2.543	48	1.0	8	8	4	44.84	2.021	24	0.7
6	2	0	23.19	3.835	24	1.3	8	4	4	36.28	2.476	24	0.3	9	$\overline{7}$	5	46.61	1.948	48	0.1
5	3	3	24.06	3.699	24	7.6	7	5	5	36.87	2.438	24	0.2	12	4	2	48.03	1.894	48	0.1
4	4	4	25.44	3.501	8	0.3	8	6	2	37.82	2.379	48	0.2	8	8	6	48.03	1.894	24	0.2
5	5	1	26.24	3.397	24	1.2	9	5	1	38.38	2.345	48	0.1	10	8	2	48.65	1.872	48	1.1
6	4	2	27.52	3.242	48	4.6	6	6	6	38.57	2.334	8	1.1							



### CHEMICAL COMPOSITION: |Li₉₆| [Si₉₆Al₉₆O₃₈₄]

REFINED COMPOSITION: |Li_{87.36}| [Si₉₆Al₉₆O₃₈₄]

CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre ( $\overline{3}$ ) a = 25.6957 Å b = 25.6957 Å c = 25.6957 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray and neutron Rietveld refinement,  $R_{\rm p} = 0.057$ ,  $R_{\rm wp} = 0.069$ 

#### REFERENCE:

NCE: M. Feuerstein and R. F. Lobo, Chemistry of Materials 2197–2204 (1998).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	5.96	14.835	8	100.0	8	2	<b>2</b>	29.50	3.028	24	0.4	11	1	1	38.87	2.317	24	0.2
<b>2</b>	2	0	9.74	9.085	12	9.6	6	6	0	29.50	3.028	12	1.1	9	5	5	40.17	2.245	24	0.1
3	1	1	11.42	7.748	24	9.9	7	1	5	30.12	2.967	24	0.1	8	6	6	40.96	2.203	24	0.1
3	3	1	15.03	5.895	24	12.3	5	5	5	30.12	2.967	8	3.6	11	3	3	41.43	2.179	24	0.3
4	2	2	16.90	5.245	24	0.1	8	0	4	31.13	2.873	12	0.3	9	$\overline{7}$	3	41.43	2.179	24	0.2
<b>5</b>	1	1	17.94	4.945	24	1.8	8	4	0	31.13	2.873	12	0.3	9	3	$\overline{7}$	41.43	2.179	24	0.2
4	4	0	19.54	4.542	12	3.0	7	3	5	31.72	2.820	24	0.2	8	8	4	42.20	2.141	24	0.6
<b>5</b>	3	1	20.45	4.343	24	0.2	7	5	3	31.72	2.820	24	0.4	12	4	2	45.19	2.006	24	0.2
6	0	2	21.88	4.063	12	0.1	6	6	4	32.69	2.739	24	2.1	12	2	4	45.19	2.006	24	0.1
6	2	0	21.88	4.063	12	0.4	9	1	3	33.26	2.694	24	0.2	10	2	8	45.77	1.982	24	0.1
5	3	3	22.69	3.919	24	5.7	9	3	1	33.26	2.694	24	0.1	10	8	2	45.77	1.982	24	0.3
4	4	4	23.99	3.709	8	0.5	8	4	4	34.19	2.623	24	0.2	9	$\overline{7}$	$\overline{7}$	47.33	1.921	24	0.2
5	5	1	24.74	3.598	24	0.3	7	$\overline{7}$	1	34.74	2.583	24	0.2	9	9	5	48.44	1.879	24	0.6
6	4	2	25.95	3.434	24	2.5	10	<b>2</b>	2	36.33	2.473	24	0.2	8	8	8	49.13	1.854	8	0.1
6	<b>2</b>	4	25.95	3.434	24	1.4	6	6	6	36.33	2.473	8	2.1	11	5	$\overline{7}$	49.54	1.840	24	0.1
<b>5</b>	5	3	26.65	3.345	24	0.1	8	6	4	37.70	2.386	24	0.2							
7	3	3	28.43	3.139	24	0.6	7	7	5	38.87	2.317	24	0.8							



 $2 \\ 5$  $\mathbf{2}$ 2

4

5

4

 $\mathbf{2}$ 

 $\mathbf{3}$ 

3 0

0  $\mathbf{2}$ 

1

1

28.54

29.07

29.15

30.07

30.30

3.127

3.071

3.064

2.972

2.950

8

8

8

4

4

1.8

9.2

0.1

7.6

2.3

42

1

4

8 1

1 5 $\mathbf{2}$ 

1 61

41 3 39.81

40.04

40.26

40.43

41.28

2.264

2.252

2.240

2.231

2.187

8

8

8

8

8

1.1

0.7

0.8

0.1

0.7

46 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 53

0

4

49.53

49.61

49.65

CH	[EN	1IC	AL CO	OMPOS	SITIC	ON:	Na _{1.5} Mg Kamloop	$g_2(H)$	I ₂ C ake	9) ₁₈   [S e, Briti	$i_{30.5}Al$ sh Col	_{5.5} O umb	72] ia, Ca	anada				
F	EF	'IN	ED CC	OMPOS	ITIC	)N:	Na _{0.96} M	$\lg_2($	$H_2$	$O)_{12} [$	Si _{30.24} /	$Al_{5.7}$	$_{6}O_{72}]$					
			CR	YSTAL	DA	ΓA:	$Immm (a = 19.1)$ $\alpha = 90^{\circ}$ X-ray sir	No. 56 L	. 71 Å cry	b = 1 $\beta = 9$ ystal re	4.127 90° efineme	Å ent,	$c = \frac{1}{\gamma}$ $\gamma = 0$ $R = 0$	7.489 Å 90° ).11				
			]	REFER	ENG	CE:	P. A. Va Acta Cry	ugh <i>yst.</i>	an, <b>21</b>	983–9	90 (19	66).						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d
1	1	0	7.78	11.370	4	58.8	3 6	2	0	30.73	2.909	4	0.2	7	1	2	41.36	2.183
2	0	0	9.23	9.578	2	100.0	) 1	3	2	30.86	2.897	8	5.1	2	3	3	42.04	2.149
0	2	0	12.53	7.063	2	9.2	2 6	1	1	31.10	2.875	8	0.8	3	5	2	42.51	2.127
1	0	1	12.69	6.975	4	13.7	7 3	4	1	31.31	2.857	8	0.2	3	6	1	42.67	2.119
0	1	1	13.38	6.617	4	7.9	) 4	4	0	31.47	2.842	4	0.8	4	6	0	42.80	2.113
3	1	0	15.23	5.819	4	26.1	. 1	5	0	32.02	2.795	4	0.4	9	1	0	42.97	2.105
2	2	0	15.59	5.685	4	2.5	i 4	2	2	32.90	2.722	8	3.6	9	0	1	44.24	2.047
2	1	1	16.28	5.444	8	0.2	2 7	1	0	33.35	2.687	4	0.9	6	5	1	44.49	2.036
1	2	1	17.87	4.963	8	5.5	5 O	5	1	33.91	2.644	4	4.2	1	4	3	44.70	2.027
3	0	1	18.26	4.859	4	0.5	5 5	1	2	34.08	2.631	8	0.7	8	0	2	44.93	2.017
4	0	0	18.53	4.789	2	2.2	2 3	5	0	34.72	2.584	4	2.8	1	7	0	45.18	2.007
1	3	0	19.41	4.573	4	1.8	3 7	0	1	34.91	2.570	4	0.7	5	2	3	45.21	2.005
3	2	1	22.21	4.003	8	26.2	2 0	4	2	34.92	2.569	4	1.1	6	4	2	45.30	2.002
0	3	1	22.30	3.986	4	7.7	6	3	1	36.04	2.492	8	0.8	7	3	2	45.34	2.000
4	2	0	22.43	3.964	4	21.1	. 2	4	2	36.20	2.482	8	1.3	0	6	2	45.51	1.993
4	1	1	22.92	3.879	8	15.0		0	3	36.29	2.475	4	0.2	8	4	0	45.78	1.982
3	3	0	23.47	3.790	4	16.8	5 0	0	2	37.00	2.429	4	2.8	9	2	1	46.16	1.966
0	1	2	23.70	3.744	2	3.0		2	1	37.22	2.415	8	0.0	0	1	1	40.01	1.949
0 1	1	0	24.07	3.098	4	0.7	8 7 C	0	0	37.30	2.395	2	0.2	0	1	ა ი	40.03	1.948
1	1	2	20.04 05 00	3.007	8 9	10.7		4	0	37.99	2.308	4	0.2	0 9	Э 4	2	40.74	1.944
0	4	0	20.22 95 54	5.05Z 2.497	4	29.2		ა ი	0	38.03 20 E4	2.300	4	3.3 0.6	3	4	ა ე	40.10	1.942
2 5	0	2 1	20.04	3.407 3.411	4	6.1	) I 2	2 0	ა ვ	38.73	∠.550 2.325	0	0.0	0	2	2 0	40.00	1.940
ງ ຈ	1	0	20.10 26.01	3.411 3.21/	-± /	6.0	. J	5	0 1	38.01	2.020 9.214	4 Q	0.4 2.2	9 5	5 6	1	40.04	1 038
0	ч 9	0 9	20.91 26.95	3 308	-± /	0.0	, 4 ; 6	9 9	1 9	30.91	2.014 2.207	8	0.4	2 0	7	1 L	40.09	1 09/
6	0	0	27.95	3 193	2	1.9	2 2	6	0	39.21	2.231 2.286	4	0.7	10	0	0	47.20	1 916
1	4	1	28.32	3,151	8	1.6	. 2 ) 5	5	0	39.63	2.200 2.274	4	0.2	10	0	4	48.63	1.872
3	1	2	28.34	3.149	8	13.5	5 8	2	0	39.75	2.268	4	0.3	1	1	4	49.33	1.847
-				-	-		5		-				-					- •

M

8

8

8

8

4

4

4

8

8

4

4

8

8

8

4

4

8

4

8

8

8

8

4

8

4

 $\mathbf{2}$ 

 $\mathbf{2}$ 

8

8

4

8

1.840

1.837

1.836

 $I_{\rm rel}$ 

0.2

1.9

0.4

0.6

2.5

0.5

1.4

0.70.2

0.50.2

3.1

1.8

0.3

0.2

1.2

1.5

1.7

0.6

0.2

0.2

0.1

2.00.2

2.3

0.3

5.7

0.4

0.3

0.3

0.4



CHEMICAL COMPOSITION: [Si₃₆O₇₂] Dealuminated, synthetic powder.

### REFINED COMPOSITION: [Si₃₆O₇₂]

CRYSTAL DATA: Pnnm (No. 58) a = 14.07025 Å b = 7.41971 Å c = 18.7202 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Combined X-ray and neutron Rietveld refinement,  $R_{\rm wp} = 0.123$ 

### REFERENCE: R. E. Morris, S. J. Weigel, N. J. Henson, L. M. Bull, M. T. Janicke, B. F. Chmelka and A. K. Cheetham, J. Amer. Chem. Soc. 116 11849–11855 (1994).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	ŀ	,	k	l	$2\theta$	d	M	$I_{\rm rel}$	1	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	7.86	11.248	4	1.9	6 4	2	1	5	29.59	3.019	8	4.2	(	6	1	0	40.33	2.236	4	0.2
0	0	2	9.45	9.360	2	100.0	4	ŀ	1	2	29.68	3.010	8	0.1	ļ	5	2	1	40.52	2.226	8	0.8
2	0	0	12.58	7.035	2	16.2	ę	;	0	5	30.55	2.926	4	2.5	:	3	1	7	40.70	2.217	8	0.3
0	1	1	12.83	6.898	4	28.3	ę	;	2	0	30.73	2.910	4	0.2		1	1	8	40.94	2.204	8	0.1
1	1	0	13.49	6.563	4	13.5	(	)	2	4	30.75	2.907	4	1.0		1	3	4	41.80	2.161	8	0.3
1	1	1	14.30	6.193	8	0.1	3	;	<b>2</b>	1	31.11	2.875	8	1.9	:	3	3	2	42.43	2.130	8	1.0
1	0	3	15.53	5.704	4	5.1	6 4	2	0	6	31.36	2.852	4	0.3	:	3	2	6	42.48	2.128	8	0.1
2	0	2	15.76	5.624	4	7.1	1		<b>2</b>	4	31.42	2.847	8	0.1		2	1	8	42.50	2.127	8	0.1
1	1	2	16.50	5.374	8	1.1	1		1	6	31.75	2.818	8	0.6	ļ	5	2	3	42.86	2.110	8	0.1
2	1	0	17.37	5.105	4	0.3	4	-	0	4	31.82	2.812	4	0.1	(	6	1	3	42.97	2.105	8	0.1
2	1	1	18.01	4.925	8	0.6	ć	;	<b>2</b>	2	32.22	2.778	8	0.3	(	6	0	4	43.15	2.097	4	0.9
0	0	4	18.96	4.680	2	3.8	د 4	2	2	4	33.35	2.687	8	1.3	(	6	1	4	44.93	2.018	8	0.1
3	0	1	19.51	4.549	4	0.3	e e	;	2	3	34.00	2.637	8	0.1	4	4	3	1	45.07	2.011	8	0.1
2	1	2	19.81	4.482	8	0.1	Ę	)	1	0	34.07	2.631	4	2.1	ł	5	1	6	45.07	2.011	8	1.0
3	1	0	22.43	3.964	4	5.1	4	-	1	4	34.10	2.629	8	0.2	(	0	1	9	45.28	2.003	4	0.9
2	1	3	22.50	3.951	8	12.9	1		<b>2</b>	5	34.63	2.590	8	0.5	(	6	2	0	45.77	1.982	4	0.2
2	0	4	22.82	3.897	4	8.8	5	)	0	3	34.98	2.565	4	1.0		2	3	5	45.82	1.980	8	2.1
1	1	4	23.34	3.810	8	7.1	4	-	2	0	35.16	2.553	4	0.5	(	0	2	8	45.85	1.979	4	0.5
3	0	3	23.73	3.749	4	11.9	4	-	2	1	35.49	2.529	8	0.1	4	4	2	6	45.93	1.976	8	1.2
0	2	0	23.99	3.710	2	3.7	(	)	1	7	35.69	2.516	4	0.6	(	6	2	1	46.04	1.971	8	0.1
1	0	5	24.60	3.618	4	5.3	4	-	2	2	36.48	2.463	8	1.0	:	3	2	7	46.10	1.969	8	0.1
1	2	0	24.82	3.587	4	0.2	(	)	3	1	36.65	2.452	4	0.5		1	2	8	46.32	1.960	8	0.2
1	2	1	25.28	3.523	8	7.7	:	5	1	6	36.65	2.452	8	0.8	4	4	0	8	46.62	1.948	4	0.3
4	0	0	25.32	3.518	2	15.2	1		3	0	36.90	2.436	4	0.4	,	7	1	0	46.83	1.940	4	1.0
2	1	4	25.82	3.450	8	0.6	(	)	2	6	37.67	2.388	4	1.5		2	1	9	47.18	1.926	8	0.6
0	2	2	25.83	3.449	4	16.4	د 4	2	1	7	37.98	2.369	8	0.6	4	4	3	3	47.23	1.925	8	0.2
1	2	2	26.61	3.350	8	0.5	1		3	2	38.18	2.357	8	0.1	ļ	5	2	5	47.25	1.924	8	0.2
0	1	5	26.67	3.343	4	3.3	1		2	6	38.23	2.354	8	0.2		1	3	6	47.34	1.920	8	0.2
4	0	2	27.08	3.293	4	5.9	(	)	0	8	38.47	2.340	2	0.2	(	6	1	5	47.35	1.920	8	0.4
2	2	0	27.17	3.282	4	0.2	4	-	0	6	38.57	2.334	4	0.2	,	7	0	3	47.52	1.913	4	2.2
1	1	5	27.42	3.252	8	0.4		5	0	7	38.76	2.323	4	1.1	-	2	2	8	47.73	1.905	8	0.1
2	2	1	27.60	3.232	8	0.1	Ę	)	1	4	39.28	2.294	8	0.8	:	3	0	9	47.84	1.901	4	1.8
4	1	1	28.48	3.134	8	0.7	6	;	0	2	39.62	2.275	4	0.3	4	4	1	8	48.30	1.884	8	0.1
0	0	6	28.61	3.120	2	0.5	4	2	2	6	39.87	2.261	8	0.5	(	0	4	0	49.11	1.855	2	2.4
1	2	3	28.70	3.110	8	8.2	Ę	•	0	5	40.08	2.250	4	0.3		1	4	0	49.57	1.839	4	0.3
2	2	2	28.83	3.097	8	0.9	4	E.	2	4	40.24	2.241	8	0.4	(	6	2	4	49.97	1.825	8	0.2



FER

C	HE	MI	CAL C	COMPO	SIT	ION:	(Na,K Sacrofa	) ₃₀ ( no,	Ca ₁₀ Lati	$(SO_4)_1$ ium, It	₀ (H ₂ O aly	)2  [	Si ₃₀ Al	₃₀ O ₁₂₀ ]						
	RE	FII	NED C	OMPO	SITI	ON:	Ca _{30.72}	$S_{22}$	O ₇₀ (	$(H_2O)_6$	[Si ₃₀ .	$Al_{30}$	$O_{120}]$							
			CI	RYSTAI	L DA	ATA:	$P321 (I)$ $a = 12.$ $\alpha = 90^{\circ}$ X-ray s	No. 916 ingl	150 Å le cr	) b = 1 $\beta =$ ystal re	12.916 90° efineme	Å ent,	$c = 2$ $\gamma = 1$ $R = 0$	26.543 Å 120° .0596	Å					
				REFE	REN	ICE:	P. Balli Canadi	ran an	o, E Mine	. Bona eralogi:	$\begin{array}{c} \mathrm{ccorsi,}\\ \mathrm{st} \ 38 \ \mathrm{6} \end{array}$	A. 1 657–6	Maras 568 (20	and S. 000).	Me	rlino	о,			
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	3.33	26.543	2	85.0	2	<b>2</b>	0	27.62	3.229	6	10.5	3	<b>2</b>	4	37.58	2.393	12	1.1
0	0	2	6.66	13.271	2	4.8	2	2	1	27.83	3.205	12	0.6	4	0	6	38.07	2.364	6	0.6
1	0	0	7.90	11.186	6	0.8	1	0	8	28.05	3.181	6	0.9	0	4	6	38.07	2.364	6	3.5
1	0	1	8.58	10.308	6	9.8	0	1	8	28.05	3.181	6	0.6	3	0	9	38.94	2.313	6	2.9
0	0	3	10.00	8.848	2	2.3	2	0	7	28.44	3.139	6	6.6	1	4	4	39.33	2.291	12	0.5
1	0	2	10.34	8.553	6	13.1	1	2	6	29.22	3.056	12	6.9	1	3	8	39.78	2.266	12	0.5
0	1	2	10.34	8.553	6	8.6	2	1	6	29.22	3.056	12	1.6	0	4	7	40.06	2.251	6	10.9
0	1	3	12.76	6.939	6	0.4	0	3	5	29.27	3.051	6	0.6	4	0	7	40.06	2.251	6	0.6
1	0	3	12.76	6.939	6	35.7	2	2	3	29.45	3.033	12	0.5	2	2	9	41.47	2.178	12	2.2
1	1	0	13.71	6.458 6.975	0 10	37.5	3	1	2	29.57	3.021	12	1.8	3	0	10	41.77	2.162	6	9.7
1	1	1	14.11	6.275 F 207	12	15.0	1	3	2	29.57	3.021	12	1.5	0	3	10	41.77	2.162	6	2.6
1	1	2	15.20	5.807	12	4.1	1	1	8	30.28	2.951	12	0.5	ა ე	ა ე	0 7	41.97	2.153	0	17.8
1	0	4	15.53	5.707	0	4.2	0	0	9	30.31	2.949	2	2.4	2	3	(	42.54	2.125	12	1.3
0	1	5	10.70	5.309	2	0.9	1	ろ 1	ა ე	30.53	2.928	12	2.9	4	2	1	42.78	2.114 2.107	12	0.5
1	1	ა ე	17.00 17.00	5.210 5.154	12	2.2	ა ე	1	ა 4	30.33 20.70	2.928	12	1.9	2	4	10	42.92	2.107	12	0.8
2	0	2	17.20 17.20	5.104 5.154	6	1.0	2	2	4	30.79 21.25	2.905	12	0.5	2	2	10	44.17	2.000	12	0.5
1	2	2	17.20		6	1.5	0	1	0	31.33 91.97	2.604	6	0.4	2	3 4	0	44.04	2.030	12	1.1
1	1	5	18.50	4.790	6	0.7	4	1	9	32.00	2.602 2.706	6	1.0	0	4	9 11	44.05	2.029 2.026	6	1.4
2	1	3 2	18.50 18.77	4.790	6	2.0	4	0	1	32.00 32.10	2.790	6	2.0	5	1	11	44.75	2.020	19	0.8
0	2	ว ว	18.77	4.121	6	26.0	4	4	1	32.19 32.10	2.781 2.781	6	0.5	5	1	1	45.15 45.97	2.009	12	0.8
2	2 0	1	10.77	4.121	6	20.0	2	4 9	5	32.19 32.45	2.761 2.750	12	1.4	5	0	6	45.27	2.003 1.006	6	0.0
0	2	4	20.77 20.77	4.270	6	15.9	2	2 1	2	32.40 32.73	2.139	6	2.4	5	1	2	45.45	1.990	12	0.0
$\frac{1}{2}$	1	1	21.28	4 175	12	10.2	1	1	9	33.40	2.100 2.683	12	1.0	2	4	5	46 22	1.960	12	0.0
1	2	1	21.20	4 175	12	0.6	3	1	5	33.45	2.000 2.678	12	0.7	2	1	12	46.32	1.960	12	0.1
1	0	6	21.60	4 114	6	5.5	4	0	3	33 61	2.616	6	13.7	5	1	3	46.34	1 959	12	1.6
0	ĩ	6	21.60	4.114	6	16.7	0	4	3	33.61	2.666	6	1.8	3	2	9	46.93	1.936	12	1.4
1	1	5	21.67	4.101	12	2.2	3	0	7	33.71	2.659	6	0.6	2	3	9	46.93	1.936	12	0.6
1	2	2	22.07	4.028	12	0.7	0	0	10	33.77	2.654	2	12.9	5	0	7	47.17	1.927	6	2.0
2	1	2	22.07	4.028	12	4.0	2	0	9	34.38	2.609	6	0.7	4	0	10	47.21	1.925	6	0.7
<b>2</b>	1	3	23.32	3.815	12	85.9	4	0	4	34.81	2.577	6	3.1	0	4	10	47.21	1.925	6	1.1
1	<b>2</b>	3	23.32	3.815	12	3.1	0	4	4	34.81	2.577	6	1.1	5	1	4	47.27	1.923	12	1.8
3	0	0	23.86	3.729	6	100.0	2	3	1	35.13	2.554	12	1.0	4	2	6	47.68	1.907	12	0.8
0	3	1	24.10	3.692	6	1.1	1	3	6	35.34	2.540	12	1.1	4	1	9	48.41	1.880	12	2.2
1	1	6	24.39	3.650	12	0.4	3	1	6	35.34	2.540	12	5.0	1	4	9	48.41	1.880	12	0.8
0	1	7	24.79	3.591	6	55.3	0	3	8	36.24	2.479	6	0.5	1	5	5	48.45	1.879	12	0.7
1	0	7	24.79	3.591	6	1.0	3	0	8	36.24	2.479	6	1.8	5	1	5	48.45	1.879	12	0.9
3	0	2	24.80	3.590	6	1.6	0	4	5	36.31	2.474	6	1.4	1	0	14	48.71	1.869	6	2.3
2	1	4	24.97	3.566	12	69.1	4	0	5	36.31	2.474	6	0.8	6	0	0	48.85	1.864	6	0.9
1	2	4	24.97	3.566	12	9.0	3	2	3	36.46	2.465	12	5.1	4	2	7	49.36	1.846	12	1.0
0	2	6	25.67	3.470	6	0.5	1	1	10	36.60	2.455	12	4.6	1	2	13	49.58	1.839	12	1.0
2	0	6	25.67	3.470	6	2.8	4	1	0	36.82	2.441	12	7.3	2	1	13	49.58	1.839	12	1.3
0	3	3	25.93	3.436	6	1.9	1	4	1	36.98	2.431	12	0.8	1	5	6	49.85	1.829	12	1.4
1	2	5	26.96	3.307	12	10.5	1	2	9	37.17	2.419	12	0.6	0	4	11	49.92	1.827	6	0.7
2	1	5	26.96	3 307	12	12.3	3	1	7	37.45	2,401	12	76	4	0	11	49.92	1.827	6	0.6



Cł	IEN	4IC	CAL CO	OMPOS	SITI	ON:  C H	Ca _{3.68} (E ohenbe	$I_2O$ rg,	)17. Bul	$_{2} $ [Si _{8.8} nne, W	3Al _{7.2} C Testfalia	) ₃₂ ] a								
Ι	REF	IN	ED CO	OMPOS	ITI(	)N: (C	Ca _{3.68} (E	$I_2O$	)17.	₂₈   [Si ₈	_{.8} Al _{7.2}	O ₃₂ ]								
			CR	YSTAL	DA	ΓΑ: <i>P</i> <i>a</i> α Χ	$112_1/a = 9.843 = 90^{\circ}$ -ray sin	(N 3 Å ngle	o.	14) uni b = 1 $\beta = 9$ vstal re	que ax 0.023 1 90° fineme	kis <b>c</b> , Å ent, <i>l</i>	c = 10 c = 10 $\gamma = 92$ $R_w = 0$	oice 1 .616 . 2.417° .04	l Å					
				REFER	ENC	CE: K In E (A	. F. Fis Molec d. by E America	sche <i>ular</i> 2. M an C	r a ~ <i>Si</i> [. F Che	nd V. S eve Ze laniger mical S	Schram <i>olites -</i> n and 1 Society	nm, - I (. L. B. :: Wa	ACS Ac Sand	dv. C.	hem. C) 2	Se 250-	er. No. -258 (1	<i>101</i> ), 971).		
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	1	0	8.83	10.014	2	5.6	1	2	3	32.50	2.755	4	2.8	2	3	3	42.00	2.151	4	4.5
0	1	1	12.15	7.285	4	69.0	2	1	3	32.64	2.743	4	6.7	2	4	1	42.05	2.149	4	0.9
1	0	1	12.27	7.214	4	23.5	1	-3	2	32.66	2.742	4	49.6	3	2	3	42.19	2.142	4	0.6
1	-1 1	1	14.91 15.36	$5.941 \\ 5.770$	4 4	8.5 21.1	2	-3 -1	$\frac{1}{2}$	32.89 33.03	2.723 2.712	4 4	9.1 47.6	2	-2 2	4 4	42.37 43.06	2.133 2 101	4 4	$5.8 \\ 5.9$
0	0	2	16.70	5.308	2	3.1	$\frac{5}{2}$	3	$\tilde{0}$	33.06	2.712 2.709	2	4.5	0	1	5	43.57	2.101 2.077	4	4.7
0	<b>2</b>	0	17.71	5.007	2	16.4	3	-2	1	33.12	2.705	4	6.2	1	0	5	43.61	2.075	4	0.3
2	0	0	18.04	4.917	2	76.7	1	3	2	33.30	2.690	4	58.4	3	0	4	43.89	2.063	4	1.1
1	1	2	18.92	4.690 4.671	4	0.7 14 9	3 0	1	2	33.66 33.77	2.662 2.654	$\frac{4}{2}$	23.3 30 1	0	4 _3	3 4	44.32 44.33	2.044 2.043	4	2.1
0	$\frac{1}{2}$	1	19.60	4.529	4	1.2	$\frac{0}{2}$	3	1	34.16	2.625	4	18.2	1	-1	5	44.50	2.049 2.036	4	$0.3 \\ 0.4$
2	-1	0	19.78	4.489	2	6.2	3	2	1	34.38	2.609	4	7.5	3	-1	4	44.61	2.031	4	8.4
2	0	1	19.90	4.462	4	10.9	1	0	4	35.02	2.562	4	4.2	2	4	2	44.69	2.028	4	1.4
2	1	$\frac{0}{2}$	20.45	4.342	2	3.8	2	-2	3	35.65	2.518	4	9.9 2.5	1	3	4	44.83	2.022	4	0.4
1	-1 1	$\frac{2}{2}$	20.82 21.15	4.200 4.201	4 4	39.3	1	-1	4	35.87 36.09	2.504 2.489	2 4	$\frac{2.5}{2.9}$	4	-3 -4	0	$44.85 \\ 44.99$	2.021 2.015	2 4	$0.4 \\ 1.7$
1	-2	1	$21.10 \\ 21.28$	4.174	4	28.7	2	-3	2	36.09	2.489	4	0.4	3	1	4	45.11	2.010 2.010	4	8.0
2	-1	1	21.49	4.135	4	5.4	1	1	4	36.28	2.476	4	1.0	0	5	0	45.28	2.003	2	1.7
1	2	1	21.92	4.055	4	24.0	3	-2	2	36.30	2.475	4	2.5	3	-4	1	45.46	1.995	4	0.6
2	1	1	22.12	4.019	4	6.9 4.0	2	2	3	36.44	2.465	4	4.7	4	-1 2	3	45.52	1.993	4	0.6
$\frac{1}{2}$	0	$\frac{2}{2}$	24.44 24.68	3.042 3.607	4 4	$\frac{4.9}{3.7}$	4	3	3	$30.00 \\ 37.02$	2.409 2.428	2 4	$\frac{2.3}{1.9}$	4	-0 -3	1 3	45.70 45.82	1.980	4 4	$\frac{2.7}{0.7}$
$\frac{2}{2}$	-2	$\tilde{0}$	24.84	3.585	2	4.6	3	0	3	37.39	2.420 2.405	4	9.3	0	$^{-5}$	1	46.12	1.960 1.968	4	6.2
1	-2	2	25.82	3.450	4	2.5	4	0	1	37.55	2.395	4	2.6	4	1	3	46.17	1.966	4	1.2
2	2	0	25.93	3.437	2	0.4	1	-4	1	37.66	2.388	4	5.6	5	0	1	46.98	1.934	4	8.1
2	-1	2	25.99	3.428	4	10.2	4	1	0	38.05	2.365	2	0.9	2	-3	4	47.04	1.932	4	0.3
2 1	-2 2	$\frac{1}{2}$	20.24 26.35	3.390	4	$1.4 \\ 3.7$	4	-1 2	1	38.28 38.30	2.301 2 345	4	2.8	1	-2 3	0 २	47.20	1.923 1.923	4	$1.4 \\ 0.5$
2	1	2	20.55 26.52	3.361	4	4.2	1	$\frac{2}{3}$	3	38.46	2.340 2.341	4	0.4	3	4	1	47.20 47.39	1.923	4	3.8
0	3	0	26.71	3.338	2	0.4	2	Õ	4	38.55	2.336	4	8.9	1	5	1	47.49	1.915	4	1.2
0	1	3	26.72	3.336	4	19.1	3	-3	1	38.62	2.331	4	1.4	5	-1	1	47.51	1.914	4	3.2
1	0	3	26.77	3.330	4	18.8	1	-2	4	39.32	2.291	4	2.5	1	2	5	47.58	1.911	4	1.0
2	2	1	27.28	3.270 3.184	4	1.0	1 9	2	4	39.69 30.70	2.271 2.270	4	4.9	2	-4	3	47.59 47.63	1.911	4	2.7
3	0	1	28.02	$3.164 \\ 3.132$	4	69.4 69.1	2	-4 4	$\frac{0}{2}$	39.70 39.81	2.270 2.264	$\frac{2}{4}$	$\frac{0.7}{2.8}$	4 2	ა 1	5	47.03 47.68	1.909 1 907	4	$\frac{2.3}{0.4}$
1	-3	1	29.13	3.066	4	1.3	$\overset{\circ}{4}$	-2	0	40.17	2.245	2	6.5	3	-4	2	47.95	1.897	4	2.2
3	-1	1	29.54	3.024	4	5.0	4	0	<b>2</b>	40.43	2.231	4	1.1	5	1	1	48.30	1.884	4	3.1
1	3	1	29.84	2.994	4	13.3	2	-4	1	40.64	2.220	4	0.6	0	5	2	48.59	1.874	4	0.4
2	-2	2	30.08	2.971	4	0.6	4	-2 1	1	41.10	2.196	4	$\frac{1.2}{2.7}$	2	4	3	48.84	1.865	4	0.6 6 5
2	2 0	ა ვ	30.94 31.14	2.890 2.872	4 4	2.2	$^{4}_{3}$	-1 -2	∠ 3	41 13	2.190 2.194	4 4	$\frac{2.1}{0.4}$	1	-ə -5	2 1	49.13 49.14	1.004 1.854	4 4	$\frac{0.0}{2.3}$
$\tilde{0}$	3	$\frac{3}{2}$	31.66	2.826	4	1.8	2	4	0	41.14	2.194	2	8.6	4	2	3	49.24	1.850	4	$\frac{2.0}{4.6}$
2	-3	0	31.76	2.818	2	4.8	1	4	2	41.25	2.188	4	1.1	1	5	$\overline{2}$	49.90	1.828	4	0.4
3	0	2	32.09	2.789	4	2.5	4	2	0	41.60	2.171	2	1.5	2	-2	5	49.92	1.827	4	0.3
<b>2</b>	-1	3	32.21	2.779	4	3.6	4	1	<b>2</b>	41.82	2.160	4	0.9	5	-1	2	49.92	1.827	4	4.1



CHEMICAL COMPOSITION:	$ Na_{3.6}K_{3.76}(H_2O)_{9.86} $ [Si ₈ Al ₈ O ₃₂ ] Hoewenneg, Hegau, Germany
REFINED COMPOSITION:	$ Na_{3.6}K_{3.76}(H_2O)_{9.86} $ [Si ₈ Al ₈ O ₃₂ ]
CRYSTAL DATA:	$ \begin{array}{l} I121 \ (\text{No. 5}) \ \text{unique axis } \mathbf{b}, \ \text{cell choice 3} \\ a = 10.226 \ \text{\AA}  b = 10.422 \ \text{\AA}  c = 9.884 \ \text{\AA} \\ \alpha = 90^\circ \qquad \beta = 88.315^\circ \qquad \gamma = 90^\circ \\ \text{X-ray single crystal refinement}, \ R_{\rm w} = 0.033 \end{array} $

REFERENCE: A. Alberti and G. Vezzalini, Acta Cryst. **B35** 2866–2869 (1979).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	12.13	7.298	4	100.0	-1	3	2	32.85	2.726	4	11.5	-2	4	<b>2</b>	43.29	2.090	4	11.4
1	0	1	12.27	7.211	2	0.8	-3	<b>2</b>	1	32.90	2.722	4	85.8	2	2	4	43.83	2.066	4	0.2
0	1	1	12.34	7.170	4	21.7	2	1	3	33.06	2.710	4	5.3	-4	2	<b>2</b>	43.95	2.060	4	0.2
-1	0	1	12.64	7.002	2	2.7	1	2	3	33.14	2.703	4	58.0	1	5	0	44.35	2.042	4	0.7
0	2	0	17.01	5.211	2	3.8	-3	1	2	33.51	2.674	4	21.2	0	5	1	44.42	2.040	4	0.3
<b>2</b>	0	0	17.35	5.111	2	67.1	-1	<b>2</b>	3	33.57	2.669	4	7.6	3	4	1	44.57	2.033	4	3.0
0	0	2	17.96	4.940	2	54.7	-2	1	3	33.92	2.643	4	2.9	-2	2	4	44.74	2.026	4	2.0
1	2	1	21.03	4.224	4	96.4	0	4	0	34.42	2.605	2	39.7	4	3	1	44.76	2.025	4	5.3
2	1	1	21.13	4.204	4	6.9	0	0	4	36.37	2.470	2	7.2	-3	4	1	44.90	2.019	4	0.4
-1	<b>2</b>	1	21.25	4.180	4	53.0	1	4	1	36.67	2.450	4	1.6	5	0	1	45.02	2.014	2	0.7
1	1	2	21.51	4.131	4	3.6	3	3	0	36.95	2.433	4	0.4	1	4	3	45.09	2.011	4	1.6
-2	1	1	21.57	4.120	4	11.7	4	1	1	37.10	2.424	4	10.8	5	1	0	45.20	2.006	4	4.9
-1	1	2	21.94	4.051	4	8.8	3	0	3	37.42	2.404	2	0.2	-4	3	1	45.21	2.006	4	0.8
2	2	0	24.39	3.649	4	8.7	-4	1	1	37.62	2.391	4	0.5	-1	4	3	45.42	1.997	4	5.3
<b>2</b>	0	2	24.69	3.605	2	0.3	0	3	3	37.63	2.390	4	4.1	3	1	4	45.56	1.991	4	0.9
0	2	2	24.83	3.585	4	5.7	1	1	4	38.22	2.355	4	4.3	-5	0	1	45.58	1.990	2	2.3
-2	0	2	25.44	3.501	2	0.2	-3	0	3	38.57	2.334	2	0.6	-1	3	4	46.17	1.966	4	0.8
1	3	0	27.11	3.289	4	26.8	-1	1	4	38.73	2.325	4	7.9	-4	1	3	46.44	1.955	4	0.2
0	3	1	27.21	3.277	4	2.9	2	4	0	38.79	2.321	4	0.5	0	1	5	46.79	1.941	4	4.9
3	0	1	27.44	3.251	2	1.0	0	4	2	39.09	2.305	4	7.0	-3	1	4	46.88	1.938	4	1.9
3	1	0	27.54	3.239	4	49.2	4	2	0	39.27	2.294	4	3.9	2	5	1	47.92	1.898	4	0.4
-3	0	1	27.95	3.192	2	0.2	2	0	4	40.07	2.250	2	6.3	1	5	<b>2</b>	48.11	1.891	4	0.2
1	0	3	28.22	3.162	2	0.2	-4	0	2	40.21	2.243	2	5.6	-1	5	<b>2</b>	48.32	1.884	4	1.2
0	1	3	28.42	3.140	4	89.4	0	2	4	40.41	2.232	4	1.6	5	2	1	48.46	1.878	4	5.3
-1	0	3	28.72	3.108	2	2.1	3	3	2	41.01	2.201	4	1.4	5	1	2	48.48	1.878	4	3.6
<b>2</b>	2	2	30.14	2.965	4	9.6	2	3	3	41.36	2.183	4	1.9	-5	2	1	48.99	1.859	4	2.2
-2	2	2	30.77	2.906	4	0.4	3	2	3	41.37	2.183	4	0.5	-5	1	<b>2</b>	49.53	1.840	4	1.4
2	3	1	32.30	2.771	4	7.0	-3	3	2	41.73	2.164	4	2.5	2	1	5	49.76	1.832	4	0.4
3	2	1	32.46	2.758	4	36.6	-2	3	3	42.08	2.147	4	0.3	1	<b>2</b>	5	49.92	1.827	4	3.9
1	3	2	32.56	2.750	4	1.7	-3	2	3	42.44	2.130	4	0.2	4	4	0	49.99	1.824	4	14.0
-2	3	1	32.60	2.747	4	0.7	2	4	2	42.82	2.112	4	12.2							
3	1	2	32.64	2.744	4	13.4	4	2	2	43.03	2.102	4	0.9							



CH	EM	IC	AL CC	MPOS	SITI	ON:	Na _{0.8} Ca Goble, (	a _{2.82} Dreg	e(H gon	$_{2}^{2}O)_{12.0}$ , U.S.A	$  _{N_{10}}   _{$	_{0.4} Al	_{5.6} O ₃₂ ]							
R	EFI	NF	ED CO	MPOS	SITI	ON:	Na _{0.8} Ca	a2.82	e(H	$_{2}O)_{12.0}$	$_{8} $ [Si ₁₀	_{0.4} Al	_{5.6} O ₃₂ ]							
CRYSTAL DATA REFERENCE: $b \ k \ l \ 2\theta \ d \ M \ l$					TA: CE:	$I\overline{4}m2$ (N a = 9.92 $\alpha = 90^{\circ}$ X-ray R G. Artic America	Vo. 266 ietv oli, <i>n N</i>	119 Å reld ⁄in	b) b = 9 $\beta =$ refines eralogi	9.9266 90° ment, 1 st <b>77</b> 1	Å R _{exp}	c = 1 $\gamma = 9$ = 0.04 196 (19)	0.3031 0° 7, R _{wp} 92).	Å , =	0.1	27, $R_{\rm F}$	$h_{2} = 0.1$	111		
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	Ο	1	12 38	7 1/9	8	100.0	) 3	1	2	33/13	2 681	16	63.2	3	3	2	12 13	2 130	8	24
1	1	0	12.00 12.61	7.019	4	100.0	) 3	2	1	3370	2.001 2.660	16	6.0	2	2	4	43.58	2.100 2.077	8	5.4
0	0	$\frac{0}{2}$	17.21	5.152	2	1.2	2 0	0	4	34.83	2.576	2	8.3	4	2	2	44.44	2.038	16	0.4
$\tilde{2}$	Õ	0	17.87	4.963	4	54.1	4	Õ	0	36.20	2.482	4	0.7	1	0	$\overline{5}$	44.93	2.018	8	1.3
1	1	2	21.39	4.153	8	63.4	1	1	4	37.18	2.418	8	0.3	3	1	4	45.55	1.991	16	4.3
2	1	1	21.80	4.077	16	16.6	3 3	0	3	37.75	2.383	8	0.3	4	1	3	46.04	1.971	16	0.9
	-	-			_										-					

0	0	2	17.21	5.152	2	1.2	0	0	4	34.83	2.576	2	8.3	4	2	2	44.44	2.038	16	0.4
<b>2</b>	0	0	17.87	4.963	4	54.1	4	0	0	36.20	2.482	4	0.7	1	0	5	44.93	2.018	8	1.3
1	1	2	21.39	4.153	8	63.4	1	1	4	37.18	2.418	8	0.3	3	1	4	45.55	1.991	16	4.3
<b>2</b>	1	1	21.80	4.077	16	16.6	3	0	3	37.75	2.383	8	0.3	4	1	3	46.04	1.971	16	0.9
<b>2</b>	0	2	24.91	3.574	8	0.4	4	1	1	38.40	2.344	16	1.0	4	3	1	46.59	1.949	16	0.3
<b>2</b>	2	0	25.38	3.510	4	0.8	3	3	0	38.47	2.340	4	0.5	5	0	1	46.59	1.949	8	5.7
1	0	3	27.48	3.246	8	41.3	2	0	4	39.41	2.286	8	0.2	5	1	0	46.66	1.947	8	0.2
3	0	1	28.33	3.150	8	96.3	4	0	<b>2</b>	40.34	2.236	8	0.7	2	1	5	48.72	1.869	16	0.1
3	1	0	28.43	3.139	8	3.5	4	2	0	40.65	2.220	8	2.2							
2	1	3	32.97	2.716	16	4.8	3	2	3	42.06	2.148	16	0.6							



 $\mathbf{2}$  $\mathbf{2}$ 1

0 3

1 0 $\mathbf{3}$ 

0

3

3 1

0 3 1

1

1 1 3

3 1

1

2 $\mathbf{2}$  $\mathbf{2}$ 

0

3  $\mathbf{2}$ 0

1

0

3 0

3

 $\mathbf{2}$ 

26.86

27.40

27.75

27.85

27.89

28.01

28.79

28.81

29.25

29.38

30.15

30.95

32.14

32.28

0

3

1

0

1

1

3

3.319

3.255

3.214

3.203

3.198

3.185

3.100

3.099

3.053

3.040

2.964

2.890

2.785

2.773

8

2

4

4

4

4

4

4

8

8

8

8

4

4

4.7

1.1

54.0

4.4

82.8

1.7

84.1

6.1

3.1

6.7

7.5

3.4

2.0

0.6

3 1 3

1 41

3 3 1

 $\mathbf{2}$ 

40

0

4

 $\mathbf{2}$ 1 4

41  $\mathbf{2}$ 

1

0

 $\mathbf{2}$ 40

4

1 4

0 4

 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 

4

 $\mathbf{2}$ 

 $\mathbf{2}$ 

4

0

4

 $\mathbf{2}$ 

1

 $\mathbf{2}$ 

38.79

38.97

39.50

39.68

39.83

39.98

40.18

40.78

40.94

41.00

41.01

41.06

41.19

42.01

2.321

2.311

2.281

2.271

2.263

2.255

2.244

2.212

2.205

2.201

2.201

2.198

2.192

2.151

8

8

8

4

4

4

4

8

8

8

4

4

8

8

0.4

0.8

1.1

2.0

1.1

3.3

0.5

3.6

0.4

1.0

0.6

4.4

0.3

2.3

3 4 1

3 3 3

0 51

1

0

3

4

 $\mathbf{5}$ 

 $\mathbf{2}$  $\mathbf{3}$ 

4 3  $\mathbf{2}$ 

 $\mathbf{2}$ 

51  $\mathbf{2}$ 

3 4

 $\mathbf{5}$ 

51

 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 

1

 $\mathbf{2}$ 

5

4

3

0

4

 $\mathbf{5}$ 

 $\mathbf{2}$ 

1

CH	EM	IC	AL CC	OMPOS	SITI	ON:	Ca _{0.6} Na Antrim	Dis	K _{2.1} tric	$_2(\mathrm{H}_2\mathrm{O})$ t, Nort	$ _{12} $ [Si] thern I	10Al rela	₆ O ₃₂ ] nd					
R	EF.	INF	ED CO	MPOS	SITI	ON:	$ \mathrm{Na}_{2.6}\mathrm{K}_1 $	_{1.7} (]	$H_2($	$D)_{14.9} $	$[Si_{10}A]$	$1_{6}O_{32}$	2]					
			CRY	/STAL	DA'	TA:	$Pmn2_1$ a = 10.1 $\alpha = 90^{\circ}$ X-ray R	(Nc .08 ietv	o. 3 Å veld	1) b = b $\beta = b$ refine	9.766 Å 90° ment, 1	$ m \AA$ $R_{ m wp}$	$c = 1$ $\gamma = 9$ $= 0.13$	$\begin{array}{c} 0.171 \\ 0^{\circ} \\ 6, \ R_{ m F} \end{array}$	Å = 0	.120	6	
	REFERENCE: $b \ k \ l \ 2\theta \ d \ M \ l$						L. B. Mo Z. Krist	cCu allo	ıske ogr.	er and <b>171</b> 2	Ch. Ba 81–289	aerlo ) (19	ocher, 985).					
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d
0	1	0	9.05	9.766	2	2.4	0	3	2	32.66	2.742	4	6.6	2	4	1	42.05	2.149
1	0	1	12.35	7.170	4	51.0	2	3	0	32.72	2.737	4	2.5	3	2	3	42.09	2.147
0	1	1	12.57	7.044	4	72.1	2	1	3	33.11	2.705	8	0.8	2	3	3	42.45	2.130
1	1	0	12.60	7.023	4	6.3	3	1	2	33.19	2.699	8	42.5	3	3	<b>2</b>	42.51	2.127
1	1	1	15.33	5.779	8	8.8	1	<b>2</b>	3	33.37	2.685	8	7.7	2	2	4	43.96	2.060
0	0	<b>2</b>	17.44	5.085	2	5.8	3	<b>2</b>	1	33.49	2.676	8	8.8	4	2	<b>2</b>	44.11	2.053
2	0	0	17.55	5.054	2	29.7	1	3	2	33.88	2.646	8	21.3	2	4	<b>2</b>	44.92	2.018
0	2	0	18.17	4.883	2	21.1	2	3	1	33.92	2.643	8	2.9	0	3	4	45.25	2.004
0	1	2	19.68	4.511	4	1.1	0	0	4	35.30	2.543	2	18.7	1	0	5	45.48	1.994
2	1	0	19.78	4.489	4	0.3	4	0	0	35.52	2.527	2	1.8	0	1	5	45.55	1.991
0	2	1	20.17	4.402	4	6.9	0	1	4	36.51	2.461	4	0.1	3	1	4	45.65	1.987
1	2	0	20.20	4.397	4	4.4	2	2	3	36.85	2.439	8	2.3	4	1	3	45.73	1.984
1	1	2	21.57	4.119	8	100.0	3	2	2	36.92	2.435	8	3.3	5	0	1	45.76	1.983
2	1	1	21.64	4.106	8	14.4	2	3	2	37.31	2.410	8	0.7	0	4	3	45.80	1.981
1	<b>2</b>	1	22.02	4.036	8	14.0	1	1	4	37.62	2.391	8	0.7	1	3	4	46.18	1.966
2	0	2	24.84	3.585	4	1.2	4	1	1	37.82	2.379	8	5.0	1	1	5	46.48	1.954
0	2	2	25.29	3.522	4	4.4	0	4	1	37.90	2.374	4	3.9	0	5	0	46.49	1.953
2	2	0	25.36	3.512	4	0.9	0	3	3	38.33	2.348	4	2.6	1	4	3	46.72	1.944
1	2	2	26.80	3.326	8	17.8	3	3	0	38.45	2.341	4	0.2	5	1	1	46.75	1.943

1.941

1.926

1.918

1.885

1.878

1.874

1.871

1.868

1.863

1.858

1.853

1.845

1.843

1.837

46.81

47.18

47.39

48.29

48.48

48.58

48.65

48.75

48.89

49.02

49.17

49.40

49.46

49.62

M

8

8

8

8

8

8

8

4

4

4

8

8

4

4

8 8

 $\mathbf{2}$ 

8

8

8

8

4

8

4

8

8

4

8

8

8

8

8

8

 $I_{\rm rel}$ 

4.6

0.6

2.7

1.5

4.2

1.5

0.5

1.9

1.1

1.3

1.5

3.2

2.7

1.57.0

0.2

0.2

1.9

0.4

2.3

1.8

4.4

0.3

1.1

0.1

1.1

0.1

0.8

1.5

0.2

3.1

2.5

0.3



CHEMICAL COMPOSITION:	$ (C_6H_{16}N)_2 $ [Al ₆ Mg ₂ P ₈ O ₃₂ ]
	$C_6H_{16}N = di$ -n-propylamine

REFINED COMPOSITION:  $|(C_6H_{16}N)_2|$  [Al₈P₈O₃₂]

CRYSTAL DATA: I112/b (No. 15) unique axis **c**, cell choice 3 a = 10.2192 Å b = 10.2198 Å c = 10.0126 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90.987^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.049$ 

REFERENCE: J. J. Pluth, J. V. Smith and J. M. Bennett, J. Am. Chem. Soc. **111** 1692–1698 (1989).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	1	1	12.38	7.152	4	100.0	1	-2	3	33.16	2.702	4	0.9	2	2	4	44.14	2.052	4	1.6
1	0	1	12.38	7.151	4	98.8	2	-1	3	33.16	2.702	4	0.9	0	5	1	45.29	2.002	4	2.2
0	<b>2</b>	0	17.36	5.109	2	22.4	1	2	3	33.32	2.689	4	3.7	5	0	1	45.29	2.002	4	2.2
<b>2</b>	0	0	17.36	5.109	2	21.7	2	1	3	33.32	2.689	4	3.6	1	-4	3	45.46	1.995	4	4.5
1	-2	1	21.25	4.181	4	2.8	0	4	0	35.13	2.555	2	0.3	4	-1	3	45.47	1.995	4	4.4
<b>2</b>	-1	1	21.25	4.181	4	3.0	4	0	0	35.13	2.554	2	0.3	4	3	1	45.67	1.987	4	0.1
1	2	1	21.50	4.134	4	17.2	0	0	4	35.87	2.503	2	6.0	1	4	3	45.72	1.985	4	1.5
2	1	1	21.50	4.134	4	17.6	1	-4	1	37.23	2.415	4	1.0	4	1	3	45.72	1.984	4	1.5
1	-1	2	21.53	4.127	4	81.9	4	-1	1	37.23	2.415	4	0.9	1	-3	4	45.76	1.983	4	0.8
1	1	2	21.66	4.104	4	26.4	1	4	1	37.53	2.397	4	0.5	3	-1	4	45.76	1.983	4	0.8
2	-2	0	24.43	3.644	2	5.4	4	1	1	37.53	2.396	4	0.5	1	3	4	45.95	1.975	4	0.4
2	2	0	24.86	3.582	2	0.5	0	3	3	37.74	2.384	4	0.2	3	1	4	45.95	1.975	4	0.4
0	2	2	24.90	3.576	4	0.3	3	0	3	37.74	2.384	4	0.2	0	1	5	46.19	1.965	4	0.6
2	0	2	24.90	3.576	4	0.2	2	-4	0	39.15	2.301	2	0.3	1	0	5	46.19	1.965	4	0.5
0	3	1	27.66	3.225	4	72.8	4	-2	0	39.15	2.301	2	0.4	2	-5	1	48.55	1.875	4	0.2
3	0	1	27.66	3.224	4	73.9	0	4	2	39.61	2.275	4	1.8	5	-2	1	48.55	1.875	4	0.2
0	1	3	28.13	3.173	4	14.8	4	0	2	39.61	2.275	4	1.6	1	-5	2	48.81	1.866	4	1.2
1	0	3	28.13	3.173	4	15.3	0	2	4	40.11	2.248	4	0.1	5	-1	2	48.81	1.866	4	1.1
2	-3	1	32.59	2.747	4	0.6	2	0	4	40.11	2.248	4	0.2	1	5	2	49.11	1.855	4	0.7
3	-2	1	32.59	2.747	4	0.6	3	-3	2	41.31	2.186	4	3.3	5	1	2	49.11	1.855	4	0.6
1	-3	2	32.87	2.725	4	13.8	3	3	2	41.92	2.155	4	3.9	2	5	1	49.15	1.854	4	0.3
3	-1	2	32.87	2.725	4	13.5	2	-4	2	43.28	2.091	4	0.2	5	2	1	49.15	1.854	4	0.2
2	3	1	33.09	2.707	4	1.1	4	-2	2	43.28	2.090	4	0.2	1	-2	5	49.65	1.836	4	0.1
3	2	1	33.09	2.707	4	1.2	2	4	2	43.80	2.067	4	0.9	1	2	5	49.77	1.832	4	0.1
1	3	2	33.12	2.705	4	10.9	4	2	2	43.80	2.067	4	0.8	2	1	5	49.77	1.832	4	0.1
3	1	<b>2</b>	33.12	2.705	4	10.6	2	-2	4	43.88	2.063	4	1.1							



# CHEMICAL COMPOSITION: $|Na_6(H_2O)_{12}|$ [Si₁₀Al₆O₃₂]

REFINED COMPOSITION:  $|Na_{5.92}(H_2O)_{11.28}|$  [Si_{9.92}Al_{6.08}O₃₂]

CRYSTAL DATA:  $I\overline{4}$  (No. 82) a = 10.043 Å b = 10.043 Å c = 10.043 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray twinned crystal refinement, R = 0.05

**REFERENCE**:

E: Ch. Baerlocher and W. M. Meier,
 Z. Kristallogr. 135 339–354 (1972).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	12.46	7.101	8	92.1	2	3	1	33.38	2.684	8	11.5	2	4	2	44.18	2.050	8	0.5
1	1	0	12.46	7.101	4	1.0	1	3	2	33.38	2.684	8	12.7	2	2	4	44.18	2.050	8	0.4
2	0	0	17.66	5.022	4	60.6	1	2	3	33.38	2.684	8	7.5	1	4	3	46.08	1.970	8	0.2
0	0	2	17.66	5.022	2	2.7	0	0	4	35.76	2.511	2	6.8	3	1	4	46.08	1.970	8	0.1
<b>2</b>	1	1	21.67	4.100	8	13.3	3	0	3	38.01	2.367	8	0.4	5	0	1	46.08	1.970	8	3.3
1	1	2	21.67	4.100	8	66.1	4	1	1	38.01	2.367	8	0.6	5	1	0	46.08	1.970	4	2.2
1	2	1	21.67	4.100	8	7.0	1	1	4	38.01	2.367	8	1.0	1	3	4	46.08	1.970	8	11.1
<b>2</b>	0	2	25.08	3.551	8	0.8	3	3	0	38.01	2.367	4	0.3	4	3	1	46.08	1.970	8	0.9
<b>2</b>	2	0	25.08	3.551	4	1.1	1	4	1	38.01	2.367	8	12.0	1	0	5	46.08	1.970	8	1.6
3	1	0	28.10	3.176	4	1.6	4	0	2	40.15	2.246	8	1.4	4	1	3	46.08	1.970	8	2.0
3	0	1	28.10	3.176	8	100.0	2	0	4	40.15	2.246	8	0.9	3	4	1	46.08	1.970	8	1.8
1	0	3	28.10	3.176	8	34.9	4	2	0	40.15	2.246	4	2.3	2	5	1	49.72	1.834	8	0.2
<b>2</b>	2	2	30.84	2.899	8	9.0	3	2	3	42.20	2.141	8	1.0	5	1	2	49.72	1.834	8	2.9
<b>2</b>	1	3	33.38	2.684	8	3.5	2	3	3	42.20	2.141	8	0.3	2	1	5	49.72	1.834	8	0.7
3	1	2	33.38	2.684	8	45.0	3	3	2	42.20	2.141	8	1.0	1	5	2	49.72	1.834	8	0.3
3	2	1	33.38	2.684	8	1.2	4	<b>2</b>	2	44.18	2.050	8	6.5							



CHEMICAL COMPOSITION:	$ (Na_2, Ca)_4(H_2O)_{24} $ [Si ₁₆ Al ₈ O ₄₈ ]
	Nova Scotia, Canada

REFINED COMPOSITION:  $|Ca_4(H_2O)_{26.4}|$  [Si₁₆Al₈O₄₈]

CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 13.75 Å b = 13.75 Å c = 10.05 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.17

REFERENCE: K. Fischer,

Neues Jahrbuch für Mineralogie Monatshefte 1 1–13 (1966).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.42	11.908	6	100.0	2	0	3	30.62	2.920	12	7.2	5	0	2	41.98	2.152	12	0.3
1	0	1	11.52	7.680	12	18.8	4	0	1	31.34	2.854	12	7.4	5	1	0	42.26	2.139	12	0.1
1	1	0	12.88	6.875	6	2.1	2	2	2	31.53	2.837	12	0.2	3	0	4	42.58	2.123	12	0.4
2	0	0	14.88	5.954	6	0.9	3	2	0	32.78	2.732	12	0.1	3	2	3	42.71	2.117	24	0.2
2	0	1	17.31	5.122	12	12.3	2	1	3	33.34	2.687	24	12.4	5	1	1	43.25	2.092	24	0.6
0	0	2	17.65	5.025	2	25.0	3	2	1	34.01	2.636	24	1.0	3	3	2	43.40	2.085	12	3.4
1	0	<b>2</b>	19.17	4.630	12	5.0	4	1	0	34.52	2.599	12	4.1	4	2	2	44.09	2.054	24	0.2
2	1	0	19.72	4.501	12	6.4	4	0	2	35.03	2.561	12	1.1	4	1	3	44.11	2.053	24	1.7
2	1	1	21.63	4.108	24	23.5	4	1	1	35.69	2.516	24	0.5	1	0	5	45.78	1.982	12	0.4
1	1	<b>2</b>	21.91	4.057	12	0.2	3	2	<b>2</b>	37.47	2.400	24	1.2	5	1	2	46.13	1.968	24	0.2
3	0	0	22.40	3.969	6	1.0	1	1	4	38.13	2.360	12	0.3	5	0	3	46.80	1.941	12	1.0
3	0	1	24.11	3.692	12	0.4	3	1	3	38.27	2.352	24	0.6	4	0	4	47.34	1.920	12	0.3
2	2	0	25.92	3.437	6	2.5	5	0	1	38.86	2.317	12	0.7	5	2	0	47.69	1.907	12	0.7
2	1	<b>2</b>	26.59	3.353	24	0.6	4	1	2	39.02	2.308	24	0.4	2	0	5	47.76	1.904	12	0.5
3	1	0	27.00	3.303	12	0.9	3	3	0	39.31	2.292	6	1.0	5	<b>2</b>	1	48.60	1.873	24	0.1
1	0	3	27.66	3.225	12	8.7	4	2	0	40.07	2.250	12	0.2	4	<b>2</b>	3	48.75	1.868	24	0.7
4	0	0	30.02	2.977	6	13.5	4	<b>2</b>	1	41.10	2.196	24	0.8	2	1	5	49.67	1.835	24	1.7



# CHEMICAL COMPOSITION: [Si₃₂O₆₄]

REFINED COMPOSITION: [Si₃₂O₆₄]

CRYSTAL DATA: C222 (No. 21)  $a = 16.4206 \text{ Å} \quad b = 20.0540 \text{ Å} \quad c = 5.0464 \text{ Å}$   $\alpha = 90.0^{\circ} \qquad \beta = 90.0^{\circ} \qquad \gamma = 90.0^{\circ}$ X-ray powder diffraction.

REFERENCE: J. Plevert, Y. Kubota, T. Honda, T. Okubo and Y. Sugi, J. Chem. Soc., Chem. Commun. 2363–2364 (2000).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.96	12.705	4	100.0	1	7	0	31.70	2.822	4	1.2	0	8	1	40.17	2.245	4	0.4
0	2	0	8.82	10.027	2	65.5	6	0	0	32.72	2.737	2	0.2	2	4	2	41.55	2.173	8	0.7
<b>2</b>	0	0	10.78	8.210	2	16.1	5	1	1	32.84	2.727	8	1.7	2	8	1	41.71	2.166	8	0.2
<b>2</b>	2	0	13.94	6.352	4	3.0	3	5	1	32.88	2.724	8	5.5	5	7	0	41.84	2.159	4	1.3
1	3	0	14.31	6.191	4	4.6	4	4	1	33.33	2.688	8	1.3	4	0	2	42.03	2.150	4	0.4
3	1	0	16.79	5.280	4	8.0	6	2	0	33.95	2.640	4	1.8	4	8	0	42.24	2.139	4	0.7
0	4	0	17.69	5.014	2	2.9	2	6	1	33.97	2.639	8	1.6	1	5	2	42.69	2.118	8	0.8
1	1	1	18.92	4.690	8	2.6	4	6	0	34.61	2.592	4	0.2	7	1	1	42.75	2.115	8	0.7
0	2	1	19.69	4.508	4	6.5	5	3	1	35.26	2.545	8	1.1	8	0	0	44.12	2.053	2	0.1
<b>2</b>	0	1	20.66	4.299	4	60.7	5	5	0	35.32	2.541	4	0.1	7	3	1	44.71	2.027	8	1.7
3	3	0	20.98	4.235	4	10.2	3	7	0	35.36	2.538	4	0.2	7	5	0	44.76	2.025	4	0.3
4	0	0	21.65	4.105	2	11.0	0	0	2	35.58	2.523	2	8.0	1	9	1	44.80	2.023	8	0.1
2	2	1	22.50	3.951	8	4.1	0	8	0	35.82	2.507	2	0.6	0	6	2	45.02	2.014	4	0.2
1	3	1	22.73	3.912	8	4.5	1	1	2	36.30	2.475	8	1.8	8	2	0	45.08	2.011	4	0.4
1	5	0	22.82	3.896	4	36.5	1	7	1	36.48	2.463	8	2.0	0	10	0	45.21	2.005	2	3.1
4	2	0	23.42	3.799	4	3.8	0	2	2	36.73	2.447	4	0.8	5	1	2	45.56	1.991	8	0.2
3	1	1	24.40	3.648	8	1.7	2	0	2	37.28	2.412	4	0.4	3	5	2	45.59	1.990	8	0.2
0	6	0	26.67	3.342	2	2.5	6	0	1	37.38	2.406	4	2.3	5	7	1	45.71	1.985	8	0.4
2	4	1	27.33	3.264	8	0.7	2	8	0	37.51	2.397	4	0.3	4	8	1	46.08	1.970	8	0.9
3	3	1	27.49	3.244	8	8.1	2	2	2	38.39	2.345	8	0.3	2	6	2	46.43	1.956	8	0.1
5	1	0	27.52	3.241	4	0.1	6	2	1	38.48	2.339	8	1.2	6	6	1	46.51	1.953	8	0.2
3	5	0	27.57	3.235	4	10.0	1	3	2	38.53	2.337	8	0.1	5	3	2	47.43	1.917	8	2.8
4	0	1	28.02	3.185	4	7.9	4	6	1	39.07	2.306	8	0.1	8	0	1	47.84	1.901	4	1.1
1	5	1	28.95	3.084	8	1.9	3	1	2	39.58	2.277	8	0.4	1	7	2	48.39	1.881	8	0.3
4	2	1	29.43	3.035	8	3.2	5	5	1	39.71	2.270	8	1.4	6	0	2	49.11	1.855	4	0.5
5	3	0	30.32	2.948	4	4.6	3	7	1	39.75	2.268	8	0.4	6	8	0	49.30	1.849	4	2.8


CHEMICAL COMPOSITION:	$ Ca_2(H_2O)_{10} $ [Si ₁₂ Al ₄ O ₃₂ ]
	Loudon County, Virginia, U.S.A.

REFINED COMPOSITION:  $|Ca_2(H_2O)_{10}|$  [Si₁₂Al₄O₃₂]

CRYSTAL DATA:  $P12_11$  (No. 4) unique axis **b** a = 7.401 Åb = 17.439 Åc = 7.293 Å $\beta=105.44^\circ$  $\gamma=90^\circ$  $\alpha = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.049$ 

REFERENCE: R. C. Rouse and D. R. Peacor, American Mineralogist **71** 1494–1501 (1986).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	ŀ	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	2	0	10.14	8.719	2	9.9	1	1	2	31.65	2.827	4	3.1	-3	2	2	41.09	2.197	4	1.6
1	0	0	12.41	7.134	2	35.0	-2	4	1	32.30	2.771	4	10.0	-2	2 2	3	41.39	2.181	4	0.8
0	0	1	12.59	7.030	2	55.4	-2	2	2	32.30	2.771	4	8.3	(	8	0	41.42	2.180	2	1.5
1	1	0	13.41	6.603	4	2.2	2	4	0	32.43	2.761	4	0.5	1	. 7	1	41.54	2.174	4	3.9
0	1	1	13.58	6.520	4	2.3	-1	4	2	32.53	2.753	4	15.0	(	) 3	3	41.55	2.173	4	1.3
-1	0	1	15.16	5.845	2	5.2	1	5	1	32.62	2.745	4	2.9	-6	4	1	42.18	2.143	4	5.4
-1	1	1	15.99	5.542	4	38.9	2	2	1	32.68	2.740	4	9.0	- ]	. 4	3	42.65	2.120	4	2.6
1	2	0	16.05	5.521	4	18.8	1	2	2	32.91	2.722	4	2.9	-6	3	2	42.76	2.114	4	1.4
0	2	1	16.20	5.473	4	28.9	1	6	0	33.29	2.692	4	18.1	-2	2 3	3	43.06	2.101	4	2.4
-1	2	1	18.27	4.855	4	81.0	0	6	1	33.36	2.686	4	8.7		4	0	43.34	2.088	4	1.9
1	3	0	19.70	4.506	4	64.6	-2	<b>3</b>	2	34.34	2.611	4	3.8	(	8	1	43.46	2.082	4	0.5
0	3	1	19.82	4.480	4	100.0	-1	6	1	34.46	2.603	4	8.9	6 4	2 3	2	43.55	2.078	4	0.8
1	0	1	19.95	4.450	2	12.8	2	<b>3</b>	1	34.70	2.585	4	8.9		1	1	43.62	2.075	4	1.7
0	4	0	20.37	4.360	2	0.4	1	<b>3</b>	2	34.91	2.570	4	7.5	1	. 0	3	43.75	2.069	2	0.8
1	1	1	20.60	4.312	4	8.2	-2	5	1	35.90	2.502	4	3.1	(	) 4	3	43.86	2.064	4	0.7
-1	3	1	21.56	4.122	4	26.9	2	5	0	36.01	2.494	4	1.6	-2	6	2	43.93	2.061	4	2.0
1	2	1	22.43	3.964	4	14.4	-1	5	2	36.10	2.488	4	3.5	6 4	6	1	44.23	2.048	4	4.9
1	4	0	23.92	3.720	4	6.9	0	5	2	36.28	2.476	4	1.9	6 4	2 7	0	44.35	2.042	4	1.4
0	4	1	24.02	3.705	4	5.2	-3	0	1	36.52	2.460	2	1.5	]	6	2	44.40	2.040	4	1.2
-2	0	1	24.80	3.590	2	5.3	1	6	1	36.94	2.433	4	2.7	-]	. 7	2	44.42	2.039	4	0.5
2	0	0	24.96	3.567	2	9.2	-2	4	2	37.03	2.428	4	9.4	(	) 7	2	44.58	2.033	4	2.3
-1	0	2	25.09	3.550	2	5.7	-1	0	3	37.06	2.426	2	0.6	e e	2	1	44.58	2.032	4	2.6
1	3	1	25.20	3.533	4	7.4	2	4	1	37.37	2.406	4	1.2	1	. 2	3	45.03	2.013	4	1.0
-2	1	1	25.33	3.516	4	11.1	-1	1	3	37.43	2.403	4	1.4	-6	5	1	45.10	2.010	4	1.3
0	0	2	25.34	3.515	2	6.1	1	4	2	37.56	2.394	4	2.4	-2	4	3	45.31	2.002	4	0.6
-1	4	1	25.49	3.495	4	11.4	3	0	0	37.83	2.378	2	1.8	4 4	4	2	45.78	1.982	4	3.3
2	1	0	25.49	3.495	4	16.6	-3	2	1	38.00	2.368	4	5.6	e e	3	1	46.15	1.967	4	1.0
-1	1	2	25.61	3.478	4	22.1	1	7	0	38.27	2.352	4	2.2	e e	5	0	46.20	1.965	4	2.2
0	1	2	25.86	3.446	4	8.7	0	0	3	38.41	2.343	2	7.4	1	. 3	3	46.60	1.949	4	1.7
-2	2	1	26.86	3.320	4	25.8	-1	2	3	38.52	2.337	4	14.3	(	) 5	3	46.70	1.945	4	0.5
2	2	0	27.01	3.301	4	56.4	0	1	3	38.77	2.322	4	0.6	-:	1	3	46.92	1.936	4	3.0
-1	2	2	27.12	3.288	4	13.3	3	2	0	39.27	2.294	4	3.1	-2	2 7	2	47.98	1.896	4	0.8
0	2	2	27.36	3.260	4	41.7	-1	7	1	39.31	2.292	4	7.0	-2	5	3	48.08	1.892	4	1.4
1	5	0	28.49	3.133	4	19.3	-3	3	1	39.79	2.266	4	3.3	e e	4	1	48.29	1.885	4	3.2
0	5	1	28.57	3.124	4	18.9	0	2	3	39.83	2.263	4	3.5	4	5	2	48.53	1.876	4	1.5
1	4	1	28.66	3.114	4	11.3	-2	6	1	39.91	2.259	4	4.6	(	) 9	1	48.75	1.868	4	1.7
-2	3	1	29.24	3.054	4	10.2	-3	1	2	40.06	2.251	4	0.7	-2	8	1	48.88	1.863	4	0.9
2	3	0	29.38	3.040	4	44.4	-2	5	2	40.26	2.240	4	6.5	-1	6	3	48.90	1.862	4	1.1
-1	3	2	29.48	3.030	4	6.6	0	6	2	40.26	2.240	4	5.2	-1	. 8	2	49.04	1.858	4	2.6
0	3	2	29.70	3.008	4	45.2	-1	3	3	40.28	2.239	4	3.3	(	8	2	49.18	1.853	4	0.5
-1	5	1	29.83	2.995	4	3.6	-2	1	3	40.37	2.234	4	2.4	-4	0	1	49.25	1.850	2	10.4
-2	0	2	30.59	2.923	2	7.5	2	5	1	40.57	2.223	4	1.9	-3	5 3	3	49.33	1.847	4	0.4
0	6	0	30.76	2.906	2	14.1	1	5	2	40.76	2.214	4	2.9	ê	6	0	49.53	1.840	4	6.0
-2	1	2	31.02	2.882	4	1.6	2	1	2	40.89	2.207	4	4.7	_4	- 1	1	49.55	1.840	4	0.5
2	1	1	31.42	2.847	4	12.7	3	3	0	41.01	2.201	4	1.4	- ]	. 9	1	49.56	1.839	4	1.4





CHEMICAL COMPOSITION:	$ Na_{0.1}K_{8.57}Ba_{0.04}(H_2O)_{19.56} $ [Si _{26.83} Al _{9.31} O ₇₂ ]
	Mossyrock Dam, Washington, U.S.A.

REFINED COMPOSITION:  $|K_{8.48}(H_2O)_{18}|$  [Si_{26.64}Al_{9.36}O₇₂]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 17.767 Å b = 17.958 Å c = 7.431 Å  $\alpha = 90^{\circ}$   $\beta = 115.93^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.07$ 

REFERENCE: E. Galli, G. Gottardi, H. Mayer, A. Preisinger and E. Passaglia, Acta Cryst. **B39** 189–197 (1983).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	7.41	11.937	4	3.3	3	5	0	30.01	2.978	4	27.8	0	8	0	40.17	2.245	2	0.9
0	2	0	9.85	8.979	2	100.0	1	1	<b>2</b>	30.03	2.975	4	12.7	0	0	3	40.49	2.228	2	1.4
2	0	0	11.07	7.989	2	64.0	-6	0	1	30.21	2.958	2	4.5	-6	2	3	41.12	2.195	4	2.0
-1	1	1	12.90	6.865	4	6.8	4	0	1	30.69	2.913	2	2.3	-1	3	3	41.25	2.189	4	2.6
-2	0	1	13.03	6.792	2	17.8	-2	4	2	31.25	2.862	4	0.5	2	8	0	41.80	2.161	4	0.4
0	0	1	13.25	6.683	2	2.9	5	3	0	31.74	2.819	4	43.6	-2	4	3	42.16	2.143	4	1.9
2	2	0	14.84	5.969	4	12.9	-6	2	1	31.85	2.810	4	14.0	4	0	2	42.17	2.143	2	0.8
1	3	0	15.81	5.606	4	2.2	4	2	1	32.30	2.771	4	0.7	7	3	0	42.38	2.133	4	2.4
-2	2	1	16.36	5.417	4	1.9	-6	0	<b>2</b>	32.57	2.749	2	1.5	-2	8	1	42.41	2.131	4	0.8
-3	1	1	16.86	5.258	4	11.3	-2	6	1	32.70	2.739	4	10.6	-7	1	3	42.85	2.110	4	0.6
1	1	1	17.19	5.157	4	32.0	-5	3	2	32.72	2.737	4	1.6	6	2	1	42.89	2.108	4	5.9
3	1	0	17.37	5.106	4	4.3	0	6	1	32.79	2.732	4	12.8	-6	6	1	42.99	2.104	4	2.6
-1	3	1	19.04	4.661	4	20.3	-4	4	2	33.07	2.708	4	0.5	-3	7	2	43.16	2.096	4	2.2
-4	0	1	20.31	4.373	2	8.2	1	3	2	33.25	2.694	4	7.7	4	6	1	43.34	2.088	4	1.3
2	0	1	20.72	4.286	2	1.1	2	0	2	33.28	2.692	2	0.5	-5	7	1	43.52	2.079	4	0.7
-3	3	1	21.95	4.050	4	1.9	0	4	2	33.43	2.681	4	3.2	1	1	3	43.70	2.071	4	2.6
1	3	1	22.21	4.003	4	60.2	6	0	0	33.65	2.663	2	1.3	3	7	1	43.81	2.067	4	3.9
4	0	0	22.25	3.995	2	34.7	2	2	2	34.79	2.579	4	9.4	5	5	1	44.26	2.046	4	1.4
3	3	0	22.34	3.979	4	53.8	-3	5	2	35.12	2.555	4	1.4	-7	5	2	44.80	2.023	4	5.2
-4	2	1	22.62	3.931	4	21.9	6	2	0	35.15	2.553	4	4.8	-6	4	3	44.84	2.021	4	4.7
2	4	0	22.72	3.914	4	29.4	-1	5	2	35.29	2.543	4	2.8	3	5	2	45.48	1.994	4	0.7
2	2	1	22.99	3.868	4	3.1	1	7	0	35.44	2.533	4	1.7	6	6	0	45.60	1.990	4	0.5
-2	4	1	23.76	3.745	4	2.2	-5	5	1	35.56	2.525	4	6.7	1	9	0	45.83	1.980	4	1.1
0	4	1	23.88	3.727	4	4.4	3	5	1	35.89	2.502	4	2.5	-8	4	1	46.03	1.972	4	4.4
-2	0	2	23.96	3.715	2	5.9	-7	1	1	35.93	2.499	4	2.1	-5	7	2	46.06	1.971	4	0.4
-3	1	2	24.99	3.563	4	29.4	-6	4	1	36.37	2.470	4	3.2	-1	5	3	46.14	1.967	4	4.3
-1	1	2	25.22	3.531	4	0.9	-4	6	1	36.37	2.470	4	3.9	-8	4	2	46.18	1.966	4	1.1
1	5	0	25.42	3.504	4	0.9	5	1	1	36.42	2.467	4	2.4	6	4	1	46.50	1.953	4	2.6
-5	1	1	25.58	3.482	4	4.5	2	6	1	36.62	2.454	4	11.3	-9	1	2	46.53	1.952	4	7.1
-2	2	2	25.96	3.433	4	50.8	-3	1	3	36.63	2.453	4	2.3	8	2	0	46.58	1.950	4	0.5
3	1	1	26.03	3.424	4	6.8	4	4	1	36.78	2.444	4	10.4	2	0	3	46.89	1.938	2	0.6
-4	0	2	26.24	3.396	2	18.5	-2	0	3	36.84	2.439	2	3.9	-8	2	3	47.05	1.932	4	1.2
0	0	2	26.68	3.341	2	19.0	-7	1	2	37.06	2.426	4	5.6	-1	9	1	47.16	1.927	4	1.3
-4	2	2	28.09	3.176	4	45.1	4	6	0	37.55	2.395	4	1.3	-2	8	2	47.31	1.921	4	2.1
-4	4	1	28.49	3.132	4	34.1	3	1	2	37.86	2.377	4	0.9	5	1	2	47.46	1.916	4	0.8
0	2	2	28.50	3.132	4	0.8	-4	2	3	37.99	2.368	4	1.5	7	1	1	47.67	1.908	4	0.5
-3	3	2	28.73	3.107	4	1.0	-5	1	3	38.15	2.359	4	1.1	2	2	3	48.03	1.894	4	0.5
2	4	1	28.80	3.100	4	2.4	-2	2	3	38.23	2.354	4	1.7	-4	8	2	48.62	1.873	4	1.1
-1	3	2	28.93	3.086	4	22.8	-6	4	2	38.39	2.345	4	0.7	3	9	0	48.73	1.869	4	2.1
-5	1	2	29.45	3.033	4	5.3	-3	7	1	38.73	2.325	4	0.5	-9	3	2	48.81	1.866	4	0.5
3	3	1	29.64	3.013	4	1.6	1	1	1	38.89	2.316	4	0.4	-4	0	4	49.05	1.857	2	1.2
-3	5	1	29.71	3.007	4	15.0	2	4	2	39.01	2.309	4	1.3	-5	1	4	49.55	1.840	4	2.0
0	6	1	29.85	2.993	2	4.1	5	3	1	39.18	2.299	4	1.3	5	3	2	49.71	1.834	4	0.7
1	Ð ∡	1	29.90	2.988	4	41.0	-3	ა ი	ა ი	39.37	2.288	4	1.1	-3	1	4	49.80	1.831	4	5.0
4	4	U	29.94	2.984	4	2.2	-4	0	2	40.10	2.240	4	1.0	-7	Э	3	49.86	1.829	4	2.0



CHEMICAL COMPOSITION:	$ Na_{1.84}K_{1.76}Mg_{0.2}Ca_{1.24}(H_2O)_{21.36} $ [Si _{29.84} Al _{6.16} O ₇₂ ]
	Agoura, California, U.S.A.

REFINED COMPOSITION:  $|Na_{1.84}K_{1.76}Mg_{0.2}Ca_{1.24}(H_2O)_{21.36}|$  [Si_{29.84}Al_{6.16}O₇₂]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 17.662 Å b = 17.911 Å c = 7.407 Å  $\alpha = 90^{\circ}$   $\beta = 116.40^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.088$ 

REFERENCE: K. Koyama and Y. Takeuchi,

Z. Kristallogr. 145 216–239 (1977).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	7.46	11.857	4	4.7	4	4	0	30.15	2.964	4	0.4	-7	3	<b>2</b>	39.92	2.258	4	0.4
0	2	0	9.88	8.955	2	100.0	3	5	0	30.16	2.963	4	17.8	-4	6	2	40.25	2.240	4	0.3
2	0	0	11.19	7.910	2	40.0	1	1	<b>2</b>	30.30	2.950	4	11.2	0	0	3	40.80	2.212	2	1.1
-1	1	1	12.94	6.842	4	1.4	-6	0	1	30.41	2.940	2	2.7	3	3	2	40.93	2.205	4	0.3
-2	0	1	13.06	6.780	2	14.5	4	0	1	31.05	2.880	2	1.9	-6	2	3	41.20	2.191	4	2.1
0	0	1	13.35	6.635	2	7.0	5	3	0	32.01	2.796	4	23.1	-1	3	3	41.49	2.176	4	1.5
2	2	0	14.94	5.929	4	6.3	-6	2	1	32.04	2.793	4	8.7	2	8	0	41.94	2.154	4	0.4
1	3	0	15.87	5.586	4	1.9	4	2	1	32.66	2.742	4	0.6	6	0	1	42.13	2.145	2	0.3
-2	2	1	16.40	5.405	4	0.6	-6	0	2	32.66	2.742	2	0.8	-2	4	3	42.34	2.134	4	2.1
0	2	1	16.63	5.331	4	1.6	-2	6	1	32.78	2.732	4	9.7	-2	8	1	42.52	2.126	4	0.5
-3	1	1	16.91	5.243	4	15.8	-5	3	2	32.79	2.731	4	0.4	4	0	2	42.66	2.120	2	0.8
1	1	1	17.36	5.110	4	24.8	0	6	1	32.90	2.722	4	4.9	7	3	0	42.78	2.114	4	1.9
3	1	0	17.53	5.059	4	6.0	1	3	2	33.51	2.674	4	4.0	-7	1	3	42.94	2.106	4	0.4
-1	3	1	19.10	4.648	4	15.6	2	0	2	33.62	2.666	2	1.0	-6	6	1	43.19	2.095	4	1.3
-4	0	1	20.40	4.354	2	5.6	0	4	2	33.62	2.665	4	1.2	-3	7	2	43.27	2.091	4	1.4
1	3	1	22.36	3.976	4	49.2	6	0	0	34.00	2.637	2	0.3	6	2	1	43.38	2.086	4	3.4
4	0	0	22.48	3.955	2	18.1	2	2	2	35.13	2.555	4	4.1	4	6	1	43.67	2.073	4	2.3
3	3	0	22.49	3.952	4	37.2	-3	5	2	35.21	2.549	4	0.7	3	7	1	44.07	2.055	4	1.5
-4	2	1	22.71	3.916	4	21.0	-1	5	2	35.44	2.533	4	2.3	1	1	3	44.08	2.054	4	0.9
2	4	0	22.82	3.897	4	24.4	6	2	0	35.49	2.529	4	2.9	5	5	1	44.66	2.029	4	1.0
2	2	1	23.21	3.832	4	4.9	1	7	0	35.54	2.526	4	1.8	-6	4	3	44.93	2.018	4	2.7
-2	4	1	23.81	3.736	4	3.1	-5	5	1	35.71	2.514	4	3.2	-7	5	2	44.96	2.016	4	2.3
0	4	1	23.98	3.712	4	1.5	3	5	1	36.16	2.484	4	2.0	-7	3	3	45.38	1.998	4	0.4
-2	0	2	24.04	3.702	2	6.8	-7	1	1	36.19	2.482	4	0.9	8	0	0	45.89	1.978	2	0.4
4	2	0	24.61	3.618	4	0.3	-4	6	1	36.49	2.462	4	1.3	6	6	0	45.92	1.976	4	0.8
-3	1	2	25.05	3.555	4	14.7	-6	4	1	36.57	2.457	4	2.4	1	9	0	45.96	1.975	4	0.9
-1	1	2	25.35	3.513	4	0.6	-4	0	<b>3</b>	36.69	2.449	2	0.4	-5	7	2	46.18	1.966	4	0.6
1	5	0	25.49	3.494	4	1.0	2	6	1	36.82	2.441	4	6.2	-8	4	1	46.34	1.959	4	2.6
-5	1	1	25.72	3.463	4	5.0	5	1	1	36.85	2.439	4	1.3	-8	4	2	46.38	1.958	4	1.2
-2	2	2	26.04	3.421	4	32.1	-2	0	3	37.02	2.428	2	3.6	-1	5	3	46.38	1.958	4	4.5
-4	0	2	26.29	3.390	2	13.6	4	4	1	37.11	2.422	4	5.7	-9	1	2	46.77	1.942	4	2.6
3	1	1	26.32	3.386	4	2.8	-7	1	2	37.20	2.417	4	4.1	6	4	1	46.97	1.934	4	2.2
0	0	2	26.88	3.317	2	9.6	4	6	0	37.76	2.383	4	1.5	-8	2	3	47.16	1.927	4	0.8
-4	2	2	28.15	3.170	4	27.2	-4	<b>2</b>	3	38.09	2.362	4	2.0	-1	9	1	47.30	1.922	4	0.6
-4	4	1	28.60	3.121	4	13.8	-5	1	3	38.22	2.355	4	0.6	2	0	3	47.35	1.920	2	0.4
0	2	2	28.70	3.111	4	0.5	3	1	2	38.27	2.352	4	1.1	-2	8	2	47.46	1.916	4	1.3
-3	3	2	28.80	3.100	4	2.7	-2	2	3	38.41	2.344	4	1.9	5	1	2	48.02	1.895	4	0.8
2	4	1	29.00	3.078	4	1.0	-6	4	2	38.50	2.338	4	0.4	-2	6	3	48.32	1.884	4	0.3
-1	3	2	29.07	3.072	4	14.0	-2	6	2	38.75	2.324	4	0.5	2	2	3	48.49	1.877	4	0.6
-5	3	1	29.39	3.039	4	0.7	-3	7	1	38.84	2.319	4	0.8	-4	8	2	48.74	1.868	4	0.5
-5	1	2	29.51	3.027	4	2.8	-7	<b>3</b>	1	38.97	2.311	4	0.2	3	9	0	48.92	1.862	4	1.2
-3	5	1	29.79	2.999	4	9.5	2	4	2	39.34	2.290	4	0.6	-9	3	2	49.06	1.857	4	0.6
3	3	1	29.92	2.986	4	1.3	5	3	1	39.59	2.276	4	0.4	-4	0	4	49.22	1.851	2	0.7
0	6	0	29.93	2.985	2	2.0	6	4	0	39.67	2.272	4	1.2	-5	1	4	49.69	1.835	4	1.0
1	5	1	30.05	2.973	4	26.4	-6	0	3	39.89	2.260	2	0.7	-7	5	3	49.97	1.825	4	0.8



# HEU

### CHEMICAL COMPOSITION: [Si₃₂O₆₄]

REFINED COMPOSITION: [Si₃₂O₆₄]

CRYSTAL DATA: I12/m1 (No. 12) unique axis **b**, cell choice 3 a = 18.65243 Å b = 13.49597 Å c = 7.63109 Å  $\alpha = 90.0^{\circ}$   $\beta = 101.9781^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.0767$ ,  $R_{\rm p} = 0.0558$ ,  $R_{\rm b} = 0.0644$ 

REFERENCE: P. A. Barrett, M. A. Camblor, A. Corma, R. H. Jones and L. A. Villaescusa, *Chemistry of Materials* **9** 1713–1715 (1997).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.15	10.850	4	100.0	6	0	0	29.37	3.041	2	1.7	1	2	3	39.87	2.261	4	0.1
2	0	0	9.69	9.123	2	9.4	5	0	1	29.39	3.039	2	1.4	0	6	0	40.09	2.249	2	0.4
-1	0	1	11.84	7.474	2	1.0	1	4	1	29.88	2.990	4	0.3	7	2	1	41.21	2.190	4	0.1
0	2	0	13.12	6.748	2	2.0	-6	1	1	30.08	2.971	4	0.2	5	5	0	41.62	2.170	4	0.3
0	1	1	13.56	6.532	4	3.0	2	<b>2</b>	<b>2</b>	30.70	2.912	4	0.4	8	2	0	41.81	2.161	4	0.5
1	0	1	13.72	6.455	2	4.4	-1	3	2	30.73	2.910	4	0.3	4	5	1	41.93	2.154	4	0.1
-2	1	1	15.18	5.837	4	5.8	-5	1	<b>2</b>	31.23	2.864	4	0.2	3	0	3	41.99	2.152	2	0.3
3	1	0	15.98	5.545	4	0.5	3	1	2	31.32	2.856	4	0.2	-3	5	2	42.17	2.143	4	0.2
2	2	0	16.34	5.425	4	0.5	-3	4	1	31.46	2.843	4	1.2	1	5	2	42.21	2.141	4	0.3
-3	0	1	16.78	5.283	2	0.5	5	3	0	31.57	2.834	4	0.7	-6	1	3	42.42	2.131	4	0.3
2	1	1	18.08	4.906	4	0.4	4	3	1	31.97	2.799	4	0.3	1	6	1	42.56	2.124	4	0.2
1	2	1	19.02	4.665	4	2.7	-3	3	<b>2</b>	32.27	2.774	4	0.4	-3	6	1	43.74	2.070	4	0.1
4	0	0	19.46	4.562	2	0.8	6	<b>2</b>	0	32.29	2.773	4	0.3	-9	0	1	43.77	2.068	2	0.3
1	3	0	20.33	4.368	4	8.8	5	2	1	32.31	2.771	4	0.3	6	<b>2</b>	2	44.23	2.048	4	0.1
3	0	1	20.66	4.299	2	6.7	1	3	2	32.31	2.770	4	0.1	8	1	1	44.38	2.041	4	0.3
-3	2	1	21.36	4.160	4	2.3	4	4	0	33.02	2.713	4	0.9	-7	0	3	44.83	2.022	2	0.4
-4	1	1	21.64	4.106	4	6.7	1	5	0	33.56	2.670	4	0.1	-6	5	1	44.87	2.020	4	0.5
4	2	0	23.54	3.779	4	1.3	3	4	1	33.77	2.654	4	0.7	4	1	3	45.50	1.994	4	0.2
-2	0	2	23.81	3.737	2	3.0	4	0	2	34.05	2.633	2	0.3	-6	3	3	46.69	1.946	4	0.2
0	0	<b>2</b>	23.84	3.732	2	3.8	6	1	1	34.73	2.583	4	0.5	-9	1	2	46.83	1.940	4	0.2
-1	1	2	24.24	3.672	4	0.5	7	1	0	35.06	2.559	4	0.4	1	7	0	47.42	1.917	4	0.2
3	2	1	24.55	3.625	4	0.2	0	5	1	35.36	2.538	4	1.3	7	4	1	47.63	1.909	4	0.2
3	3	0	24.61	3.617	4	1.1	-1	0	3	35.38	2.537	2	1.1	-2	0	4	47.67	1.908	2	0.4
-5	0	1	24.83	3.585	2	2.2	0	4	2	35.88	2.503	4	0.7	8	4	0	48.16	1.890	4	0.1
5	1	0	25.28	3.523	4	1.6	-2	1	3	36.01	2.494	4	0.1	5	0	3	48.36	1.882	2	0.2
<b>2</b>	3	1	26.05	3.421	4	0.1	-3	0	3	36.05	2.491	2	0.6	-1	1	4	48.46	1.878	4	0.2
-3	1	2	26.13	3.410	4	0.8	-2	5	1	36.05	2.491	4	0.6	8	3	1	48.51	1.877	4	0.2
1	1	2	26.19	3.403	4	5.3	3	5	0	36.42	2.467	4	0.1	0	7	1	48.78	1.867	4	0.2
0	4	0	26.42	3.374	2	5.6	-6	2	2	36.53	2.460	4	0.5	-2	7	1	49.32	1.848	4	0.4
-2	2	2	27.28	3.269	4	0.9	-5	4	1	36.57	2.457	4	1.4	-10	1	1	49.36	1.846	4	0.1
0	2	2	27.30	3.266	4	0.3	-5	3	2	36.59	2.456	4	0.4	4	3	3	49.55	1.839	4	0.1
-4	0	2	27.56	3.237	2	0.6	-4	1	3	38.01	2.367	4	0.2	0	5	3	49.84	1.830	4	0.1
-5	2	1	28.18	3.166	4	1.5	-7	1	2	38.38	2.345	4	0.3	10	0	0	49.98	1.825	2	0.1
-4	3	1	28.68	3.112	4	0.6	5	1	2	38.49	2.339	4	0.3							
-1	4	1	29.04	3.075	4	0.3	-4	4	2	38.54	2.336	4	0.1							



# CHEMICAL COMPOSITION: [Si₆₄O₁₂₈]

# REFINED COMPOSITION: [Si₆₄O₁₂₈]

CRYSTAL DATA:  $P 4_2/m mc$  (No. 131)

 $\begin{array}{l} a = 12.8528 \text{ Å} \quad b = 12.8528 \text{ Å} \quad c = 25.2136 \text{ Å} \\ \alpha = 90.0^{\circ} \qquad \beta = 90.0^{\circ} \qquad \gamma = 90.0^{\circ} \\ \text{X-ray Rietveld refinement, } R_{\rm p} = 0.0827, R_{\rm wp} = 0.1076, R_{\rm b} = 0.0.0626 \end{array}$ 

REFERENCE: L. A. Villaescusa, P. A. Barrett and M. A. Camblor, Angew. Chem., Int. ed. **38** 1997–2000 (1999).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	Ì	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	6.88	12.853	4	52.2	4	0	1	27.99	3.187	8	0.2		4	3	4	37.79	2.380	16	0.5
0	0	2	7.01	12.607	2	100.0	3	1	5	28.20	3.164	16	0.2	:	3	2	8	38.11	2.361	16	0.3
1	0	1	7.72	11.451	8	65.5	0	0	8	28.32	3.152	2	4.2		2	0	10	38.35	2.347	8	0.2
1	1	0	9.73	9.088	4	60.5	2	0	$\overline{7}$	28.40	3.142	8	0.3		5	2	2	38.38	2.345	16	0.2
1	0	2	9.83	9.000	8	41.4	4	1	0	28.64	3.117	8	1.6	:	3	0	9	38.39	2.345	8	0.2
1	0	3	12.58	7.034	8	0.7	4	0	2	28.67	3.114	8	0.4		5	1	4	38.46	2.340	16	0.8
2	0	0	13.78	6.426	4	6.3	3	2	4	28.77	3.103	16	1.2	:	2	1	10	39.01	2.309	16	0.3
0	0	4	14.05	6.303	2	1.1	2	2	6	28.94	3.085	8	2.1		4	4	0	39.67	2.272	4	1.0
2	0	1	14.22	6.227	8	2.3	1	0	8	29.17	3.061	8	0.3		1	0	11	39.95	2.257	8	0.2
2	1	0	15.42	5.748	8	4.3	3	3	0	29.48	3.029	4	2.5		4	0	8	40.07	2.250	8	1.0
2	0	2	15.48	5.725	8	0.3	4	1	2	29.52	3.026	16	1.6		4	<b>2</b>	7	40.14	2.247	16	0.1
1	0	4	15.66	5.659	8	2.7	4	0	3	29.77	3.001	8	0.9		5	3	0	40.94	2.204	8	0.2
2	1	1	15.81	5.604	16	0.5	3	0	6	29.78	3.000	8	2.9		5	3	1	41.11	2.196	16	0.2
2	1	2	16.95	5.230	16	2.8	1	1	8	30.01	2.978	8	0.8		5	2	5	41.87	2.157	16	0.2
1	1	4	17.12	5.180	8	2.0	3	3	2	30.34	2.946	8	0.5		6	0	0	42.19	2.142	4	1.4
2	1	3	18.70	4.744	16	0.9	3	1	6	30.60	2.921	16	0.2		4	4	4	42.28	2.137	8	0.3
1	0	5	18.90	4.694	8	3.4	3	2	5	30.71	2.911	16	1.1		6	0	1	42.34	2.134	8	0.5
<b>2</b>	<b>2</b>	0	19.53	4.544	4	5.8	4	2	0	31.12	2.874	8	3.6		4	2	8	42.57	2.124	16	0.3
<b>2</b>	0	4	19.73	4.500	8	7.2	4	0	4	31.24	2.863	8	3.3		6	0	2	42.82	2.112	8	0.3
3	0	0	20.73	4.284	4	0.9	4	2	1	31.33	2.855	16	1.5		4	0	9	42.82	2.112	8	0.2
2	2	2	20.78	4.275	8	1.0	2	0	8	31.62	2.830	8	0.4	(	0	0	12	43.05	2.101	2	2.6
<b>2</b>	1	4	20.92	4.247	16	0.6	4	2	2	31.94	2.802	16	0.6		5	3	4	43.49	2.081	16	2.1
3	0	1	21.03	4.224	8	1.3	4	1	4	32.03	2.794	16	1.3		5	2	6	43.61	2.075	16	1.1
0	0	6	21.14	4.202	2	2.2	2	1	8	32.40	2.764	16	0.2		1	0	12	43.65	2.074	8	0.1
3	1	0	21.87	4.064	8	21.3	3	3	4	32.80	2.730	8	0.4	:	3	2	10	43.99	2.058	16	0.8
3	0	2	21.91	4.056	8	8.4	3	2	6	32.95	2.718	16	2.8		1	1	12	44.24	2.047	8	0.4
3	1	1	22.15	4.013	16	4.3	4	0	5	33.06	2.710	8	0.3	:	3	0	11	44.84	2.021	8	0.3
1	0	6	22.26	3.994	8	21.5	3	1	7	33.23	2.696	16	0.2		5	3	5	44.88	2.020	16	0.1
<b>2</b>	0	5	22.41	3.967	8	0.5	4	2	4	34.29	2.615	16	0.3		5	4	0	45.17	2.007	8	0.3
3	1	2	22.99	3.868	16	1.7	5	0	0	34.90	2.571	4	0.3		5	0	8	45.54	1.992	8	0.2
3	0	3	23.30	3.817	8	0.2	4	3	0	34.90	2.571	8	0.2		5	4	2	45.77	1.982	16	0.4
1	1	6	23.32	3.814	8	3.4	4	3	1	35.09	2.557	16	0.8		5	1	8	46.11	1.969	16	0.4
2	1	5	23.47	3.791	16	0.2	5	0	1	35.09	2.557	8	0.3		4	1	10	46.31	1.960	16	0.5
2	2	4	24.14	3.686	8	2.9	4	0	6	35.16	2.553	8	0.7		5	4	3	46.51	1.952	16	0.2
3	1	3	24.33	3.659	16	0.5	3	0	8	35.35	2.539	8	0.2		5	3	6	46.52	1.952	16	0.3
3	2	0	24.98	3.565	8	3.0	0	0	10	35.61	2.521	2	0.5	:	3	3	10	46.88	1.938	8	0.5
3	2	1	25.23	3.530	16	0.6	5	1	0	35.62	2.521	8	1.0	:	3	2	11	47.14	1.928	16	0.3
2	0	6	25.32	3.517	8	2.9	5	0	2	35.64	2.519	8	1.5		1	0	13	47.40	1.918	8	0.2
1	0	7	25.68	3.468	8	1.9	4	3	2	35.64	2.519	16	1.3		2	2	12	47.68	1.907	8	0.2
3	2	2	25.97	3.430	16	1.6	2	1	9	35.65	2.518	16	0.3		4	2	10	48.00	1.895	16	0.4
3	1	4	26.09	3.416	16	1.3	4	1	6	35.87	2.504	16	2.8		6	2	5	48.28	1.885	16	0.2
2	1	6	26.27	3.392	16	2.1	4	2	5	35.97	2.497	16	0.3		5	3	7	48.41	1.880	16	0.2
3	2	3	27.17	3.282	16	0.4	3	1	8	36.06	2.491	16	1.3		5	1	9	48.59	1.874	16	0.2
3	0	5	27.31	3.265	8	0.9	1	0	10	36.31	2.474	8	0.8	:	3	1	12	48.79	1.866	16	0.3
4	0	0	27.76	3.213	4	8.1	5	<b>2</b>	0	37.69	2.387	8	0.2		5	4	5	48.83	1.865	16	0.2



# CHEMICAL COMPOSITION: $[Si_{64}O_{128}]$

REFINED COMPOSITION: [Si₆₄O₁₂₈]

CRYSTAL DATA: Cmcm (No. 63)

 $\begin{array}{ll} a = 20.622 \mbox{ \AA} & b = 9.7242 \mbox{ \AA} & c = 19.623 \mbox{ \AA} \\ \alpha = 90.0^{\circ} & \beta = 90.0^{\circ} & \gamma = 90.0^{\circ} \\ \mbox{X-ray Rietveld refinement, } R_{\rm wp} = 0.086, R_p = 0.062 \end{array}$ 

REFERENCE: M.A. Camblor, A. Corma, P. Lightfoot, L.A. Villaescusa and P.A. Wright, Angew. Chem., Int. ed. **36** 2659–2661 (1997).

2     0     0     8.58     10.311     2     10.00     3     1     30.44     2.00     8     2.0     7     3     6     41.30     2.183     8     0.28       1     1     01.006     8.795     4     5.50     3     1     6     31.60     2.876     8     3.6     1     2     4.24     2.817     8     0.21     2.1     2.2     2.3     3.2     3.1.6     2.806     8     3.6     4     2.4     4     4     4.4     4.4     8     0.2       1     1     3     1.6.89     5.240     8     0.2     0.6     3.2.42     2.762     4     1.7     1     9     42.73     2.116     8     0.4       1     1     3     1.6.89     5.00     6     2     0     3.3.4     2.33     2.3     2.33     2.3     3.3     4.33     3.3.4     2.33     4.3     4.33     4.34     4.30     4.33	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0     0     2     9.01     9.811     2     87.8     1     3     3     1.10     2.870     8     2.9     7     3     0     1.42     2.180     4     0.6     0.830     9     1     2     2     1.12     2.152     2.180     4     0.162     2.860     8     1.0     2.22     2     2     8     4.218     2.412     2.137     8     0.2       1     1     2.52     5.549     8     0.2     3     1.3     0     1.379     2.815     4     1.7     7     1     6     4.241     2.131     8     0.0       1     1     1.608     5.010     2     1.6     3.242     2.762     4     1.7     1     1     9     42.74     2.10     8     0.5     2     1.6     3.10     2.714     4     1.3     3.31     2.14     4     3.342     2.844     8     0.3     5     1     8     4.31	2	0	0	8.58	10.311	2	100.0	3	3	1	30.84	2.900	8	2.0	3	3	6	41.36	2.183	8	0.2
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1	0	0	2	9.01	9.811	2	87.8	1	3	3	31.10	2.876	8	2.9	7	3	0	41.42	2.180	4	0.6
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     2     1     2     1     2     1     2     1     2     1     2     1     2     1     2     1     3     1     6     3     1     4     3     3     2     3     1     2     1     6     4     2     3     5     4     2     4     4     2     1     8     0     4     0     1     3     3     2     3     3     2     3     1     2     1     8     0     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4	1	1	0	10.06	8.795	4	53.6	4	2	4	31.17	2.869	8	3.0	9	1	2	41.52	2.175	8	0.3
2     0     2     12.45     7.108     4     4.3     7     1     0     31.74     2.819     4     2.4     5     3     5     42.82     2.137     8     0.2      1     1     1     1     1     1     1     0     15.79     5.613     4     2.2     3     3     2     31.80     2.807     4     10     6     42.41     2.131     8     0.4      0     0     15.79     5.613     4     0.2     3     3     2.817     4     10     6     32.72     4     10     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>1</td> <td>1</td> <td>1</td> <td>11.02</td> <td>8.026</td> <td>8</td> <td>5.9</td> <td>3</td> <td>1</td> <td>6</td> <td>31.66</td> <td>2.826</td> <td>8</td> <td>1.6</td> <td>2</td> <td>2</td> <td>8</td> <td>42.18</td> <td>2.142</td> <td>8</td> <td>0.2</td>	1	1	1	11.02	8.026	8	5.9	3	1	6	31.66	2.826	8	1.6	2	2	8	42.18	2.142	8	0.2
1     1     2     13.52     6.549     8     0.2     6     0     4     31.79     2.815     4     1.7     7     1     6     42.21     2.13     8     2.0      3     1     0     15.79     5.613     4     2.20     31.89     2.807     4     1.0     6     2     4     4.241     2.118     8     0.42       0     0     0     1.880     4.902     2     1.7     4     0     6     3.242     2.762     4     1.0     6     2     4.4241     2.118     8     0.3     4.221     3.31     4.232     2.006     8     0.3       2     1     1.7     3     4.430     4.66     7     1     3     3.322     2.018     8     1.7     8     2     4     4.382     2.066     8     0.1       2     2     2     2.018     8     0.3     1.1     3     3.44     2.588 <t< td=""><td><b>2</b></td><td>0</td><td>2</td><td>12.45</td><td>7.108</td><td>4</td><td>4.3</td><td>7</td><td>1</td><td>0</td><td>31.74</td><td>2.819</td><td>4</td><td>2.4</td><td>5</td><td>3</td><td>5</td><td>42.28</td><td>2.137</td><td>8</td><td>0.2</td></t<>	<b>2</b>	0	2	12.45	7.108	4	4.3	7	1	0	31.74	2.819	4	2.4	5	3	5	42.28	2.137	8	0.2
3   1   0   15.79   5.613   4   2.2   3   2   31.86   2.809   8   1.8   2   4   4   4.2.41   2.130   8   0.2     1   1   3   16.89   5.2.15   2   1.7   4   0   6   32.42   2.762   4   1.0   1   1   9   42.73   2.116   8   0.5     0   0   4   18.80   4.906   2   0.4   5   1   5   3.2.82   2.729   8   0.2   9   1   3   43.84   2.084   8   0.3     1   2   1.880   4.719   4   6.6   2   2   3.302   2.698   8   1.7   8   2   4   4.382   2.066   8   0.5   5   1   8   4.341   2.933   8   0.6   0.2   2   0.2.19   4.453   2.030   8   0.3   4   4   4.451   2.010   8   1.1   3   3   4   3.47   2.86	1	1	2	13.52	6.549	8	0.2	6	0	4	31.79	2.815	4	1.7	7	1	6	42.32	2.135	8	2.0
1   1   3   16.89   5.249   8   5.0   6   2   0   31.89   2.807   4   1.0   6   2   6   4.244   2.130   8   0.2     4   0   0   4   18.08   4.906   2   0.4   5   1   5   32.82   2.729   8   0.2   9   1   3   42.82   2.111   8   0.4     0   2   1   18.80   4.719   4   4.6   7   1   2   33.01   2.714   4   1.5   4   3   43.42   2.066   8   0.6     2   0   20.014   4.430   4   9.6   1   3   4   3.342   2.681   8   1.1   8   4.443   2.006   8   0.1   9   1   4   4.63   2.032   8   0.6   3.3   2.2   2.071   8   0.1   9   1   4   4.43   2.032   8   0.2   3   4.44   4.443   2.030   8   0.3	3	1	0	15.79	5.613	4	2.2	3	3	2	31.86	2.809	8	1.8	2	4	4	42.41	2.131	8	0.4
4     0     0     17.20     5.155     2     1.7     4     0     6     3.242     2.762     4     1.7     1     1     9     42.73     2.116     8     0.2.      3     1.2     1.8.08     4.006     2     0     1     5     3.282     2.729     8     0.2     9     1     3     4.342     2.014     8     0.4       0     1     1.8.80     4.071     0     2     2     3.306     2.714     4     1.15     4     1.8     0.4     2.284     2.118     2     2.4     4.312     2.068     8     1.7     8     3     4.3     2.2     2.668     8     1.1     9     4.4.3     2.000     8     0.3       2     1     1.4     2.070     4.201     8     0.5     3.344     2.668     2.579     8     0.3     4     4     4.519     2.007     8     0.1       1     1     2.387 <td>1</td> <td>1</td> <td>3</td> <td>16.89</td> <td>5.249</td> <td>8</td> <td>5.0</td> <td>6</td> <td>2</td> <td>0</td> <td>31.89</td> <td>2.807</td> <td>4</td> <td>1.0</td> <td>6</td> <td>2</td> <td>6</td> <td>42.44</td> <td>2.130</td> <td>8</td> <td>0.2</td>	1	1	3	16.89	5.249	8	5.0	6	2	0	31.89	2.807	4	1.0	6	2	6	42.44	2.130	8	0.2
0     0     4     18.08     4.906     2     0.4     5     1     5     3.282     2.729     8     0.2     9     1     3     42.84     2.111     8     0.4       3     1     2     18.80     4.719     4     4.66     7     1     2     33.01     2.714     4     1.5     4     4     3     43.42     2.084     8     1.7     2.88     8     1.7     8     2     4     4.32     2.068     8     1.7     8     1.8     4     4.342     2.068     8     1.7     8     2.2     1.8     4.334     2.068     8     1.7     1.8     1.4     4.433     2.006     8     0.1       2     2     2     0.014     4.305     4.307     4     4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4     4.4 <t< td=""><td>4</td><td>0</td><td>0</td><td>17.20</td><td>5.155</td><td>2</td><td>1.7</td><td>4</td><td>0</td><td>6</td><td>32.42</td><td>2.762</td><td>4</td><td>1.7</td><td>1</td><td>1</td><td>9</td><td>42.73</td><td>2.116</td><td>8</td><td>0.5</td></t<>	4	0	0	17.20	5.155	2	1.7	4	0	6	32.42	2.762	4	1.7	1	1	9	42.73	2.116	8	0.5
3   1   2   18.21   4.872   8   40.7   0   2   6   33.01   2.710   8   1.8   7   3   3   4.342   2.084   8   0.6     2   19.45   4.564   4   8.0   6   2   2   33.00   2.019   8   1.8   7   3   3   43.82   2.060   8   0.5     2   0   20.19   4.308   4   5.0   1   3   3.342   2.081   8   0.3   1   9   44.58   2.006   8   0.1     2   2   0.238   4.357   4   6.0   4   2   5   3.112   2.627   8   0.1   9   4   4.63   2.000   8   0.1     3   1   3   2.058   4.260   8   2.3   6   2   3   3.64   2.589   8   0.3   4   4   4.519   2.007   8   0.1     2   2   2.215   4.013   3   3.4   3.568<	0	0	4	18.08	4.906	2	0.4	5	1	5	32.82	2.729	8	0.2	9	1	3	42.84	2.111	8	0.4
0   2   1   18.80   4.719   4   4.6   7   1   2   33.06   2.710   8   1.8   7   3   3   43.77   2.068   8   0.6     2   0   4   20.04   4.430   4   9.6   1   1   7   33.52   2.671   8   1.7   8   4   84.22   2.060   8   0.5     2   2   0   2.019   4.430   4   9.6   1   1   7   33.55   2.671   8   1.1   9   44.63   2.030   8   0.3     2   2   1   20.70   4.291   8   0.5   2   2   6   34.17   2.624   8   2.8   4   4   4   4.4519   2.070   8   0.1     1   1   20.85   4.200   8   2.3   6.74   8   0.2   7   4.54   1.983   8   0.2   3   3.0   3.5   2.508   8   0.4   8   2   5   4.64	3	1	2	18.21	4.872	8	40.7	0	2	6	33.01	2.714	4	1.5	4	4	3	43.42	2.084	8	0.3
4   0   2   19.45   4.564   4   8.0   6   2   2   33.20   2.698   8   1.7   8   2   4   43.82   2.066   8   0.5     2   0   2.0.04   4.430   4   9.6   1   3   3.342   2.681   8   0.3   5   1   8   43.94   2.060   8   0.1     0   2   2   0.20.19   4.398   4   5.9   1   1   7   33.55   2.671   8   0.1   9   1   4   44.58   2.032   8   0.3     2   2   2   1.4   2.07.0   4.218   8   3.47   2.579   8   0.3   4   4   45.10   2.010   8   0.1   1   2.3   2.2   2.15   4.013   8   7.0   5   3   0   35.21   2.549   4   0.2   7   1   7   45.63   1.988   8   0.9   0.2   7   1   7   45.64   1.910   8 <td>0</td> <td>2</td> <td>1</td> <td>18.80</td> <td>4.719</td> <td>4</td> <td>4.6</td> <td>7</td> <td>1</td> <td>2</td> <td>33.06</td> <td>2.710</td> <td>8</td> <td>1.8</td> <td>7</td> <td>3</td> <td>3</td> <td>43.77</td> <td>2.068</td> <td>8</td> <td>0.6</td>	0	2	1	18.80	4.719	4	4.6	7	1	2	33.06	2.710	8	1.8	7	3	3	43.77	2.068	8	0.6
2   0   4   20.04   4.430   4   9.6   1   3   4   33.42   2.681   8   0.3   5   1   8   43.94   2.060   8   0.1     2   2   0   20.19   4.398   4   5.0   1   1   7   33.55   2.671   8   0.1   9   1   4   44.63   2.030   8   0.3     2   2   20.38   4.357   4   6.0   4   2   5   34.12   2.627   8   0.1   9   1   4   44.63   2.00   8   0.3     1   1   20.85   4.260   8   2.3   6   2   3   34.78   2.579   8   0.3   4   4   45.19   2.010   8   0.1     2   2   2   2.215   4.013   8   7.0   5   3   0   35.21   2.549   4   0.2   7   1   7   45.63   1.988   8   0.9   1   1   3   8 <td>4</td> <td>0</td> <td>2</td> <td>19.45</td> <td>4.564</td> <td>4</td> <td>8.0</td> <td>6</td> <td>2</td> <td>2</td> <td>33.20</td> <td>2.698</td> <td>8</td> <td>1.7</td> <td>8</td> <td>2</td> <td>4</td> <td>43.82</td> <td>2.066</td> <td>8</td> <td>0.5</td>	4	0	2	19.45	4.564	4	8.0	6	2	2	33.20	2.698	8	1.7	8	2	4	43.82	2.066	8	0.5
2   0   20.19   4.388   4   5.9   1   1   7   33.55   2.671   8   0.1   9   1   4.458   2.030   8   0.6     2   2   1   20.70   4.291   8   0.5   2   6   34.17   2.627   8   0.1   9   1   4   44.63   2.030   8   0.3     3   1   4   20.73   4.284   8   3.8   7   1   3   34.64   2.589   8   0.5   5   3   6   4   0.1   8   0.1     3   1   3   20.85   4.2013   8   7.0   5   0   35.21   2.549   4   0.2   7   1   7   45.63   1.988   8   0.2   5   1   1   2.387   3.778   8   1.1   3   1   7   35.60   2.508   8   0.4   8   2   5   4.02   0.2   0   0   10   46.26   1.962   2   0.2   0.	2	0	4	20.04	4.430	4	9.6	1	3	4	33.42	2.681	8	0.3	5	1	8	43.94	2.060	8	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	0	20.19	4.398	4	5.9	1	1	7	33.55	2.671	8	1.2	3	1	9	44.58	2.032	8	0.6
2   1   20.70   4.291   8   0.5   2   2   6   34.17   2.624   8   2.8   4   2   8   44.97   2.016   8   1.2     1   1   3   20.73   4.284   8   3.8   7   1   3   34.64   2.589   8   0.5   5   3   6   45.10   2.010   8   0.11     2   2   2   2.215   4.013   8   7.0   5   3   0   35.21   2.549   4   0.2   7   1   7   45.63   1.988   8   0.2     5   1   1   23.87   3.728   8   1.1   3   1   7   55.80   2.608   8   0.4   8   2   5   46.64   1.947   8   0.1     1   1   5   24.84   3.560   8   6.9   1   3   5   36.20   2.481   8   0.4   1   3   8   46.64   1.947   8   0.4   0.4   2	0	2	2	20.38	4.357	4	6.0	4	2	5	34.12	2.627	8	0.1	9	1	4	44.63	2.030	8	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	1	20.70	4.291	8	0.5	2	2	6	34.17	2.624	8	2.8	4	2	8	44.97	2.016	8	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	4	20.73	4.284	8	3.8	7	1	3	34.64	2.589	8	0.5	5	3	6	45.10	2.010	8	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	3	20.85	4.260	8	2.3	6	2	3	34.78	2.579	8	0.3	4	4	4	45.19	2.007	8	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	2	22.15	4.013	8	7.0	5	3	0	35.21	2.549	4	0.2	7	1	7	45.63	1.988	8	0.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	3	22.79	3.902	4	1.3	3	3	4	35.68	2.517	8	1.0	6	2	7	45.74	1.983	8	0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	1	23.87	3.728	8	1.1	3	1	7	35.80	2.508	8	0.4	8	2	5	46.08	1.970	8	0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	4	24.09	3.694	8	8.0	8	0	2	36.02	2.493	4	0.2	0	0	10	46.26	1.962	2	0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	3	24.39	3.650	8	6.9	1	3	5	36.20	2.481	8	0.4	1	3	8	46.64	1.947	8	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	5	24.84	3.584	8	2.7	5	1	6	36.25	2.478	8	2.2	6	4	2	46.69	1.945	8	0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	4	25.06	3.554	4	14.2	5	3	2	36.42	2.467	8	0.3	9	1	5	46.85	1.939	8	0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Э 4	1	2	25.15	3.541	8	8.1	í C	1	4	30.77	2.444	8	0.1	1	5	1	46.92	1.930	4	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	1	20.18	3.337	4	4.0	0	2	4	30.90	2.430	8	1.0	1	Ð ⊿	1	47.17	1.927	8	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	1	20.09	3.481	8	1.0	0	4	1	31.21	2.413	4	1.1	4	4	Э С	47.39	1.918	8	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	4	25.60	0.400 9 497	4 9	0.1	2	0	0 6	37.70	2.380	4	0.3	2 1	4	10	47.42	1.917	0	1.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	0 9	20.92	3.437 3.298	2	0.2	0	0 9	7	37.90	2.309	4	0.4	1 7	1	10	47.47	1.915	0	1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5	2 1	2	20.79	3 984	8	0.3 2.7	2 1	2 1	2	38.07	2.304	8	0.1	1	5	ວ ຈ	47.72	1.900	8	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ວ າ	1 2	3 4	27.10	3.204 3.975	8	2.1	3	3 1	5	38 39	2.303	8	0.7	6	4	2	47.89	1.900	8	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	4 6	21.20 97.97	3 270	2	1.0	5 7	1	5	30.32 30.35	2.049	8	1.6	10	4 9	0	47.03	1.898	1	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0	2	27.21 27.50	3.210	4	1.5	י 1	3	6	30.38	2.230	8	0.4	5	1	q	47.91	1.890	8	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	0	27.86	3.244 3.202	т Д	1.6	8	0	4	39.49	2.200 2.282	4	0.4	9	3	0	48.66	1.001 1.871	4	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	1	28.24	3 160	8	3.4	0	4	3	39.55	2.202 2.279	4	0.1	8	2	6	48.72	1.869	8	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	6	28.63	3.100 3.117	4	1.8	8	2	0	39.55	2.215 2.277	4	0.1	3	5	1	48.89	1.863	8	0.2 0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	3	28.69	3 111	8	0.8	5	3	4	39.86	2.211 2.262	8	0.1	3	1	10	49 19	1.852	8	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	6	29.00	3 065	8	0.3	ğ	1	0	40.44	2.202 2.230	4	0.0	9	1	6	49 46	1.843	8	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	2	29.34	3.044	8	0.5	8	$\frac{1}{2}$	$\frac{3}{2}$	40.67	2.218	8	0.4	11	1	õ	49.52	1.841	4	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	4	29.75	3,003	8	0.8	4	0	8	40.74	2.210 2.215	4	0.6	6	4	4	49.54	1.840	8	0.3
2 2 5 30.53 2.928 8 3.3 4 4 1 41.32 2.185 8 0.2 4 4 6 49.98 1.825 8 0.3	3	3	0	30.49	2.932	4	4.4	4	4	õ	41.05	2.199	4	0.3	4	0	10	49.71	1.834	4	0.1
	2	2	5	30.53	2.928	8	3.3	4	4	1	41.32	2.185	8	0.2	4	4	6	49.98	1.825	8	0.3



REFINED COMPOSITION: |Na₃H₂O| [Si₃Al₃O₁₂]

CRYSTAL DATA:  $Pmc2_1$  (No. 26) a = 7.503 Å b = 8.233 Å c = 5.230 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.039

## REFERENCE: A. Rhein

A. Rheinhardt, E. Hellner and H. Ahsbahs, Fortsch. der Mineralogie **60** 175–176 (1982).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	1	0	10.75	8.233	2	100.0	0	0	2	34.29	2.615	2	23.4	2	0	2	42.12	2.145	4	1.1
1	0	0	11.79	7.503	2	41.0	1	3	0	34.81	2.577	4	0.1	3	<b>2</b>	0	42.28	2.137	4	0.2
1	1	0	15.98	5.546	4	7.4	3	0	0	35.91	2.501	2	0.3	1	<b>2</b>	<b>2</b>	42.70	2.118	8	2.0
0	1	1	20.11	4.415	4	63.3	0	1	2	36.04	2.492	4	1.4	2	1	2	43.60	2.076	8	5.2
0	<b>2</b>	0	21.59	4.116	2	5.0	1	0	2	36.38	2.469	4	0.2	0	4	0	43.99	2.058	2	4.4
1	1	1	23.38	3.805	8	3.9	2	2	1	36.68	2.450	8	39.1	2	3	1	44.42	2.040	8	0.2
1	<b>2</b>	0	24.67	3.609	4	0.2	0	3	1	36.99	2.430	4	15.3	3	2	1	45.86	1.979	8	4.3
2	1	0	26.10	3.414	4	81.7	3	1	0	37.59	2.393	4	1.7	0	4	1	47.47	1.915	4	0.8
0	<b>2</b>	1	27.57	3.235	4	14.4	1	1	2	38.04	2.365	8	1.4	2	2	2	47.81	1.902	8	0.7
1	<b>2</b>	1	30.08	2.970	8	30.8	1	3	1	38.96	2.312	8	3.2	0	3	2	48.06	1.893	4	6.9
<b>2</b>	1	1	31.29	2.859	8	13.9	2	3	0	40.74	2.215	4	0.3	4	0	0	48.53	1.876	2	10.4
<b>2</b>	<b>2</b>	0	32.28	2.773	4	1.1	0	2	<b>2</b>	40.88	2.207	4	3.3	1	4	1	49.09	1.856	8	0.3
0	3	0	32.63	2.744	2	6.2	3	1	1	41.50	2.176	8	2.2	4	1	0	49.86	1.829	4	0.2



JBW

## CHEMICAL COMPOSITION: |Cs_{9.7}K₁₃| [Si_{73.2}Al_{22.8}O₁₉₂]

REFINED COMPOSITION: |Cs_{9.72}K_{12.88}| [Si_{72.96}Al_{23.04}O₁₉₂]

CRYSTAL DATA:  $Im\overline{3}m$  (No. 229) a = 18.671 Å b = 18.671 Å c = 18.671 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.09$ 

REFERENCE: J. B. Parise, R. D. Shannon, E. Prince and D. E. Cox, Z. Kristallogr. 165 175–190 (1983).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.69	13.202	12	60.6	6	2	0	30.27	2.952	24	18.9	7	5	0	41.61	2.170	24	0.2
<b>2</b>	0	0	9.47	9.335	6	78.9	5	4	1	31.04	2.881	48	4.1	6	6	<b>2</b>	42.19	2.142	24	0.7
2	1	1	11.61	7.622	24	16.8	6	2	2	31.79	2.815	24	30.9	7	5	2	42.77	2.114	48	1.1
2	<b>2</b>	0	13.41	6.601	12	28.8	4	4	4	33.24	2.695	8	0.9	8	4	0	43.34	2.087	24	0.1
3	1	0	15.00	5.904	24	100.0	7	1	0	33.95	2.640	24	0.2	8	3	3	43.91	2.062	24	0.3
<b>2</b>	2	<b>2</b>	16.45	5.390	8	0.2	5	5	0	33.95	2.640	12	6.2	9	1	0	43.91	2.062	24	2.6
3	2	1	17.77	4.990	48	6.3	5	4	3	33.95	2.640	48	8.0	7	6	1	45.03	2.013	48	0.1
4	0	0	19.01	4.668	6	1.3	6	4	0	34.64	2.589	24	0.3	9	2	1	45.03	2.013	48	0.6
4	1	1	20.18	4.401	24	20.6	6	3	3	35.32	2.541	24	24.1	6	5	5	45.03	2.013	24	0.3
3	3	0	20.18	4.401	12	0.5	5	5	2	35.32	2.541	24	10.1	8	5	1	46.12	1.968	48	3.3
4	2	0	21.28	4.175	24	27.2	6	4	2	36.00	2.495	48	0.2	7	5	4	46.12	1.968	48	0.2
3	3	2	22.33	3.981	24	1.0	7	3	0	36.65	2.452	24	0.1	9	3	0	46.12	1.968	24	1.1
4	2	<b>2</b>	23.34	3.811	24	29.5	6	5	1	37.94	2.371	48	0.1	7	6	3	47.19	1.926	48	8.9
4	3	1	24.31	3.662	48	1.9	7	3	2	37.94	2.371	48	3.0	8	4	4	47.73	1.906	24	0.5
5	1	0	24.31	3.662	24	4.9	7	4	1	39.20	2.298	48	0.4	8	5	3	48.25	1.886	48	5.2
5	2	1	26.14	3.409	48	45.1	8	1	1	39.20	2.298	24	6.2	7	$\overline{7}$	0	48.25	1.886	12	2.8
4	4	0	27.01	3.301	12	1.5	5	5	4	39.20	2.298	24	3.6	10	0	0	48.77	1.867	6	4.5
4	3	3	27.86	3.202	24	15.5	8	<b>2</b>	0	39.81	2.264	24	0.3	8	6	0	48.77	1.867	24	0.2
5	3	0	27.86	3.202	24	23.1	6	4	4	39.81	2.264	24	1.8	10	1	1	49.29	1.849	24	0.2
6	0	0	28.69	3.112	6	4.1	6	5	3	40.42	2.232	48	0.6	7	$\overline{7}$	<b>2</b>	49.29	1.849	24	0.5
4	4	<b>2</b>	28.69	3.112	24	0.1	8	2	2	41.02	2.200	24	2.5	10	2	0	49.80	1.831	24	0.8
6	1	1	29.49	3.029	24	4.4	6	6	0	41.02	2.200	12	9.2	8	6	2	49.80	1.831	48	5.8
5	3	<b>2</b>	29.49	3.029	48	7.2	7	4	3	41.61	2.170	48	1.8							



CHEMICAL COMPOSITION:	$ Ca_4(H_2O)_{18} $ [S	$\operatorname{Si}_{16}\operatorname{Al}_8\operatorname{O}_{48}$
	Nasik, India	

REFINED COMPOSITION:  $|Ca_4(H_2O)_{18}|$  [Si₁₆Al₈O₄₈]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 14.8538 Å b = 13.1695 Å c = 7.5421 Å  $\alpha = 90^{\circ}$   $\beta = 110.323^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.115$ ,  $R_{\rm p} = 0.090$ ,  $R_{\rm F^2} = 0.046$ 

REFERENCE: G. Artioli and K. Ståhl,

Zeolites **13** 249–255 (1993).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	9.24	9.570	4	100.0	-4	2	2	32.16	2.783	4	15.2	-1	3	3	41.97	2.153	4	2.8
0	0	1	12.52	7.073	2	1.7	4	0	1	32.36	2.766	2	0.3	4	0	2	42.28	2.138	2	0.2
2	0	0	12.71	6.965	2	44.3	5	1	0	32.86	2.726	4	0.5	2	4	2	42.50	2.127	4	0.2
0	2	0	13.45	6.585	2	0.2	-3	3	2	33.03	2.712	4	0.8	4	4	1	42.69	2.118	4	3.3
-1	1	1	13.68	6.474	4	4.1	3	3	1	33.46	2.678	4	0.6	0	6	1	43.15	2.096	4	0.6
-2	0	1	14.42	6.142	2	7.4	-5	1	2	34.03	2.635	4	0.2	2	6	0	43.22	2.093	4	0.2
1	1	1	17.28	5.132	4	14.4	2	4	1	34.38	2.609	4	14.9	-3	5	2	43.22	2.093	4	0.8
0	2	1	18.41	4.819	4	0.1	1	5	0	34.66	2.588	4	0.3	5	3	1	43.99	2.059	4	0.6
2	2	0	18.54	4.785	4	11.4	1	3	2	34.88	2.572	4	4.9	-6	0	3	44.24	2.047	2	0.5
-2	<b>2</b>	1	19.77	4.492	4	9.6	2	2	2	34.96	2.566	4	4.0	-7	1	<b>2</b>	44.34	2.043	4	1.6
-3	1	1	20.05	4.428	4	0.7	4	2	1	35.19	2.551	4	0.2	4	2	2	44.56	2.033	4	3.5
3	1	0	20.28	4.379	4	1.3	-2	0	3	35.72	2.514	2	4.5	2	0	3	44.65	2.029	2	2.4
2	0	1	20.78	4.275	2	10.7	-1	5	1	36.18	2.483	4	2.4	1	5	2	44.70	2.027	4	2.0
1	3	0	21.22	4.187	4	34.4	-2	4	2	36.45	2.465	4	4.4	6	0	1	45.14	2.009	2	1.0
-1	3	1	23.54	3.780	4	1.6	-5	3	1	36.55	2.458	4	3.1	-2	4	3	45.39	1.998	4	0.6
-2	0	2	23.94	3.717	2	0.8	-4	4	1	36.67	2.451	4	14.3	-5	3	3	45.81	1.981	4	0.6
-4	0	1	24.25	3.670	2	29.6	-3	1	3	36.91	2.435	4	1.2	-6	4	1	45.87	1.978	4	0.6
-1	1	2	24.67	3.609	4	0.4	-1	1	3	37.03	2.428	4	0.2	-5	5	1	46.08	1.970	4	5.6
2	2	1	24.83	3.586	4	15.4	0	4	2	37.32	2.410	4	0.3	1	3	3	46.12	1.968	4	0.8
0	0	2	25.18	3.536	2	52.2	3	1	2	37.56	2.394	4	0.2	7	1	0	46.13	1.968	4	0.2
1	3	1	25.83	3.449	4	8.4	4	4	0	37.60	2.392	4	4.5	-6	2	3	46.44	1.955	4	0.2
-3	1	2	26.72	3.337	4	26.3	1	5	1	37.78	2.381	4	2.5	2	6	1	46.51	1.953	4	1.0
0	4	0	27.08	3.292	2	20.6	-4	0	3	37.94	2.372	2	2.1	2	2	3	46.85	1.939	4	1.7
3	1	1	27.24	3.274	4	2.6	0	0	3	38.17	2.358	2	0.3	6	2	1	47.31	1.921	4	0.6
-2	2	2	27.56	3.237	4	1.5	5	3	0	38.26	2.352	4	0.4	5	5	0	47.51	1.914	4	0.4
-3	3	1	27.80	3.209	4	26.6	-2	2	3	38.32	2.349	4	3.8	-7	3	1	47.70	1.907	4	0.9
-4	2	1	27.83	3.206	4	1.0	6	0	0	38.79	2.322	2	0.2	-2	6	2	48.14	1.890	4	1.8
3	3	0	27.97	3.190	4	5.7	-5	3	2	39.29	2.293	4	1.2	-5	5	2	48.37	1.882	4	0.6
0	2	2	28.65	3.115	4	2.0	3	5	0	39.33	2.291	4	2.1	-2	0	4	48.52	1.876	2	0.7
1	1	2	28.93	3.086	4	26.0	-4	4	2	40.15	2.246	4	0.8	5	1	2	48.61	1.873	4	1.1
4	2	0	29.01	3.078	4	11.4	-4	2	3	40.42	2.231	4	0.3	-7	3	2	48.67	1.871	4	0.5
-4	0	2	29.08	3.071	2	2.4	-6	2	2	40.75	2.214	4	6.5	-3	1	4	48.82	1.865	4	4.5
2	4	0	30.02	2.977	4	2.4	0	6	0	41.12	2.195	2	7.3	0	6	2	48.83	1.865	4	4.8
-2	4	1	30.81	2.902	4	0.4	6	2	0	41.23	2.189	4	8.6	-4	0	4	49.01	1.859	2	0.6
-5	1	1	30.89	2.895	4	22.4	1	1	3	41.58	2.172	4	0.2	-7	1	3	49.07	1.856	4	3.8
-1	3	2	31.36	2.852	4	0.2	-3	3	3	41.86	2.158	4	4.0	-8	0	1	49.37	1.846	2	0.5
2	0	2	32.12	2.787	2	4.6	-1	5	2	41.90	2.156	4	4.8	3	1	3	49.55	1.839	4	1.9



CHEMICAL COMPOSITION:	$ K_{0.1}Na_{0.30}Ca_{3.60}(H_2O)_{25.2} $ [Si _{16.40} Al _{7.60} O ₄₈ ]
	Teigahorn, Berufjördur, Iceland

REFINED COMPOSITION:  $|Ca_4H_{25.184}O_{13.36}|$  [Si_{16.4}Al_{7.6}O₄₈]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 14.690 Å b = 13.061 Å c = 7.574 Å  $\alpha = 90^{\circ}$   $\beta = 112.01^{\circ}$   $\gamma = 90^{\circ}$ Neutron single crystal refinement,  $R_{\rm F^2} = 0.084$ ; At T = 15K.

REFERENCE: G. Artioli, J. V. Smith and Å. Kvick, Zeolites **9** 377–391 (1989).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	9.38	9.427	4	100.0	5	1	0	33.61	2.667	4	0.2	3	3	2	43.34	2.088	4	1.7
2	0	0	13.00	6.810	2	53.7	-5	1	2	33.95	2.641	4	3.5	4	0	2	43.40	2.085	2	2.0
0	<b>2</b>	0	13.56	6.530	<b>2</b>	1.4	3	3	1	34.15	2.625	4	3.0	0	6	1	43.53	2.079	4	0.2
-1	1	1	13.63	6.496	4	1.2	2	4	1	34.90	2.571	4	15.7	4	4	1	43.56	2.078	4	0.4
-2	0	1	14.33	6.182	<b>2</b>	17.7	1	5	0	34.97	2.565	4	0.6	2	6	0	43.65	2.073	4	1.1
1	1	1	17.60	5.040	4	15.5	1	3	2	35.33	2.540	4	5.7	-6	0	3	43.94	2.061	2	2.8
0	<b>2</b>	1	18.55	4.782	4	0.7	-2	0	3	35.58	2.523	2	6.2	-2	6	1	44.10	2.053	4	0.3
2	<b>2</b>	0	18.83	4.713	4	11.4	2	<b>2</b>	2	35.63	2.520	4	10.7	3	5	1	44.27	2.046	4	0.1
-2	2	1	19.78	4.489	4	30.3	4	2	1	36.08	2.490	4	0.5	-7	1	2	44.52	2.035	4	2.4
-3	1	1	20.08	4.422	4	1.7	-1	5	1	36.43	2.466	4	2.6	5	3	1	45.06	2.012	4	0.1
3	1	0	20.71	4.288	4	1.8	-2	4	2	36.51	2.461	4	5.6	1	5	2	45.22	2.005	4	0.8
2	0	1	21.31	4.170	<b>2</b>	25.3	-3	1	3	36.65	2.452	4	0.6	-2	4	3	45.43	1.997	4	0.6
1	3	0	21.43	4.147	4	57.3	-5	3	1	36.91	2.435	4	2.7	2	0	3	45.45	1.996	2	4.1
-1	3	1	23.64	3.764	4	5.3	-4	4	1	36.95	2.433	4	19.6	-5	3	3	45.58	1.990	4	0.3
-2	0	2	23.76	3.744	2	0.9	-1	1	3	37.10	2.423	4	0.2	4	2	2	45.68	1.986	4	3.8
-4	0	1	24.41	3.647	<b>2</b>	35.6	-4	0	3	37.60	2.392	2	1.9	-6	<b>2</b>	3	46.20	1.965	4	0.7
-1	1	2	24.66	3.611	4	1.3	0	4	2	37.62	2.391	4	1.4	-6	4	1	46.40	1.957	4	3.3
2	<b>2</b>	1	25.34	3.514	4	20.4	4	4	0	38.19	2.357	4	5.0	6	0	1	46.42	1.956	2	3.6
0	0	2	25.37	3.511	2	77.0	1	5	1	38.19	2.357	4	4.7	-5	5	1	46.52	1.952	4	7.4
4	0	0	26.17	3.405	2	1.3	-2	2	3	38.24	2.354	4	3.9	1	3	3	46.69	1.946	4	3.5
1	3	1	26.17	3.405	4	15.2	3	1	2	38.46	2.341	4	0.5	-4	4	3	47.09	1.930	4	0.1
-3	1	2	26.51	3.362	4	28.2	5	3	0	39.00	2.309	4	0.8	2	6	1	47.09	1.930	4	0.8
0	4	0	27.31	3.265	2	29.7	-5	3	<b>2</b>	39.30	2.292	4	0.5	2	2	3	47.65	1.908	4	3.3
-2	2	2	27.46	3.248	4	0.9	6	0	0	39.71	2.270	2	1.6	0	4	3	47.81	1.902	4	0.1
-3	3	1	27.94	3.194	4	16.2	3	5	0	39.81	2.264	4	6.0	5	5	0	48.27	1.885	4	1.6
3	1	1	27.96	3.192	4	1.3	-4	<b>2</b>	3	40.14	2.246	4	0.3	-7	3	1	48.36	1.882	4	0.9
3	3	0	28.40	3.142	4	12.7	-4	4	2	40.17	2.245	4	0.5	-2	6	2	48.37	1.882	4	3.2
0	<b>2</b>	2	28.87	3.092	4	2.6	-6	2	2	40.82	2.211	4	11.0	-5	5	2	48.52	1.876	4	0.5
-4	0	2	28.89	3.091	2	3.9	-5	1	3	40.92	2.205	4	0.1	-3	1	4	48.59	1.874	4	6.0
1	1	2	29.36	3.042	4	16.9	0	<b>2</b>	3	40.96	2.203	4	0.6	6	2	1	48.59	1.874	4	0.3
4	2	0	29.59	3.019	4	16.5	0	6	0	41.48	2.177	2	5.9	-4	0	4	48.64	1.872	2	0.5
2	4	0	30.36	2.944	4	1.5	-3	3	3	41.71	2.165	4	8.3	-4	6	1	48.72	1.869	4	0.6
-5	1	1	31.21	2.866	4	20.0	-1	3	3	42.11	2.146	4	0.5	6	4	0	48.86	1.864	4	0.6
-1	3	2	31.45	2.844	4	0.8	1	1	3	42.12	2.145	4	1.2	-7	1	3	48.87	1.863	4	3.4
-4	<b>2</b>	2	32.04	2.794	4	18.4	-1	5	2	42.13	2.145	4	3.5	-7	3	2	48.91	1.862	4	0.2
2	0	2	32.79	2.731	2	0.8	6	2	0	42.15	2.144	4	10.1	0	6	2	49.25	1.850	4	11.5
-3	3	2	32.96	2.718	4	0.6	2	4	2	43.18	2.095	4	1.1	1	7	0	49.29	1.849	4	0.4
4	0	1	33.27	2.693	2	0.2	-3	5	2	43.31	2.089	4	3.0	5	1	2	49.96	1.825	4	2.5



CHEMICAL COMPOSITION:	$ (C_5H_5NH)_8  [Co_8Ga_{16}P_{24}O_{96}]$
	$C_5H_5NH = pyridinium cation$

REFINED COMPOSITION:  $|(C_5H_6N)_8| [Co_8Ga_{16}P_{24}O_{96}]$ 

CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 15.058 Å b = 13.197 Åc = 15.273 Å $\beta = 112.20^{\circ}$  $\gamma = 90^{\circ}$  $\alpha = 90^{\circ}$ 

REFERENCE: A. M. Chippindale and R. I. Walton,

J. Chem. Soc., Chem. Commun. 2453–2454 (1994).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	9.23	9.584	4	100.0	-4	2	4	31.50	2.840	4	4.6	-7	1	2	42.82	2.112	4	0.8
1	1	1	12.43	7.121	4	0.7	2	0	4	32.44	2.760	2	1.0	-2	6	1	42.86	2.110	4	0.7
<b>2</b>	0	0	12.70	6.971	2	5.6	2	4	<b>2</b>	34.48	2.601	4	15.5	2	6	0	43.13	2.098	4	0.6
0	2	0	13.42	6.599	2	4.5	0	2	5	34.50	2.599	4	0.7	-1	1	7	43.31	2.089	4	0.4
-1	1	2	13.49	6.562	4	5.1	1	3	4	35.00	2.564	4	9.2	-2	6	2	43.59	2.076	4	1.5
-2	0	2	14.07	6.293	2	17.2	2	2	4	35.25	2.546	4	0.4	3	5	2	43.68	2.072	4	1.2
1	1	2	17.41	5.093	4	15.1	-2	0	6	35.29	2.543	2	6.0	3	1	5	43.85	2.065	4	0.4
2	2	0	18.51	4.792	4	0.7	1	5	1	35.63	2.520	4	0.4	-2	2	7	43.88	2.063	4	0.6
-2	2	2	19.49	4.554	4	26.6	5	1	1	35.75	2.512	4	0.9	-7	1	1	43.99	2.058	4	0.5
-3	1	2	19.66	4.515	4	5.1	-6	0	2	35.83	2.506	2	1.6	6	2	1	44.00	2.058	4	0.6
3	1	0	20.26	4.383	4	3.9	-1	5	2	36.04	2.492	4	1.8	-5	3	6	44.90	2.019	4	0.7
2	0	2	21.01	4.229	2	12.6	-2	4	4	36.13	2.486	4	0.8	-2	4	6	45.01	2.014	4	0.9
2	2	1	21.06	4.218	4	3.0	-5	3	2	36.15	2.485	4	5.8	2	0	6	45.02	2.014	2	1.6
1	3	0	21.18	4.195	4	45.4	-1	3	5	36.23	2.479	4	1.8	4	2	4	45.02	2.014	4	1.5
-1	3	1	21.40	4.153	4	2.4	-3	1	6	36.28	2.476	4	1.4	-7	1	5	45.22	2.005	4	0.9
-3	1	3	22.23	3.998	4	2.2	-4	4	2	36.33	2.473	4	8.2	6	0	2	45.46	1.995	2	2.8
-2	2	3	22.77	3.906	4	4.4	-5	1	5	36.33	2.473	4	1.1	-5	5	2	45.71	1.985	4	1.8
1	3	1	22.79	3.903	4	1.2	-4	4	1	36.37	2.470	4	1.2	7	1	0	46.09	1.969	4	1.2
1	1	3	23.09	3.852	4	0.7	-5	3	1	36.63	2.453	4	0.5	-5	5	1	46.10	1.969	4	0.5
0	2	3	23.19	3.836	4	1.4	-4	0	6	37.11	2.423	2	4.1	-6	4	1	46.21	1.965	4	0.8
3	1	1	23.29	3.820	4	3.8	0	4	4	37.28	2.412	4	0.5	-4	4	6	46.50	1.953	4	1.2
-2	0	4	23.53	3.782	2	0.9	-6	0	4	37.43	2.403	2	0.4	2	6	2	46.54	1.951	4	1.7
-4	0	2	23.82	3.736	2	29.2	1	5	<b>2</b>	37.78	2.381	4	5.1	-6	4	4	46.77	1.942	4	0.8
-1	1	4	24.47	3.638	4	0.4	-2	2	6	37.91	2.373	4	2.4	4	4	3	46.78	1.942	4	0.9
2	<b>2</b>	2	25.01	3.560	4	16.1	3	1	4	37.97	2.370	4	1.0	2	2	6	47.19	1.926	4	1.9
0	0	4	25.19	3.535	2	62.9	-5	3	4	38.58	2.333	4	0.4	-7	3	2	47.24	1.924	4	0.4
1	3	2	25.90	3.440	4	1.8	-3	5	<b>2</b>	38.93	2.313	4	0.8	5	5	0	47.43	1.917	4	0.4
-3	1	4	26.14	3.409	4	10.5	5	1	<b>2</b>	39.56	2.278	4	2.0	-7	3	4	47.82	1.902	4	1.4
0	4	0	27.03	3.299	2	23.7	-4	4	4	39.58	2.277	4	2.1	-2	6	4	47.84	1.901	4	1.2
-2	<b>2</b>	4	27.18	3.281	4	2.8	-6	2	4	39.93	2.258	4	1.9	-7	1	6	47.86	1.900	4	0.4
-4	2	1	27.48	3.245	4	0.4	4	2	3	39.94	2.257	4	0.7	6	4	0	47.88	1.900	4	2.9
-3	3	2	27.49	3.245	4	4.0	-5	1	6	40.27	2.239	4	3.7	-4	6	1	48.03	1.894	4	0.8
0	4	1	27.77	3.213	4	3.1	3	5	1	41.00	2.201	4	1.0	-2	0	8	48.09	1.892	2	0.6
3	<b>3</b>	0	27.93	3.195	4	9.6	0	6	0	41.03	2.199	2	1.0	-3	1	8	48.16	1.889	4	2.5
-4	0	4	28.36	3.147	2	1.6	6	2	0	41.19	2.192	4	1.3	1	1	7	48.40	1.881	4	1.0
0	2	4	28.65	3.116	4	1.7	-3	<b>3</b>	6	41.27	2.187	4	1.7	5	3	<b>3</b>	48.40	1.880	4	0.6
4	2	0	28.97	3.082	4	7.0	0	6	1	41.55	2.173	4	0.4	0	6	4	48.76	1.868	4	1.0
1	1	4	29.10	3.068	4	7.8	-1	5	4	41.72	2.165	4	1.4	-1	7	1	48.85	1.864	4	0.7
-3	3	3	29.42	3.036	4	0.4	-1	3	6	41.77	2.162	4	0.9	-8	0	2	48.87	1.864	2	0.5
0	4	2	29.88	2.990	4	0.5	1	1	6	41.78	2.162	4	0.4	4	6	0	48.97	1.860	4	0.4
2	4	0	29.96	2.982	4	2.6	0	4	5	42.08	2.147	4	1.3	5	1	4	49.15	1.854	4	0.4
3	3	1	30.24	2.956	4	0.9	-4	4	5	42.65	2.120	4	0.4	-5	3	7	49.16	1.853	4	0.5
-5	1	2	30.45	2.936	4	28.1	4	0	4	42.76	2.114	2	2.4	2	6	3	49.53	1.840	4	0.6
-5	1	1	31.00	2.884	4	0.5	-3	5	4	42.78	2.114	4	5.5	1	7	1	49.54	1.840	4	0.4
-1	3	4	31.18	2.869	4	1.4	3	3	4	42.80	2.113	4	1.6	-1	7	2	49.85	1.829	4	1.0



CHEMICAL COMPOSITION:	$ Ca_{8.19}Na_{1.95}K_{0.6}(H_2O)_{50} $ [Si ₃₅ Al ₁₉ O ₁₀₈ ] Nurri, Nuoro, Sardinia, Italy
REFINED COMPOSITION:	$ \mathrm{Ca}_{7.8}\mathrm{Na}_{2.16}\mathrm{K}_{0.72}(\mathrm{H}_{2}\mathrm{O})_{46.08} ~[\mathrm{Si}_{35.1}\mathrm{Al}_{18.9}\mathrm{O}_{108}]$
CRYSTAL DATA:	$\begin{array}{l} R\overline{3}m \mbox{ (No. 166) hexagonal setting} \\ a = 13.338 \mbox{ \AA } b = 13.338 \mbox{ \AA } c = 23.014 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 120^{\circ} \\ \mbox{X-ray single crystal refinement, } R = 0.07 \end{array}$

REFERENCE: S. Merlino, E. Galli and A. Alberti, *Tschermaks Mineral. Petrogr. Mitt.* **22** 117–129 (1975).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	8.56	10.324	6	73.2	0	4	2	31.95	2.801	6	68.3	0	3	9	42.43	2.130	6	3.2
0	1	2	10.85	8.152	6	83.0	1	3	4	31.97	2.799	12	0.8	3	0	9	42.43	2.130	6	0.9
0	0	3	11.53	7.671	2	41.1	3	0	6	32.96	2.717	6	2.5	1	4	6	42.93	2.107	12	0.9
1	1	0	13.28	6.669	6	13.2	0	3	6	32.96	2.717	6	2.6	4	1	6	42.93	2.107	12	1.1
0	2	1	15.82	5.602	6	0.2	3	1	5	34.10	2.629	12	7.6	5	1	1	43.81	2.066	12	1.5
2	0	2	17.18	5.162	6	36.4	2	1	$\overline{7}$	34.14	2.626	12	33.9	5	0	5	43.85	2.065	6	2.0
1	1	3	17.62	5.033	12	5.1	2	3	2	34.74	2.582	12	5.3	3	2	7	43.88	2.063	12	2.5
2	1	1	20.71	4.289	12	4.0	0	0	9	35.09	2.557	2	1.4	1	5	2	44.37	2.042	12	0.6
0	1	5	20.77	4.276	6	41.6	4	1	0	35.62	2.521	12	17.0	2	4	4	44.38	2.041	12	1.6
1	2	2	21.77	4.082	12	100.0	2	2	6	35.68	2.517	12	1.0	0	4	8	44.45	2.038	6	0.2
0	2	4	21.80	4.076	6	6.3	0	4	5	36.74	2.446	6	3.2	2	1	10	44.50	2.036	12	0.9
3	0	0	23.10	3.850	6	23.1	3	2	4	37.36	2.407	12	4.0	4	2	5	46.01	1.972	12	0.9
0	0	6	23.19	3.836	2	8.9	1	2	8	37.44	2.402	12	5.0	2	0	11	46.15	1.967	6	1.4
2	0	5	24.73	3.600	6	6.9	1	4	3	37.56	2.395	12	1.7	5	1	4	46.53	1.952	12	3.6
2	1	4	25.61	3.478	12	20.7	4	1	3	37.56	2.395	12	7.0	2	3	8	46.60	1.949	12	2.5
3	0	3	25.89	3.441	6	4.9	0	5	1	39.19	2.299	6	0.6	6	0	0	47.21	1.925	6	0.3
0	3	3	25.89	3.441	6	1.9	2	3	5	39.23	2.297	12	1.8	3	3	6	47.26	1.923	12	0.2
2	2	0	26.73	3.334	6	11.4	1	3	7	39.26	2.294	12	4.5	0	0	12	47.40	1.918	2	3.3
1	1	6	26.81	3.325	12	3.3	1	0	10	39.94	2.257	6	2.0	0	5	7	48.14	1.890	6	4.4
1	3	1	28.12	3.173	12	0.2	3	3	0	40.58	2.223	6	8.4	1	2	11	48.23	1.887	12	0.3
1	2	5	28.17	3.168	12	26.8	2	4	1	41.55	2.173	12	1.2	3	4	2	48.59	1.874	12	1.2
1	0	7	28.22	3.162	6	23.4	4	0	7	41.62	2.170	6	0.3	1	3	10	48.72	1.869	12	2.5
3	1	2	28.93	3.086	12	15.6	4	2	2	42.13	2.145	12	1.1	0	6	3	48.77	1.867	6	0.1
2	2	3	29.20	3.058	12	0.1	0	5	4	42.15	2.144	6	2.1	6	0	3	48.77	1.867	6	0.3
4	0	1	31.22	2.865	6	10.4	0	2	10	42.27	2.138	6	3.5	5	2	0	49.26	1.850	12	2.2
0	2	7	31.31	2.857	6	11.1	3	3	3	42.33	2.135	12	3.8	1	1	12	49.45	1.843	12	2.4



CHEMICAL COMPOSITION:	$ (C_{10}H_{15}NH_2)_6 $ [Si ₅₄ O ₁₀₈ ] $C_{10}H_{15}NH_2 = 1$ -aminoadamantane
REFINED COMPOSITION:	$ (C_{10}N)_6 $ [Si ₅₄ O ₁₀₈ ]
CRYSTAL DATA:	$\begin{array}{l} R\overline{3}m \mbox{ (No. 166) hexagonal setting} \\ a = 13.2251 \mbox{ Å } b = 13.2251 \mbox{ Å } c = 22.2916 \mbox{ Å } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 120^{\circ} \\ \mbox{ X-ray Rietveld refinement, } R_{\rm wp} = 0.104, R_{\rm F} = 0.060 \end{array}$

REFERENCE: L. B. McCusker,

Mat. Sci. Forum Vol. 133-136 423-434 (1993).

And L. B. McCusker, Private communication (1995).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	8.68	10.187	6	17.6	0	4	2	32.28	2.773	6	49.9	3	0	9	43.56	2.078	6	1.2
0	1	2	11.08	7.988	6	54.6	1	3	4	32.44	2.760	12	1.8	0	2	10	43.57	2.077	6	0.7
0	0	3	11.91	7.431	<b>2</b>	0.5	0	1	8	33.09	2.707	6	1.0	1	4	6	43.65	2.074	12	0.2
1	1	0	13.39	6.613	6	27.1	0	3	6	33.66	2.663	6	0.5	5	1	1	44.22	2.048	12	0.1
0	2	1	15.98	5.547	6	4.9	3	2	1	34.37	2.609	12	0.3	5	0	5	44.46	2.037	6	0.8
2	0	2	17.41	5.094	6	66.4	3	1	5	34.67	2.587	12	1.4	3	<b>2</b>	7	44.71	2.027	12	0.7
1	0	4	17.70	5.011	6	7.1	2	1	7	34.98	2.565	12	8.2	1	5	2	44.80	2.023	12	0.4
1	1	3	17.96	4.940	12	13.6	2	3	2	35.09	2.557	12	1.5	2	4	4	44.93	2.018	12	0.6
2	1	1	20.90	4.250	12	14.5	4	0	4	35.24	2.547	6	2.2	0	4	8	45.42	1.997	6	1.0
0	1	5	21.39	4.155	6	55.2	2	0	8	35.84	2.506	6	0.1	2	2	9	45.77	1.982	12	0.3
1	<b>2</b>	2	22.03	4.035	12	100.0	4	1	0	35.93	2.499	12	3.6	2	1	10	45.78	1.982	12	0.5
0	<b>2</b>	4	22.26	3.994	6	0.4	0	0	9	36.27	2.477	2	0.1	4	2	5	46.65	1.947	12	0.5
3	0	0	23.30	3.818	6	12.3	2	2	6	36.37	2.470	12	0.7	5	1	4	47.09	1.930	12	0.8
0	0	6	23.95	3.715	2	4.6	3	2	4	37.85	2.377	12	0.5	2	<b>3</b>	8	47.56	1.912	12	0.2
2	0	5	25.32	3.518	6	5.5	4	1	3	37.98	2.369	12	0.7	2	0	11	47.60	1.910	6	0.4
2	1	4	26.06	3.419	12	1.2	1	2	8	38.42	2.343	12	0.3	6	0	0	47.64	1.909	6	1.5
0	3	3	26.24	3.396	6	0.7	1	1	9	38.82	2.319	12	0.2	3	3	6	47.99	1.896	12	0.5
2	2	0	26.97	3.306	6	22.9	0	5	1	39.55	2.279	6	4.5	1	5	5	48.75	1.868	12	1.1
1	1	6	27.54	3.239	12	1.5	3	3	0	40.94	2.204	6	1.1	0	5	7	48.98	1.860	6	8.4
1	3	1	28.38	3.145	12	3.8	1	0	10	41.26	2.188	6	0.6	0	0	12	49.04	1.858	2	6.6
1	2	5	28.74	3.106	12	26.0	4	0	7	42.45	2.129	6	3.1	3	4	2	49.07	1.857	12	2.8
1	0	7	29.10	3.068	6	29.5	4	2	2	42.55	2.125	12	0.1	0	6	3	49.29	1.849	6	0.5
3	1	2	29.23	3.055	12	9.1	0	5	4	42.68	2.119	6	3.3	5	2	0	49.71	1.834	12	6.5
4	0	1	31.50	2.840	6	1.1	3	3	3	42.79	2.113	12	2.8							
0	2	$\overline{7}$	32.16	2.783	6	4.7	0	3	9	43.56	2.078	6	3.5							



CHEMICAL COMPOSITION:	$ Na_{9.96}(K, Ca)_{8.04}Ca_6(SO_4)_5Cl_{3.5}F_{0.5} $ [Si ₁₈ Al ₁₈ O ₇₂ ] Pitigliano, Tuscany, Italy
REFINED COMPOSITION:	$ K_{13.788}Ca_6(SO_4)_5Cl_{3.5}F_{0.5}  [Si_{18}Al_{18}O_{72}]$
CRYSTAL DATA:	$\begin{array}{lll} P\overline{6} \mbox{ (No. 174)} \\ a = 12.8701 \mbox{ \AA } b = 12.8701 \mbox{ \AA } c = 16.096 \mbox{ \AA } \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 120^{\circ} \\ \mbox{X-ray single crystal refinement, } R_{\rm p} = 0.0365, R_{\rm wp} = 0.0829 \end{array}$
<b>REFERENCE</b> :	P. Ballirano, S. Merlino and E. Bonaccorsi,

Canadian Mineralogist **34** 1021–1030 (1996).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	1	ı	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	5.49	16.096	<b>2</b>	0.8		2	0	5	32.11	2.788	12	0.1	3	2	4	41.86	2.158	12	0.3
1	0	0	7.93	11.146	6	5.5	4	1	0	0	32.12	2.786	6	14.6	2	3	4	41.86	2.158	12	0.3
1	0	1	9.65	9.163	12	4.8		2	<b>2</b>	3	32.45	2.759	12	6.0	5	0	<b>2</b>	42.06	2.148	12	0.1
1	0	2	13.57	6.525	12	5.7	4	1	0	1	32.61	2.746	12	9.8	3	3	0	42.13	2.145	6	31.1
1	1	0	13.76	6.435	6	0.4	:	3	0	4	32.81	2.730	12	3.6	2	0	$\overline{7}$	42.53	2.126	12	0.4
1	1	1	14.83	5.975	12	0.7	(	)	0	6	33.40	2.683	2	35.5	4	0	5	42.93	2.107	12	1.7
<b>2</b>	0	0	15.90	5.573	6	1.2	:	3	1	3	33.45	2.679	12	8.6	4	2	0	42.94	2.106	6	2.2
0	0	3	16.52	5.365	2	4.9		1	3	3	33.45	2.679	12	6.1	2	4	0	42.94	2.106	6	2.3
<b>2</b>	0	1	16.84	5.266	12	1.2	4	1	0	2	34.05	2.633	12	9.2	2	2	6	43.94	2.060	12	9.1
1	1	2	17.65	5.026	12	0.3		1	0	6	34.38	2.608	12	3.0	1	3	6	44.73	2.026	12	0.2
1	0	3	18.35	4.834	12	48.7		2	1	5	35.08	2.558	12	0.2	1	2	$\overline{7}$	44.91	2.018	12	1.0
<b>2</b>	0	2	19.37	4.582	12	0.5		1	<b>2</b>	5	35.08	2.558	12	0.1	2	1	$\overline{7}$	44.91	2.018	12	1.0
<b>2</b>	1	0	21.09	4.213	6	0.7		2	3	0	35.09	2.557	6	0.2	0	0	8	45.06	2.012	2	0.4
1	<b>2</b>	0	21.09	4.213	6	3.1	:	3	2	0	35.09	2.557	6	0.3	3	2	5	45.29	2.002	12	0.6
1	1	3	21.56	4.121	12	3.5		1	1	6	36.28	2.476	12	0.3	2	3	5	45.29	2.002	12	0.6
<b>2</b>	1	1	21.81	4.075	12	1.8	4	1	0	3	36.33	2.473	12	22.8	5	1	0	45.30	2.002	6	1.2
1	<b>2</b>	1	21.81	4.075	12	1.6	:	3	1	4	36.66	2.451	12	3.7	1	5	0	45.30	2.002	6	1.2
2	0	3	23.01	3.865	12	0.3		1	3	4	36.66	2.451	12	3.7	3	3	3	45.54	1.992	12	1.1
1	0	4	23.50	3.785	12	23.5	:	3	0	5	36.95	2.433	12	2.1	1	0	8	45.83	1.980	12	0.4
1	<b>2</b>	2	23.84	3.732	12	3.1	4	1	1	0	36.96	2.432	6	3.0	4	2	3	46.30	1.961	12	1.8
2	1	2	23.84	3.732	12	2.9		1	4	0	36.96	2.432	6	2.6	2	4	3	46.30	1.961	12	2.2
3	0	0	23.95	3.715	6	100.0	:	2	0	6	37.20	2.417	12	2.2	5	0	4	46.57	1.950	12	0.4
3	0	1	24.59	3.620	12	1.0		1	4	1	37.39	2.405	12	0.2	4	1	5	46.81	1.941	12	0.2
3	0	2	26.42	3.373	12	3.3	4	1	1	1	37.39	2.405	12	0.2	1	4	5	46.81	1.941	12	0.3
2	1	3	26.91	3.313	12	58.6	4	1	1	<b>2</b>	38.67	2.328	12	0.3	4	0	6	47.02	1.933	12	14.6
1	<b>2</b>	3	26.91	3.313	12	58.7		1	4	<b>2</b>	38.67	2.328	12	0.3	1	1	8	47.34	1.920	12	0.4
2	0	4	27.34	3.262	12	2.6	(	)	0	7	39.18	2.299	<b>2</b>	0.2	2	0	8	48.08	1.892	12	0.1
0	0	5	27.71	3.219	2	0.2	4	1	0	4	39.33	2.291	12	5.0	5	1	3	48.54	1.876	12	3.3
2	<b>2</b>	0	27.73	3.218	6	4.0		2	2	5	39.60	2.276	12	0.2	1	5	3	48.54	1.876	12	3.3
1	0	5	28.87	3.093	12	2.5		1	2	6	39.84	2.263	12	0.5	6	0	0	49.04	1.858	6	1.8
1	3	0	28.88	3.091	6	0.2		2	1	6	39.84	2.263	12	0.5	2	3	6	49.23	1.851	12	0.2
3	1	0	28.88	3.091	6	0.6		1	0	7	40.04	2.252	12	0.1	6	0	1	49.38	1.845	12	0.6
3	0	3	29.24	3.054	12	2.8		1	3	5	40.45	2.230	12	1.2	1	3	$\overline{7}$	49.40	1.845	12	0.3
1	3	1	29.42	3.036	12	3.6	:	3	1	5	40.45	2.230	12	1.1	3	1	$\overline{7}$	49.40	1.845	12	0.3
3	1	1	29.42	3.036	12	3.4	ļ	5	0	0	40.46	2.229	6	1.7	5	0	5	49.75	1.833	12	0.2
<b>2</b>	2	2	29.91	2.988	12	0.1		L	4	3	40.73	2.215	12	0.1	3	4	0	49.76	1.832	6	0.6
3	1	2	30.99	2.886	12	4.4	ļ	5	0	1	40.87	2.208	12	0.4							
1	3	2	30.99	2.886	12	4.5	:	3	0	6	41.52	2.175	12	3.8							



20

3

 $3 \quad 30.04$ 

30.05

1

1  $4\quad 0\quad 0\quad 32.03$  2.975

2.974

2.794

12

24

6

0.9

15.5

11.6

CHEMICAL COMPOSITION:						ON:	$\frac{ Na_{12}(H_2O)_{18}  [Si_{12}Al_{12}O_{48}]}{Synthetic material}$													
REFINED COMPOSITION:						DN:	$ Na_{12.5} $	$H_2O$	<b>)</b> ) ₁₄	. ₃₂   [Si	$_{12}Al_{12}$	$D_{48}]$								
			CR	YSTAL	DA	FA:	$P6_{3}mc (1)$ $a = 12.9$ $\alpha = 90^{\circ}$ X-ray Ri	No. 06 . etv	. 18 Å reld	b = 1 $\beta = 1$ refinen	12.906 90° ment, 1	Å R _{wp}	$c = 1$ $\gamma = 1$ $= 0.15$	$10.541 \text{ \AA}$ $120^{\circ}$ $54, R_{\mathrm{F}}$ =	Å = 0.	.084	4, $R_{\rm exp}$	= 0.13	36	
				REFER	RENG	CE: ]	P. A. Sch	nick	ær,	T 040		177	• 1 (	1000)						
						]	Ph.D. Th	nesi	IS I	10. 849	94, ETI	H Zu	irich (	1988).						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.91	11.177	6	10.8	2	2	<b>2</b>	32.54	2.752	12	1.9	3	3	0	42.00	2.151	6	12.8
1	0	1	11.54	7.669	12	42.3	2	1	3	33.16	2.701	24	13.7	1	0	5	43.69	2.072	12	0.3
1	1	0	13.72	6.453	6	100.0	4	0	1	33.17	2.701	12	47.3	3	2	3	43.70	2.071	24	2.9
2	0	0	15.86	5.588	6	3.5	3	1	2	33.54	2.672	24	25.9	4	2	1	43.71	2.071	24	0.7
0	0	2	16.82	5.270	2	0.1	0	0	4	34.02	2.635	2	34.6	5	0	2	44.00	2.058	12	5.3
2	0	1	17.96	4.937	12	5.4	1	0	4	34.98	2.565	12	0.9	2	2	4	44.38	2.041	12	0.1
1	0	2	18.61	4.767	12	71.2	3	2	0	34.99	2.564	12	0.2	3	1	4	45.16	2.008	24	0.8
2	1	0	21.03	4.224	12	6.7	3	0	3	35.11	2.556	12	4.4	3	3	2	45.55	1.992	12	0.9
1	1	2	21.77	4.082	12	2.7	3	2	1	36.05	2.492	24	1.1	2	0	5	46.01	1.973	12	0.3
2	1	1	22.68	3.921	24	52.1	4	0	2	36.39	2.469	12	19.2	5	1	1	46.02	1.972	24	3.3
2	0	2	23.20	3.834 2.796	12 6	8.2 64.7	1	1	4	30.84	2.440	12	2.1	4	2	2	40.31	1.901 1.017	24 19	1.4
ა ვ	0	1	20.00 25.35	5.720 2.512	0 19	5.0	4	1	4	30.80 37.74	2.459	12	1.7	4	1	45	41.42	1.917	12	0.0 4 5
1	0	1 3	25.55 26.59	3 359	12	0.8	2	1	4	38.74	2.304 2.304	12 24	0.5	5	0	े २	40.24	1.886	24 19	4.5
2	1	2	20.05 27.05	3.002	24	81.4	3	2	2	39.06	2.306	24 24	6.0	5	1	2	48.53	1.876	24	3.4
$\frac{2}{2}$	2	0	27.65	3.226	6	3.9	$\frac{5}{2}$	1	4	40.34	2.236	24	1.0	3	2	4	49.60	1.838	24	0.2
3	1	Ő	28.80	3.100	12	6.8	5	0	0	40.35	2.235	6	0.1	4	3	0	49.61	1.837	12	0.3
3	0	2	29.36	3.042	12	0.7	4	1	2	40.76	2.213	24	0.7	3	0	5	49.69	1.835	12	1.1

 $4 \quad 0 \quad 3 \quad 41.28 \quad 2.187$ 

 $3 \quad 0 \quad 4 \quad 41.99 \quad 2.151$ 

 $5 \quad 0 \quad 1 \quad 41.28$ 

12

12

12

2.187

6.7

1.0

13.1

 $6 \quad 0 \quad 1 \quad 49.70 \quad 1.834 \quad 12$ 

1.4



CHEMICAL COMPOSITION:					ION:	$ Na_{12}K_4(H_2O)_{18} $ [Si ₂₈ Be ₈ O ₇₂ ] Mt. Karnasurt, Lovezero Pluton, Russia														
REFINED COMPOSITION:					ON:	$ Na_{12}K_4(H_2O)_{18} $ [Si ₂₈ Be ₈ O ₇₂ ]														
CRYSTAL DATA:						$Pma2 (1)$ $a = 39.5$ $\alpha = 90^{\circ}$ X-ray sin	No. 76 ngle	28 Å e cr	b = 0 $\beta = 0$ ystal re	5.9308 90° efineme	Å ent,	$c = {}^{\prime}$ $\gamma =$ $R_{\rm w} =$	7.1526 Å 90° 0.09	-						
REFERENCE:						S. Merlino, <i>Eur. J. Mineral.</i> <b>2</b> 809–817 (1990).														
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
4	0	0	8.94	9.894	2	33.1	5	1	2	30.30	2.949	8	3.7	13	1	2	41.06	2.198	8	3.3
0	0	1	12.37	7.153	2	19.3	11	1	1	30.66	2.916	8	4.7	0	3	1	41.06	2.198	4	3.1
2	0	1	13.16	6.727	4	58.9	5	2	1	30.82	2.902	8	21.3	4	1	3	41.06	2.198	8	8.9
6 9	0	0	13.42	6.596 6 E 41	2	3.3	0 14	1	2	31.24 21.65	2.863	8	10.6	14 19	2	0	41.21	2.190	4	2.1
2 3	1	0	15.04 14.44	0.041 6 136	4	50.8 10.0	14 6	2	1	31.00 31.74	2.827	2	1.9	15	2 1	1	41.40 41.65	2.170 2.168	8	1.9
4	0	1	15.29	5.797	4	60.8	12	1	1	32.57	2.749	8	27.9	4	3	1	42.10	2.100 2.146	8	6.0
4	1	0	15.61	5.677	4	3.3	7	2	1	32.80	2.731	8	3.1	6	1	3	42.37	2.133	8	4.2
0	1	1	17.82	4.977	4	100.0	8	1	2	33.51	2.674	8	32.4	$\tilde{5}$	3	1	42.68	2.118	8	4.2
8	0	0	17.93	4.947	2	10.6	10	0	2	33.78	2.653	4	3.0	14	1	2	42.81	2.112	8	4.6
1	1	1	17.96	4.938	8	6.1	8	<b>2</b>	1	33.98	2.638	8	5.0	15	2	0	43.09	2.099	4	2.9
6	0	1	18.30	4.849	4	4.2	14	0	1	34.10	2.629	4	7.1	14	2	1	43.19	2.094	8	4.0
6	1	0	18.57	4.778	4	3.0	10	2	0	34.40	2.607	4	7.8	7	1	3	43.20	2.094	8	3.3
4	1	1	19.97	4.446	8	5.3	9	2	1	35.28	2.544	8	9.2	6	3	1	43.38	2.086	8	3.1
7	1	0	20.27	4.381	4	2.7	0	2	2	36.09	2.489	4	12.9	7	3	1	44.20	2.049	8	3.0
8	0	1	21.84	4.069	4	4.5	10	1	2	36.25	2.478	8	17.6	11	2	2	44.25	2.047	8	2.6
7	1	1	23.82	3.736	8	2.4	16	0	0	36.32	2.474	2	7.3	9	3	0	44.29	2.045	4	1.8
9	1	0	23.97	3.713	4	4.5	2	2	2	36.38	2.469	8	2.2	10	0	3	44.36	2.042	4	2.5
2	1	2	25.31	3.519	4	21.2	15 14	1	1	30.44 26 55	2.466	4	7.0 E 9	10	1	2	44.54	2.034	4	1.5
0	1	1	20.00 95.71	3.009	0	10.9	14 10	1	1	30.33 36.60	2.400 2.450	0	0.2 5.3	10 15	1	2 1	44.04	2.030 2.014	0	0.4 3.4
10	0	1	25.71 25.73	3.403	2 1	25.4	10	2	1 2	36.09	2.450	8	0.0 9.9	15	2 1	1	45.00	2.014 2.011	8	3.4
10	$\frac{1}{2}$	0	25.75 25.81	3.403 3.452	4	20.4	12	0	$\frac{2}{2}$	37.08	2.440 2.424	4	$\frac{2.2}{2.8}$	8	3	1	45.08 45.13	2.011 2.009	8	3.4
10	1	0	25.92	3.437	4	16.3	12	2	0	37.65	2.389	4	2.2	20	0	0	45.86	1.979	2	6.1
2	2	0	26.10	3.413	4	14.4	0	0	3	37.73	2.384	2	2.3	10	1	3	46.35	1.959	8	3.1
4	0	<b>2</b>	26.50	3.363	4	15.6	11	1	2	37.77	2.382	8	5.0	0	3	2	46.81	1.941	4	2.5
3	<b>2</b>	0	26.59	3.352	4	4.0	5	<b>2</b>	2	37.90	2.374	8	4.1	16	2	1	46.88	1.938	8	5.1
12	0	0	27.04	3.298	2	82.3	2	0	3	38.01	2.367	4	5.1	4	2	3	47.17	1.927	8	11.7
9	1	1	27.06	3.295	8	4.7	11	2	1	38.19	2.357	8	2.5	3	3	2	47.35	1.920	8	2.4
4	2	0	27.27	3.271	4	5.1	16	0	1	38.51	2.338	4	4.9	4	3	2	47.76	1.904	8	3.7
11	1	0	27.94	3.193	4	44.4	15	1	1	38.62	2.331	8	2.5	20	1	0	47.80	1.903	4	1.6
0	1	2	28.08	3.178	4	29.2	4	0	3	38.85	2.318	4	1.8	6	2	3	48.35	1.883	8	3.2
5 6	2	0	28.11	3.174	4	3.1 40.7	10	3 1	0	39.26	2.295	4	5.1 92.1	11	1	2	48.47	1.878	8	8.2
0	1	2	28.39	3.144 2.120	4	49.7	12	1	2	39.37	2.288	8	23.1	11	3	1	48.55	1.870	8	1.8
2 0	2	2 1	20.44 28.62	3.130	0	76.9 26.4	10	∠ 3	0	39.40	2.201 2.276	4	$0.9 \\ 7.4$	10 14	2	$\frac{2}{2}$	48.01	1.075	4	2.4 2.3
1	2	1	28.02	3.119 3.109	8	20.4	12	2	1	39.00	2.210 2.266	8	3.6	17	2	1	48.82	1.866	8	1.9
10	1	1	28.82	3.098	8	7.4	0	1	3	39.99	2.255	4	2.6	6	3	$\frac{1}{2}$	48.92	1.862	8	2.5
$\tilde{2}$	2	1	28.98	3.081	8	57.0	1	1	3	40.06	2.251	8	2.0	12	1	3	48.94	1.861	8	4.8
6	2	0	29.11	3.068	4	34.7	4	3	0	40.08	2.250	4	5.7	18	2	0	49.07	1.857	4	2.4
3	2	1	29.43	3.035	8	19.1	8	2	2	40.58	2.223	8	2.8	7	2	3	49.10	1.855	8	1.6
4	1	<b>2</b>	29.52	3.026	8	10.9	3	1	3	40.59	2.222	8	2.0	13	3	0	49.53	1.840	4	1.5
12	0	1	29.83	2.995	4	9.5	14	0	2	40.68	2.218	4	2.2	20	1	1	49.57	1.839	8	3.6
4	2	1	30.04	2.974	8	6.5	16	1	1	40.73	2.215	8	1.7	12	3	1	49.85	1.829	8	2.8
7	2	0	30.25	2,955	4	15.3	17	1	0	40.89	2.207	4	4.0	8	2	3	49.96	1.826	8	2.5

3.62.82.5



## CHEMICAL COMPOSITION: |Na₉₆(H₂O)₂₁₆| [Si₉₆Al₉₆O₃₈₄]

REFINED COMPOSITION:  $|Na_{64}(H_2O)_{326.71}|$  [Si₉₆Al₉₆O₃₈₄]

CRYSTAL DATA:  $Fm\overline{3}c$  (No. 226) a = 24.61 Å b = 24.61 Å c = 24.61 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.04$ 

REFERENCE:

CE: V. Gramlich and W. M. Meier, Z. Kristallogr. 133 134–149 (1971).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
<b>2</b>	0	0	7.18	12.305	6	100.0	8	2	<b>2</b>	30.83	2.900	24	5.4	8	6	6	42.85	2.110	24	2.3
2	2	0	10.17	8.701	12	51.3	6	6	0	30.83	2.900	12	2.3	10	6	0	42.85	2.110	24	1.2
2	2	<b>2</b>	12.46	7.104	8	31.8	6	6	2	31.70	2.823	24	0.2	10	6	2	43.51	2.080	48	1.8
4	0	0	14.40	6.153	6	0.5	8	4	0	32.54	2.751	24	9.3	8	8	4	44.16	2.051	24	0.9
4	<b>2</b>	0	16.11	5.503	24	20.3	8	4	2	33.37	2.685	48	3.0	12	0	0	44.16	2.051	6	7.8
4	2	2	17.65	5.023	24	2.4	6	6	4	34.18	2.623	24	27.1	12	<b>2</b>	0	44.80	2.023	24	0.5
4	4	0	20.41	4.350	12	3.6	9	3	1	34.77	2.580	48	0.1	12	<b>2</b>	2	45.44	1.996	24	0.1
5	3	1	21.36	4.160	48	2.1	8	4	4	35.75	2.512	24	4.7	12	4	0	46.69	1.946	24	0.2
6	0	0	21.67	4.102	6	10.6	10	0	0	36.51	2.461	6	4.1	10	8	0	47.30	1.922	24	2.3
4	4	2	21.67	4.102	24	22.8	8	6	0	36.51	2.461	24	0.4	8	8	6	47.30	1.922	24	4.2
6	2	0	22.85	3.891	24	1.2	10	2	0	37.26	2.413	24	0.1	12	4	2	47.30	1.922	48	0.3
6	<b>2</b>	<b>2</b>	23.99	3.710	24	44.3	10	2	2	38.00	2.368	24	1.6	10	8	2	47.91	1.899	48	5.1
4	4	4	25.07	3.552	8	0.7	6	6	6	38.00	2.368	8	1.4	10	6	6	48.51	1.876	24	0.3
6	4	0	26.11	3.413	24	10.1	8	6	4	39.43	2.285	48	1.0	12	4	4	49.11	1.855	24	0.9
6	4	<b>2</b>	27.11	3.289	48	41.0	10	4	0	39.43	2.285	24	0.3	10	8	4	49.70	1.834	48	1.8
8	0	0	29.03	3.076	6	0.4	10	4	2	40.14	2.247	48	2.2	12	6	0	49.70	1.834	24	0.9
6	4	4	29.94	2.984	24	19.7	8	8	0	41.51	2.175	12	4.3							
8	2	0	29.94	2.984	24	19.9	10	4	4	42.19	2.142	24	3.4							



## CHEMICAL COMPOSITION: |Na_{91.7}| [Si₉₆Al₉₆O₃₈₄]

REFINED COMPOSITION: |Na_{91.78}| [Si₉₆Al₉₆O₃₈₄]

CRYSTAL DATA:  $Fm\overline{3}c$  (No. 226) a = 24.555 Å b = 24.555 Å c = 24.555 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.023$ 

**REFERENCE**:

I. J. J. Pluth and J. V. Smith,
J. Am. Chem. Soc. 102 4704–4708 (1980).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
2	0	0	7.20	12.278	6	100.0	6	4	4	30.01	2.978	24	4.6	8	8	0	41.61	2.170	12	1.3
<b>2</b>	<b>2</b>	0	10.19	8.682	12	49.6	8	<b>2</b>	0	30.01	2.978	24	6.4	10	4	4	42.29	2.137	24	1.3
<b>2</b>	2	2	12.49	7.088	8	22.4	6	6	0	30.90	2.894	12	0.6	8	6	6	42.95	2.106	24	1.0
4	2	0	16.14	5.491	24	20.1	8	2	2	30.90	2.894	24	1.2	10	6	0	42.95	2.106	24	0.5
4	2	2	17.69	5.012	24	1.9	8	4	0	32.62	2.745	24	1.4	10	6	2	43.61	2.075	48	0.9
4	4	0	20.46	4.341	12	3.0	8	4	2	33.45	2.679	48	1.0	12	0	0	44.26	2.046	6	2.2
5	3	1	21.41	4.151	48	0.8	6	6	4	34.26	2.618	24	8.4	8	8	4	44.26	2.046	24	0.5
6	0	0	21.72	4.093	6	1.3	8	4	4	35.83	2.506	24	0.8	12	2	0	44.91	2.018	24	0.1
4	4	2	21.72	4.093	24	8.4	10	0	0	36.59	2.455	6	3.0	12	4	0	46.80	1.941	24	0.2
6	2	0	22.91	3.882	24	0.1	6	6	6	38.08	2.363	8	1.3	8	8	6	47.41	1.917	24	1.2
6	2	2	24.04	3.702	24	13.7	10	2	2	38.08	2.363	24	0.2	10	8	0	47.41	1.917	24	0.6
4	4	4	25.13	3.544	8	0.3	8	6	4	39.53	2.280	48	0.2	10	8	2	48.02	1.894	48	1.8
6	4	0	26.17	3.405	24	0.6	10	4	0	39.53	2.280	24	0.1	10	8	4	49.82	1.830	48	0.4
6	4	2	27.18	3.281	48	9.0	10	4	2	40.23	2.242	48	0.5							


CHEMICAL COMPOSITION:	$ K_{12}(H_2O)_{20} $ [Si ₂₄ Al ₁₂ O ₇₂ ] Murun Massif, Russia
REFINED COMPOSITION:	$ K_{7.56}Tl_{3.8}(H_2O)_{22.46} $ [Si ₂₄ Al ₁₂ O ₇₂ ]
CRYSTAL DATA:	$\begin{array}{l} P6/mmm \mbox{ (No. 191)} \\ a = 18.5432 \mbox{ Å } b = 18.5432 \mbox{ Å } c = 7.5310 \mbox{ Å } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 120^{\circ} \\ \mbox{ X-ray powder refinement, } R_{\rm wp} = 0.20, R_{\rm p} = 0.17 \end{array}$
REFERENCE:	G. Artioli and Å. Kvick,

*Eur. J. Mineral.* **2** 749–759 (1990).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	5.50	16.059	6	100.0	5	1	0	31.00	2.884	12	3.0	2	2	3	40.88	2.207	12	7.7
1	1	0	9.54	9.272	6	8.8	3	3	1	31.28	2.859	12	15.8	7	0	1	41.13	2.195	12	2.0
<b>2</b>	0	0	11.02	8.029	6	2.5	4	2	1	31.79	2.815	24	6.8	3	1	3	41.28	2.187	24	0.4
1	0	1	12.98	6.818	12	1.6	4	0	<b>2</b>	32.60	2.746	12	6.1	6	0	2	41.39	2.182	12	4.7
2	1	0	14.59	6.070	12	6.3	5	1	1	33.26	2.693	24	3.6	4	3	2	41.79	2.162	24	1.5
1	1	1	15.16	5.846	12	0.3	6	0	0	33.48	2.676	6	27.1	6	2	1	42.32	2.136	24	1.9
2	0	1	16.14	5.493	12	4.6	4	3	0	33.96	2.640	12	0.1	5	2	2	42.57	2.124	24	1.3
3	0	0	16.56	5.353	6	18.9	3	2	2	34.04	2.633	24	12.2	5	4	0	44.04	2.056	12	0.6
2	1	1	18.78	4.726	24	1.0	5	<b>2</b>	0	34.89	2.571	12	0.1	6	1	2	44.11	2.053	24	0.4
2	2	0	19.14	4.636	6	19.0	4	1	<b>2</b>	34.98	2.565	24	6.5	7	1	1	44.25	2.047	24	2.0
3	1	0	19.93	4.454	12	3.0	6	0	1	35.60	2.522	12	7.2	4	1	3	44.39	2.041	24	0.2
3	0	1	20.35	4.363	12	17.0	0	0	3	35.77	2.510	2	0.4	6	3	0	44.79	2.023	12	0.4
4	0	0	22.14	4.015	6	3.5	4	3	1	36.05	2.491	24	11.7	8	0	0	45.17	2.007	6	0.3
2	2	1	22.52	3.948	12	51.0	1	0	3	36.22	2.480	12	0.7	5	0	3	45.88	1.978	12	0.4
3	1	1	23.20	3.834	24	12.3	5	0	2	36.78	2.444	12	3.1	5	3	2	46.34	1.959	24	2.2
0	0	2	23.63	3.765	2	5.1	5	2	1	36.94	2.434	24	5.3	7	0	2	46.34	1.959	12	0.9
3	2	0	24.16	3.684	12	3.1	1	1	3	37.10	2.423	12	0.4	6	3	1	46.47	1.954	24	4.8
1	0	2	24.28	3.666	12	5.4	2	0	3	37.54	2.396	12	0.8	3	3	3	46.61	1.949	12	2.6
4	0	1	25.14	3.543	12	0.7	3	3	2	37.65	2.389	12	6.1	8	0	1	46.84	1.940	12	3.6
4	1	0	25.42	3.504	12	2.8	4	2	2	38.08	2.363	24	0.5	4	2	3	46.97	1.934	24	1.1
1	1	2	25.53	3.489	12	25.7	6	1	1	38.66	2.329	24	0.4	7	2	1	47.91	1.899	24	0.7
3	2	1	26.94	3.309	24	3.2	2	1	3	38.82	2.320	24	0.5	5	1	3	48.05	1.894	24	0.2
5	0	0	27.78	3.212	6	18.7	4	4	0	38.85	2.318	6	0.8	0	0	4	48.34	1.883	2	5.3
2	1	2	27.88	3.200	24	6.3	7	0	0	39.27	2.294	6	2.8	1	0	4	48.69	1.870	12	0.6
4	1	1	28.08	3.177	24	2.6	5	3	0	39.27	2.294	12	2.1	5	5	0	49.13	1.854	6	0.3
3	3	0	28.89	3.091	6	0.1	5	1	2	39.35	2.290	24	0.7	7	1	2	49.20	1.852	24	1.4
3	0	2	28.99	3.080	12	34.8	3	0	3	39.65	2.273	12	6.4	1	1	4	49.39	1.845	12	1.2
4	2	0	29.43	3.035	12	7.0	6	2	0	40.51	2.227	12	0.2	6	4	0	49.48	1.842	12	0.5
2	2	2	30.59	2.923	12	6.7	4	4	1	40.73	2.215	12	8.7							



CHEMICAL COMPOSITION:	$ Na_3K_6(H_2O)_{21} $ [Si ₂₇ Al ₉ O ₇₂ ] Synthetic material	
REFINED COMPOSITION:	$ {\rm Na}_5{\rm K}_{4.7}({\rm H}_2{\rm O})_{20.8} ~[{\rm Si}_{27}{\rm Al}_9{\rm O}_{72}]$	
CRYSTAL DATA:	P6/mmm (No. 191)	

 $\begin{array}{ll} a=18.40\ \text{\AA} & b=18.40\ \text{\AA} & c=7.52\ \text{\AA} \\ \alpha=90^{\circ} & \beta=90^{\circ} & \gamma=120^{\circ} \\ \text{X-ray powder refinement, } R_{\mathrm{F}}=0.13 \end{array}$ 

REFERENCE: R. M. Barrer and H. Villiger,

Z. Kristallogr. **128** 352–270 (1969).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	5.55	15.935	6	100.0	5	0	1	30.46	2.934	12	0.8	3	1	3	41.41	2.180	24	0.1
1	1	0	9.61	9.200	6	2.2	2	<b>2</b>	2	30.71	2.911	12	25.2	5	3	1	41.44	2.179	24	0.4
<b>2</b>	0	0	11.10	7.967	6	1.9	3	1	2	31.23	2.864	24	2.3	6	0	<b>2</b>	41.63	2.169	12	0.4
0	0	1	11.77	7.520	2	24.3	5	1	0	31.25	2.862	12	0.2	4	0	3	42.61	2.122	12	0.8
1	0	1	13.02	6.801	12	1.7	3	3	1	31.50	2.840	12	1.6	6	2	1	42.64	2.120	24	0.2
<b>2</b>	1	0	14.71	6.023	12	17.5	4	<b>2</b>	1	32.01	2.796	24	2.9	7	1	0	42.85	2.111	12	0.1
1	1	1	15.22	5.822	12	10.6	5	1	1	33.50	2.675	24	2.8	3	2	3	43.79	2.067	24	0.4
<b>2</b>	0	1	16.21	5.469	12	0.2	6	0	0	33.75	2.656	6	11.3	6	1	2	44.39	2.041	24	1.1
3	0	0	16.69	5.312	6	0.7	3	<b>2</b>	2	34.21	2.621	24	8.3	4	1	3	44.56	2.033	24	0.9
<b>2</b>	1	1	18.88	4.701	24	1.0	4	1	2	35.15	2.553	24	0.1	7	1	1	44.59	2.032	24	0.5
<b>2</b>	2	0	19.30	4.600	6	18.3	5	2	0	35.17	2.552	12	3.1	6	3	0	45.16	2.008	12	0.9
3	1	0	20.09	4.420	12	3.5	0	0	3	35.82	2.507	2	0.8	8	0	0	45.54	1.992	6	0.4
3	0	1	20.47	4.339	12	11.6	6	0	1	35.86	2.504	12	4.6	5	0	3	46.07	1.970	12	0.4
4	0	0	22.32	3.984	6	1.5	1	0	3	36.28	2.476	12	0.1	5	4	1	46.10	1.969	24	0.9
<b>2</b>	<b>2</b>	1	22.66	3.924	12	22.7	4	3	1	36.31	2.474	24	4.4	4	4	2	46.27	1.962	12	0.2
3	1	1	23.35	3.810	24	0.3	5	0	2	36.97	2.431	12	0.1	5	3	2	46.64	1.947	24	0.7
1	0	2	24.32	3.660	12	16.1	6	1	0	36.99	2.430	12	5.5	7	0	2	46.64	1.947	12	0.2
3	2	0	24.35	3.656	12	0.5	1	1	3	37.17	2.419	12	0.3	7	2	0	46.66	1.947	12	0.6
4	0	1	25.30	3.520	12	0.4	5	2	1	37.21	2.416	24	1.8	3	3	3	46.81	1.941	12	0.5
1	1	2	25.59	3.481	12	11.5	3	3	2	37.86	2.376	12	0.3	8	0	1	47.20	1.925	12	0.4
4	1	0	25.62	3.477	12	5.3	4	<b>2</b>	2	38.29	2.350	24	0.4	6	2	2	47.74	1.905	24	0.7
<b>2</b>	0	2	26.21	3.400	12	1.3	6	1	1	38.95	2.312	24	0.2	5	1	3	48.26	1.886	24	0.8
3	2	1	27.12	3.288	24	12.1	4	4	0	39.17	2.300	6	3.7	7	2	1	48.29	1.885	24	0.3
<b>2</b>	1	2	27.97	3.189	24	5.7	5	1	2	39.57	2.277	24	0.5	0	0	4	48.42	1.880	2	7.2
5	0	0	28.00	3.187	6	20.9	7	0	0	39.59	2.276	6	0.2	1	0	4	48.77	1.867	12	0.4
4	1	1	28.28	3.156	24	3.2	5	3	0	39.59	2.276	12	0.4	1	1	4	49.48	1.842	12	0.1
3	0	2	29.10	3.069	12	15.4	6	<b>2</b>	0	40.84	2.210	12	0.4	7	1	2	49.52	1.840	24	0.2
3	3	0	29.12	3.067	6	3.0	2	2	3	41.00	2.201	12	2.0	5	5	0	49.54	1.840	6	1.7
4	2	0	29.66	3.011	12	4.8	4	4	1	41.04	2.199	12	6.7	2	0	4	49.84	1.830	12	0.1



# CHEMICAL COMPOSITION: |Na₃₈₄(H₂O)₃₉₄| [Si₃₈₄Al₃₈₄O₁₅₃₆]

**REFINED COMPOSITION:**  $|Na_{426.6}(H_2O)_{393.6}|$  [Si₃₈₄Al₃₈₄O₁₅₃₆]

> CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre ( $\overline{3}$ ) c=36.95 Å a = 36.95 Åb = 36.95 Å $\alpha = 90^{\circ}$  $\beta = 90^{\circ}$  $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.051

REFERENCE: Y. F. Shepelev, Y. I. Smolin, I. K. Butikova and V. I. Tarasov, Doklady Akad. Nauk SSSR 272 1133-1137 (1975).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	4.14	21.333	8	34.7	9	5	3	25.86	3.446	24	2.3	14	0	2	34.32	2.613	12	2.0
2	2	0	6.77	13.064	12	100.0	8	4	6	25.97	3.431	24	1.5	13	5	3	34.59	2.593	24	0.7
3	1	1	7.94	11.141	24	54.6	8	6	4	25.97	3.431	24	1.0	13	3	5	34.59	2.593	24	0.7
2	<b>2</b>	<b>2</b>	8.29	10.667	8	7.5	10	2	4	26.42	3.373	24	5.0	14	2	2	34.67	2.587	24	0.6
4	0	0	9.57	9.238	6	24.0	10	4	2	26.42	3.373	24	2.3	9	9	7	35.28	2.544	24	3.9
3	3	1	10.44	8.477	24	4.8	8	8	0	27.31	3.266	12	0.8	11	9	3	35.28	2.544	24	0.6
5	1	1	12.45	7.111	24	10.4	11	3	1	27.63	3.228	24	2.1	12	6	6	35.71	2.514	24	1.9
3	3	3	12.45	7.111	8	0.8	11	1	3	27.63	3.228	24	1.1	12	8	4	36.39	2.469	24	0.8
4	4	0	13.56	6.532	12	58.6	9	1	$\overline{7}$	27.63	3.228	24	2.2	15	1	1	36.64	2.452	24	8.2
5	3	1	14.18	6.246	24	14.3	9	7	1	27.63	3.228	24	3.6	11	5	9	36.64	2.452	24	3.3
5	1	3	14.18	6.246	24	13.5	8	8	<b>2</b>	27.74	3.216	24	1.1	11	9	5	36.64	2.452	24	2.1
4	4	2	14.38	6.158	24	0.8	10	4	4	27.74	3.216	24	2.0	10	8	8	36.73	2.447	24	5.1
6	0	<b>2</b>	15.16	5.842	12	0.9	8	6	6	28.16	3.168	24	0.9	15	3	1	37.31	2.410	24	0.6
6	2	0	15.16	5.842	12	4.4	10	0	6	28.16	3.168	12	0.7	9	9	9	37.96	2.370	8	3.1
5	3	3	15.73	5.635	24	6.5	9	7	3	28.48	3.134	24	3.9	11	$\overline{7}$	9	38.60	2.332	24	0.6
6	2	<b>2</b>	15.91	5.570	24	2.8	11	3	3	28.48	3.134	24	6.6	16	0	0	39.00	2.309	6	2.0
4	4	4	16.62	5.333	8	2.9	9	3	7	28.48	3.134	24	1.5	15	5	3	39.24	2.296	24	1.5
5	5	1	17.14	5.174	24	12.6	11	5	1	29.30	3.048	24	1.3	15	3	5	39.24	2.296	24	1.3
6	2	4	17.96	4.938	24	2.1	11	1	5	29.30	3.048	24	2.0	15	5	5	40.48	2.228	24	1.8
$\overline{7}$	1	3	18.44	4.810	24	6.2	7	7	$\overline{7}$	29.30	3.048	8	0.8	16	2	4	40.56	2.224	24	0.9
$\overline{7}$	3	1	18.44	4.810	24	4.8	10	4	6	29.81	2.997	24	11.7	16	4	2	40.56	2.224	24	0.8
$\overline{7}$	3	3	19.67	4.514	24	4.6	10	6	4	29.81	2.997	24	7.0	15	3	7	41.09	2.196	24	0.7
8	2	2	20.39	4.355	24	3.9	12	2	<b>2</b>	29.81	2.997	24	7.7	12	12	0	41.47	2.177	12	9.0
6	6	0	20.39	4.355	12	3.6	11	5	3	30.11	2.968	24	0.8	17	1	1	41.70	2.166	24	0.9
5	5	5	20.82	4.267	8	1.0	12	0	4	30.60	2.921	12	2.7	11	11	$\overline{7}$	41.70	2.166	24	2.1
$\overline{7}$	1	5	20.82	4.267	24	1.0	12	4	0	30.60	2.921	12	2.2	12	12	2	41.77	2.162	24	1.3
6	6	2	20.96	4.238	24	1.7	12	2	4	30.99	2.885	24	3.2	13	7	9	42.29	2.137	24	0.7
8	4	0	21.51	4.131	12	1.3	12	4	2	30.99	2.885	24	1.9	17	3	3	42.88	2.109	24	2.2
8	0	4	21.51	4.131	12	6.7	10	2	8	31.38	2.851	24	1.0	12	10	8	42.96	2.105	24	0.6
$\overline{7}$	5	3	21.91	4.056	24	14.1	11	1	7	31.66	2.826	24	1.6	16	0	8	43.83	2.066	12	0.7
$\overline{7}$	3	5	21.91	4.056	24	7.7	11	5	5	31.66	2.826	24	5.7	17	5	3	44.04	2.056	24	1.3
9	1	1	21.91	4.056	24	6.7	11	7	1	31.66	2.826	24	3.4	15	7	7	44.04	2.056	24	0.6
8	2	4	22.05	4.032	24	1.0	13	1	1	31.66	2.826	24	0.9	17	3	5	44.04	2.056	24	2.1
6	6	4	22.57	3.939	24	5.5	12	4	4	32.14	2.785	24	6.8	11	11	9	44.04	2.056	24	1.0
8	4	4	23.59	3.771	24	17.9	11	3	7	32.42	2.762	24	0.6	16	6	6	44.40	2.040	24	0.8
7	7	1	23.96	3.714	24	1.7	13	3	1	32.42	2.762	24	10.6	13	9	9	44.61	2.031	24	0.9
9	3	3	23.96	3.714	24	24.0	9	7	7	32.42	2.762	24	9.7	13	13	1	45.18	2.007	24	0.6
7	5	5	23.96	3.714	24	3.1	13	1	3	32.42	2.762	24	8.9	19	1	1	46.84	1.939	24	0.8
8	6	<b>2</b>	24.57	3.623	24	1.2	10	8	4	32.51	2.754	24	0.9	16	10	4	47.46	1.916	24	0.7
9	5	1	24.93	3.572	24	2.1	12	2	6	32.88	2.724	24	2.3	16	4	10	47.46	1.916	24	0.6
9	1	5	24.93	3.572	24	1.2	12	6	2	32.88	2.724	24	2.2	14	14	0	48.80	1.866	12	2.7
7	7	3	24.93	3.572	24	1.9	9	9	5	33.15	2.702	24	6.1	18	6	6	49.06	1.857	24	0.9
6	6	6	25.04	3.556	8	0.8	8	8	8	33.61	2.667	8	12.2	16	0	12	49.32	1.847	12	0.8
10	2	2	25.04	3.556	24	1.6	10	8	6	34.32	2.613	24	2.3	16	12	0	49.32	1.847	12	0.6
9	3	5	25.86	3.446	24	2.9	10	6	8	34.32	2.613	24	1.8	20	0	0	49.32	1.847	6	0.6



CHEMICAL COMPOSITION:	$ Na_{0.8}K_{2.5}Ca_{1.4}Mg_{2.1}(H_2O)_{28} $ [Si _{26.5} Al _{9.9} O ₇₂ ] Mont Semiol, Loire, France
REFINED COMPOSITION:	$ \mathrm{Na}_{0.3}\mathrm{K}_{2.52}\mathrm{Ca}_{1.06}\mathrm{Mg}_2(\mathrm{H}_2\mathrm{O})_{31.48} ~[\mathrm{Si}_{26.28}\mathrm{Al}_{9.72}\mathrm{O}_{72}]$
CRYSTAL DATA:	$\begin{array}{ll} P6_{3}/mmc \mbox{ (No. 194)} \\ a = 18.392 \mbox{ \AA } b = 18.392 \mbox{ \AA } c = 7.646 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 120^{\circ} \\ \mbox{ X-ray single crystal refinement, } R_{\rm w} = 0.05 \end{array}$

REFERENCE: E. Galli,

 $Rend.\ Soc.\ Ital.\ Mineral.\ Petrol.\ \mathbf{31}\ 599{-}612\ (1975).$ 

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	5.55	15.928	6	98.1	3	1	<b>2</b>	30.93	2.891	24	0.3	6	0	2	41.41	2.181	12	0.6
1	1	0	9.62	9.196	6	92.2	5	1	0	31.27	2.861	12	3.7	4	0	3	42.09	2.147	12	8.9
<b>2</b>	0	0	11.11	7.964	6	39.7	4	2	1	31.95	2.801	24	2.0	6	2	1	42.60	2.122	24	9.8
1	0	1	12.84	6.893	12	25.3	5	1	1	33.44	2.679	24	13.9	5	2	2	42.61	2.122	24	0.8
<b>2</b>	1	0	14.71	6.020	12	45.0	6	0	0	33.76	2.655	6	4.6	3	2	3	43.28	2.090	24	3.6
2	0	1	16.07	5.516	12	5.1	3	2	2	33.94	2.642	24	16.3	6	1	2	44.17	2.050	24	6.8
3	0	0	16.70	5.309	6	16.4	4	3	0	34.24	2.619	12	0.7	7	1	1	44.55	2.034	24	4.0
2	1	1	18.76	4.730	24	50.4	4	1	2	34.89	2.572	24	0.2	6	3	0	45.18	2.007	12	4.1
2	2	0	19.30	4.598	6	1.3	5	2	0	35.19	2.551	12	18.0	8	0	0	45.56	1.991	6	3.6
3	1	0	20.10	4.418	12	9.1	1	0	3	35.68	2.517	12	1.4	5	0	3	45.58	1.990	12	8.4
3	0	1	20.36	4.361	12	1.4	6	0	1	35.81	2.508	12	3.2	5	4	1	46.06	1.970	24	2.1
4	0	0	22.33	3.982	6	11.6	5	0	2	36.72	2.447	12	3.1	4	4	2	46.07	1.970	12	3.7
3	1	1	23.25	3.825	24	97.3	6	1	0	37.01	2.429	12	1.0	5	3	2	46.44	1.955	24	1.2
0	0	2	23.27	3.823	2	14.3	2	0	3	37.03	2.427	12	3.5	7	0	2	46.44	1.955	12	0.4
1	0	2	23.94	3.717	12	36.2	5	2	1	37.16	2.419	24	3.7	7	2	0	46.68	1.946	12	0.5
3	2	0	24.36	3.654	12	31.9	3	3	2	37.61	2.392	12	7.4	4	2	3	46.70	1.945	24	1.4
4	0	1	25.22	3.532	12	0.2	4	2	2	38.05	2.365	24	3.1	6	3	1	46.80	1.941	24	3.1
1	1	2	25.23	3.530	12	100.0	2	1	3	38.35	2.347	24	0.5	8	0	1	47.17	1.927	12	1.1
4	1	0	25.63	3.476	12	5.2	6	1	1	38.90	2.315	24	0.4	6	2	2	47.54	1.913	24	0.5
2	0	2	25.85	3.446	12	8.7	4	4	0	39.18	2.299	6	12.7	0	0	4	47.57	1.911	2	19.6
3	2	1	27.04	3.297	24	2.1	3	0	3	39.21	2.298	12	0.1	5	1	3	47.79	1.903	24	5.6
5	0	0	28.01	3.186	6	83.7	5	1	2	39.34	2.290	24	0.5	1	0	4	47.93	1.898	12	0.8
4	1	1	28.20	3.164	24	0.4	7	0	0	39.61	2.275	6	0.3	7	2	1	48.26	1.886	24	2.9
3	0	2	28.78	3.102	12	35.4	5	3	0	39.61	2.275	12	0.5	1	1	4	48.65	1.871	12	0.2
3	3	0	29.13	3.065	6	25.4	6	2	0	40.85	2.209	12	3.4	2	0	4	49.01	1.859	12	2.8
4	2	0	29.68	3.010	12	31.6	3	1	3	40.88	2.208	24	1.2	5	5	0	49.56	1.839	6	10.5
5	0	1	30.40	2.941	12	54.5	7	0	1	41.40	2.181	12	0.7	6	0	3	49.58	1.839	12	0.6
2	2	2	30.41	2.940	12	48.2	5	3	1	41.40	2.181	24	0.3	6	4	0	49.91	1.827	12	0.3



# MAZ

# CHEMICAL COMPOSITION: [Si₃₄O₆₈]

REFINED COMPOSITION:  $[Si_{34}O_{68}]$ 

> CRYSTAL DATA:  $P6_3/m$  (No. 176) a = 13.175 Åb = 13.175 Åc=15.848 Å  $\beta = 90^{\circ}$  $\alpha = 90^{\circ}$  $\gamma = 120^{\circ}$ DLS refinement

REFERENCE: S. L. Lawton and W. J. Rohrbaugh, Science 247 1319–1322 (1990).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	Ì	'n	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.75	11.410	6	100.0		1	2	4	30.64	2.918	12	1.7	1	4	3	40.03	2.252	12	0.3
1	0	1	9.55	9.260	12	5.2		1	1	5	31.32	2.856	12	2.0	3	<b>2</b>	4	41.34	2.184	12	0.1
0	0	2	11.17	7.924	2	17.2		4	0	0	31.36	2.852	6	0.7	2	3	4	41.34	2.184	12	0.1
1	1	0	13.44	6.587	6	4.5		2	2	3	32.02	2.795	12	0.8	3	0	6	41.63	2.169	12	0.1
1	0	2	13.60	6.508	12	1.7		2	0	5	32.31	2.771	12	0.7	2	4	0	41.90	2.156	6	0.4
1	1	1	14.56	6.083	12	8.0		3	0	4	32.64	2.744	12	0.8	4	2	0	41.90	2.156	6	0.3
<b>2</b>	0	0	15.53	5.705	6	0.3		1	3	3	32.99	2.715	12	0.6	1	1	7	42.21	2.141	12	0.5
2	0	1	16.51	5.368	12	2.1		3	1	3	32.99	2.715	12	0.1	4	2	1	42.30	2.137	12	0.3
1	1	2	17.51	5.066	12	5.9		4	0	2	33.38	2.684	12	0.7	4	0	5	42.64	2.120	12	0.2
1	0	3	18.51	4.794	12	2.6		2	3	0	34.26	2.618	6	0.3	3	3	2	42.73	2.116	12	0.2
2	0	2	19.17	4.630	12	1.6		2	3	1	34.73	2.583	12	0.4	5	0	3	43.18	2.095	12	0.2
2	1	0	20.59	4.313	6	2.8		3	2	1	34.73	2.583	12	0.3	2	2	6	43.94	2.061	12	0.3
1	2	0	20.59	4.313	6	0.5		2	1	5	35.14	2.554	12	0.7	5	1	0	44.19	2.049	6	0.3
1	2	1	21.35	4.161	12	7.5		1	2	5	35.14	2.554	12	0.3	1	5	0	44.19	2.049	6	0.2
1	1	3	21.56	4.121	12	6.9		2	2	4	35.44	2.533	12	0.3	1	3	6	44.69	2.028	12	0.3
0	0	4	22.44	3.962	2	1.5		4	0	3	35.77	2.510	12	0.1	3	3	3	44.69	2.028	12	0.4
2	0	3	22.94	3.876	12	1.2		4	1	0	36.07	2.490	6	0.2	1	2	7	45.23	2.005	12	0.2
3	0	0	23.39	3.803	6	0.1		1	4	0	36.07	2.490	6	1.2	2	4	3	45.43	1.996	12	0.1
1	2	2	23.49	3.788	12	4.8		2	3	2	36.14	2.486	12	0.3	5	1	2	45.73	1.984	12	0.1
1	0	4	23.77	3.743	12	0.4		3	2	2	36.14	2.486	12	0.5	1	4	5	46.37	1.958	12	0.2
3	0	2	25.99	3.429	12	0.7		3	1	4	36.33	2.473	12	0.2	6	0	0	47.83	1.902	6	0.8
1	2	3	26.68	3.341	12	3.6		1	4	1	36.53	2.460	12	0.2	1	1	8	47.95	1.897	12	0.6
2	1	3	26.68	3.341	12	0.2		4	1	1	36.53	2.460	12	0.1	4	2	4	48.04	1.894	12	0.3
2	2	0	27.07	3.294	6	2.4		3	0	5	36.92	2.435	12	0.3	2	4	4	48.04	1.894	12	0.1
2	2	1	27.66	3.225	12	2.6		2	0	6	37.52	2.397	12	0.1	2	0	8	48.65	1.871	12	0.4
3	1	1	28.77	3.103	12	2.2		4	1	2	37.88	2.375	12	0.3	4	3	1	48.89	1.863	12	0.5
3	0	3	28.93	3.087	12	0.3		1	4	2	37.88	2.375	12	0.2	3	2	6	48.99	1.859	12	0.1
1	0	5	29.24	3.054	12	2.2		3	2	3	38.38	2.345	12	0.3	2	3	6	48.99	1.859	12	0.3
2	2	2	29.37	3.041	12	1.2		2	3	3	38.38	2.345	12	0.5	4	3	2	49.96	1.825	12	0.1
1	3	2	30.41	2.939	12	0.2		2	2	5	39.45	2.284	12	0.1							
3	1	2	30.41	2 939	12	0.9		1	2	6	40.03	2.252	12	0.4							



#### CHEMICAL COMPOSITION: [Si₉₆O₁₉₂]

REFINED COMPOSITION: [Si₉₆O₁₉₂]

CRYSTAL DATA:  $I\overline{4}m2$  (No. 119) a = 20.067 Å b = 20.067 Å c = 13.411 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.13$ 

REFERENCE: C. A. Fyfe, H. Gies, G. T. Kokotailo, C. Pasztor, H. Strobl and D. E. Cox, J. Am. Chem. Soc. **111** 2470–2474 (1989).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	1	ı	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.23	14.190	4	2.4	5	4	1	29.26	3.052	16	0.4	;	5	0	5	40.45	2.230	8	0.1
1	0	1	7.93	11.150	8	100.0	5	0	3	29.92	2.986	8	9.6	(	5	5	3	40.49	2.228	16	0.3
<b>2</b>	0	0	8.81	10.033	4	53.6	4	3	3	29.92	2.986	16	0.3	,	7	5	2	40.96	2.203	16	1.0
<b>2</b>	1	1	11.87	7.458	16	3.9	3	1	4	30.15	2.964	16	0.7	9	)	0	1	41.03	2.199	8	0.4
<b>2</b>	2	0	12.48	7.095	4	0.4	6	3	1	30.62	2.920	16	0.2		2	0	6	41.38	2.182	8	0.3
0	0	2	13.20	6.706	2	9.2	6	2	2	31.18	2.868	16	0.1	ł	5	2	5	41.48	2.177	16	0.2
1	1	2	14.61	6.063	8	0.7	5	2	3	31.25	2.862	16	2.2		5	5	4	41.70	2.166	8	0.2
3	0	1	14.80	5.986	8	15.5	7	1	0	31.52	2.838	8	0.1	1	3	4	2	42.49	2.128	16	0.2
2	0	2	15.90	5.575	8	8.0	5	5	0	31.52	2.838	4	0.6	:	3	1	6	42.90	2.108	16	0.4
3	2	1	17.25	5.140	16	3.6	7	0	1	31.92	2.803	8	0.2	5	3	5	1	43.06	2.101	16	0.2
4	0	0	17.68	5.017	4	7.1	4	0	4	32.11	2.788	8	0.4		5	1	5	43.48	2.081	16	0.1
3	3	0	18.76	4.730	4	1.6	3	3	4	32.74	2.735	8	0.2	ł	3	3	3	43.53	2.079	16	1.3
3	1	2	19.26	4.609	16	3.7	1	0	5	33.71	2.659	8	0.5	,	7	3	4	43.69	2.072	16	0.3
4	1	1	19.40	4.575	16	0.3	6	1	3	33.77	2.654	16	0.2	4	1	0	6	44.37	2.042	8	0.1
4	2	0	19.79	4.487	8	0.2	7	3	0	34.02	2.635	8	0.4	:	3	3	6	44.85	2.021	8	0.4
1	0	3	20.35	4.363	8	3.2	7	1	2	34.31	2.613	16	0.3	9	)	4	1	45.00	2.014	16	0.2
4	0	2	22.13	4.017	8	0.2	5	5	2	34.31	2.613	8	2.3	8	3	0	4	45.14	2.008	8	3.6
2	1	3	22.22	4.001	16	0.6	2	1	5	34.91	2.570	16	0.1	10	)	0	0	45.18	2.007	4	4.7
5	1	0	22.59	3.935	8	1.2	5	4	3	34.96	2.566	16	0.3	8	3	6	0	45.18	2.007	8	0.2
3	3	2	23.01	3.865	8	1.2	5	1	4	35.16	2.552	16	1.4	10	)	1	1	45.95	1.975	16	0.4
5	0	1	23.13	3.845	8	52.5	6	5	1	35.58	2.523	16	0.4		3	2	4	46.09	1.969	16	0.9
4	3	1	23.13	3.845	16	0.3	8	0	0	35.80	2.508	4	1.4	10	) -	2	0	46.13	1.968	8	0.4
4	2	2	23.86	3.729	16	0.1	3	0	5	36.08	2.490	8	1.6		(	0	5	46.36	1.959	8	0.2
3	0	3	23.94	3.717	8	22.7	6	3	3	36.13	2.486	16	0.6	10	)	0	2	47.28	1.922	8	0.3
5	2	1	24.80	3.590	16	5.1	7	3	2	36.64	2.452	10	0.5	č	5	5	3	47.33	1.921	10	1.2
4	4	0	25.10	3.547	4	0.5	8	1	1	36.72	2.447	16	0.3	1	(	5	4	47.48	1.915	10	0.2
3	2	3	25.56	3.485	16	2.6	8	2	0	36.94	2.433	8	0.4	10	)	3	1	47.80	1.903	10	0.2
5	3 1	0	25.89	3.441	8	0.1	3	2	5	37.21	2.410	16	0.2	10	) -	2	2	48.20	1.888	10	0.2
5	1	2	26.26	3.394	16	2.1	7	0	3	37.26	2.413	8	1.3		)	3	0	48.57	1.875	10	2.4
0	0	4	26.59	3.353	2	2.4	5 C	3	4	37.45	2.402	10	1.9	i	5	1	1	48.71	1.869	10	0.5
0	1	0	20.05	3.345	4	2.7	6 7	0	4	38.00	2.368	8	0.2	i	5	4	4	48.84	1.805	10	0.3
	1	4	27.33	3.203	8	0.5	(	Э 9	1	38.59	2.333	8	0.2		<b>)</b>	1	(	49.49	1.842	8	0.7
0	1	1	21.80	3.203	10	0.4	ð	ა ი	1 0	38.93	2.313	10	0.8	i	>	T	Э	49.99	1.824	10	0.2
2 E	U 9	4 9	28.00	3.180	ð 16	2.0 7.6	ð	2	2 C	39.39 40.25	2.288	10	0.2								
a	.5		2917	3 UD2	L D	( n	11		n	40.35	1 135		- U Z								



REFINED COMPOSITION: |C₈| [Si₄₆O₉₂]

CRYSTAL DATA:  $Pm\overline{3}n$  (No. 223) a = 13.436 Å b = 13.436 Å c = 13.436 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.04$ 

REFERENCE: H. Gies,

Z. Kristallogr. 164 247–257 (1983).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	9.31	9.501	12	9.3	4	2	2	32.65	2.743	24	2.0	5	4	0	43.11	2.098	24	0.3
2	0	0	13.18	6.718	6	15.2	4	3	0	33.34	2.687	24	2.3	5	4	1	43.66	2.073	48	3.7
2	1	0	14.74	6.009	24	100.0	5	1	0	34.02	2.635	24	1.1	6	3	0	45.27	2.003	24	0.3
2	1	1	16.16	5.485	24	75.2	5	<b>2</b>	0	36.00	2.495	24	0.2	5	4	2	45.27	2.003	48	2.2
3	1	0	20.91	4.249	24	2.7	4	3	2	36.00	2.495	48	9.6	6	3	1	45.80	1.981	48	2.8
2	<b>2</b>	<b>2</b>	22.93	3.879	8	34.7	5	<b>2</b>	1	36.63	2.453	48	0.2	4	4	4	46.85	1.939	8	2.9
3	<b>2</b>	0	23.88	3.726	24	21.4	4	4	0	37.88	2.375	12	1.5	6	3	<b>2</b>	47.36	1.919	48	1.0
3	<b>2</b>	1	24.79	3.591	48	88.1	5	3	0	39.09	2.304	24	7.6	7	1	0	47.87	1.900	24	0.2
4	0	0	26.54	3.359	6	2.2	4	3	3	39.09	2.304	24	3.1	5	5	0	47.87	1.900	12	1.9
4	1	0	27.37	3.259	24	24.2	5	3	1	39.69	2.271	48	2.2	7	2	0	49.38	1.846	24	0.8
4	1	1	28.18	3.167	24	1.0	4	4	2	40.27	2.239	24	1.0	6	4	1	49.38	1.846	48	0.3
3	3	0	28.18	3.167	12	15.3	6	0	0	40.27	2.239	6	3.7	5	5	<b>2</b>	49.87	1.828	24	0.1
4	<b>2</b>	0	29.74	3.004	24	0.5	6	1	0	40.85	2.209	24	1.0	7	2	1	49.87	1.828	48	0.3
4	2	1	30.49	2.932	48	12.7	6	1	1	41.43	2.180	24	0.2	6	3	3	49.87	1.828	24	2.3
3	3	2	31.22	2.865	24	4.6	5	3	2	41.43	2.180	48	4.3							



CHEMICAL COMPOSITION:	$\begin{array}{l}  \mathrm{Na}_{0.55}\mathrm{K}_{4.21}\mathrm{Ca}_{1.49}\mathrm{Ba}_{0.43}(\mathrm{H}_{2}\mathrm{O})_{22.74}  \ [\mathrm{Si}_{22.69}\mathrm{Al}_{9.31}\mathrm{O}_{64}] \\ \mathrm{Cupaello, \ Italy} \end{array}$
REFINED COMPOSITION:	$ \mathrm{Na}_{0.68}\mathrm{K}_{5.28}\mathrm{Ca}_{1.844}\mathrm{Ba}_{0.444}(\mathrm{H}_{2}\mathrm{O})_{19.44}  \ [\mathrm{Si}_{22.72}\mathrm{Al}_{9.28}\mathrm{O}_{64}]$
CRYSTAL DATA:	$\begin{array}{l} Immm \mbox{ (No. 71)} \\ a = 14.116 \mbox{ \AA}  b = 14.229 \mbox{ \AA}  c = 9.946 \mbox{ \AA} \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \mbox{ X-ray single crystal refinement, } R = 0.09 \end{array}$
REFERENCE:	E. Galli, G. Gottardi and D. Pongiluppi, Neues Jahrb. Miner. Monatsh. <b>1</b> 1–9 (1979).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.82	10.021	4	12.4	4	3	1	32.89	2.723	8	6.5	2	5	3	43.84	2.065	8	1.8
0	1	1	10.85	8.152	4	26.1	0	3	3	32.96	2.717	4	26.1	6	3	1	43.91	2.062	8	4.4
1	0	1	10.88	8.131	4	10.7	5	0	1	32.98	2.716	4	32.3	5	2	3	44.01	2.058	8	1.1
0	<b>2</b>	0	12.44	7.114	2	88.3	3	0	3	33.05	2.710	4	4.7	2	6	<b>2</b>	44.21	2.048	8	2.7
<b>2</b>	0	0	12.54	7.058	2	73.5	2	4	2	33.47	2.677	8	5.3	0	4	4	44.45	2.038	4	0.7
1	<b>2</b>	1	16.56	5.354	8	80.9	4	<b>2</b>	2	33.59	2.668	8	16.4	6	2	<b>2</b>	44.46	2.038	8	1.3
<b>2</b>	1	1	16.61	5.336	8	61.2	2	5	1	35.18	2.551	8	27.4	4	0	4	44.58	2.033	4	0.9
<b>2</b>	2	0	17.70	5.011	4	44.3	5	2	1	35.38	2.537	8	12.1	1	7	0	45.06	2.012	4	0.6
0	0	2	17.84	4.973	2	46.8	2	3	3	35.40	2.536	8	0.3	5	5	0	45.24	2.004	4	6.6
1	3	0	19.75	4.496	4	1.4	3	2	3	35.44	2.533	8	14.8	7	1	0	45.42	1.997	4	2.8
3	1	0	19.87	4.467	4	34.5	4	4	0	35.84	2.505	4	8.2	3	3	4	45.47	1.995	8	0.3
1	1	2	19.93	4.455	8	0.2	0	0	4	36.12	2.487	2	2.9	0	7	1	45.55	1.992	4	0.2
0	3	1	20.75	4.281	4	41.2	3	5	0	36.91	2.435	4	0.7	7	0	1	45.92	1.976	4	7.1
3	0	1	20.88	4.253	4	1.1	1	5	2	36.95	2.433	8	10.2	0	1	5	46.07	1.970	4	4.2
0	<b>2</b>	2	21.80	4.076	4	12.4	5	3	0	37.06	2.426	4	4.9	1	0	5	46.08	1.970	4	0.9
<b>2</b>	0	2	21.86	4.065	4	21.7	5	1	2	37.16	2.419	8	1.0	4	6	0	46.11	1.968	4	0.3
<b>2</b>	3	1	24.32	3.660	8	10.5	1	1	4	37.26	2.413	8	1.3	6	4	0	46.26	1.962	4	1.5
3	2	1	24.38	3.651	8	32.4	1	4	3	37.63	2.390	8	10.4	2	4	4	46.37	1.958	8	4.2
0	4	0	25.03	3.557	2	1.6	4	1	3	37.76	2.382	8	2.5	4	2	4	46.46	1.954	8	0.9
<b>2</b>	<b>2</b>	2	25.23	3.530	8	0.9	0	6	0	37.94	2.372	2	0.2	2	7	1	47.43	1.917	8	1.7
4	0	0	25.24	3.529	2	6.1	6	0	0	38.25	2.353	2	1.8	1	6	3	47.58	1.911	8	2.9
3	3	0	26.69	3.340	4	1.5	0	<b>2</b>	4	38.35	2.347	4	1.0	7	2	1	47.76	1.904	8	0.1
3	1	2	26.83	3.323	8	0.6	2	0	4	38.38	2.345	4	0.2	6	1	3	47.84	1.901	8	0.6
1	4	1	27.37	3.259	8	67.2	1	6	1	39.58	2.277	8	2.2	1	2	5	47.92	1.898	8	1.6
4	1	1	27.54	3.239	8	33.6	4	4	2	40.31	2.237	8	0.6	2	1	5	47.94	1.898	8	2.4
0	1	3	27.63	3.229	4	48.4	2	2	4	40.50	2.227	8	0.1	3	7	0	48.80	1.866	4	0.3
1	0	3	27.64	3.228	4	57.7	3	5	2	41.28	2.187	8	0.2	1	7	2	48.83	1.865	8	1.9
<b>2</b>	4	0	28.09	3.177	4	100.0	5	3	2	41.41	2.180	8	12.9	5	5	2	49.00	1.859	8	0.7
4	2	0	28.23	3.161	4	76.4	1	3	4	41.50	2.176	8	4.2	1	5	4	49.08	1.856	8	4.2
1	2	3	30.41	2.939	8	63.1	3	1	4	41.57	2.173	8	2.5	7	1	2	49.17	1.853	8	3.2
<b>2</b>	1	3	30.44	2.936	8	75.5	4	5	1	41.77	2.162	8	0.6	5	1	4	49.25	1.850	8	1.2
0	4	2	30.91	2.893	4	0.5	0	5	3	41.83	2.159	4	0.3	4	5	3	49.48	1.842	8	7.7
4	0	2	31.07	2.878	4	0.2	3	4	3	41.91	2.156	8	4.8	5	4	3	49.55	1.840	8	0.4
1	5	0	32.08	2.790	4	0.1	4	3	3	41.96	2.153	8	0.5	0	3	5	49.70	1.834	4	3.0
3	3	2	32.28	2.773	8	3.6	5	0	3	42.03	2.149	4	1.5	3	0	5	49.76	1.832	4	0.1
5	1	0	32.33	2.769	4	19.8	0	6	2	42.22	2.141	4	1.8	4	6	2	49.82	1.830	8	0.7
0	5	1	32.73	2.736	4	8.4	6	0	2	42.51	2.127	4	0.2	6	4	2	49.96	1.825	8	1.0
3	4	1	32.82	2.729	8	38.2	3	6	1	43.70	2.071	8	0.7							



CHEMICAL COMPOSITION:  $|Ba_4(H_2O)_{12}(BaCl_2)_4|$  [Si_{21.33}Al_{10.67}O₆₄]

REFINED COMPOSITION:  $|(Ba_3Cl_2O)_4|$  [Si_{21.34}Al_{10.66}O₆₄]

CRYSTAL DATA: I 4/m mm (No. 139) a = 14.194 Å b = 14.194 Å c = 9.234 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.14

#### REFERENCE: L. P. Solov'eva, S. V. Borisov and V. V. Bakakin, Sov. Phys. – Crystallogr. 16 1035–1038 (1972).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	ĉ	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.81	10.037	4	0.6	4	:	3	1	33.01	2.713	16	36.4	2	<b>2</b>	4	43.13	2.097	8	2.1
1	0	1	11.43	7.740	8	25.9	Ę	(	)	1	33.01	2.713	8	7.7	5	0	3	43.36	2.087	8	3.3
<b>2</b>	0	0	12.47	7.097	4	0.8	3	3	3	<b>2</b>	33.07	2.709	8	23.3	4	3	3	43.36	2.087	16	4.1
2	1	1	16.95	5.231	16	1.5	4	4	2	<b>2</b>	34.28	2.615	16	44.2	6	3	1	43.90	2.062	16	23.4
2	<b>2</b>	0	17.67	5.018	4	25.8	5	(	)	3	34.77	2.580	8	1.2	3	1	4	44.11	2.053	16	4.4
0	0	2	19.22	4.617	2	0.3	Ę	4	2	1	35.42	2.535	16	37.0	6	2	2	44.91	2.018	16	0.2
3	1	0	19.78	4.489	8	55.4	4	4	1	0	35.79	2.509	4	0.4	7	1	0	45.17	2.007	8	1.7
3	0	1	21.10	4.211	8	100.0	Ę	:	3	0	36.93	2.434	8	3.8	5	2	3	45.29	2.002	16	6.3
1	1	<b>2</b>	21.18	4.194	8	36.2	3	4	2	3	37.07	2.425	16	0.2	7	0	1	45.81	1.981	8	1.4
2	0	<b>2</b>	22.98	3.870	8	0.4	Ę	1	L	<b>2</b>	37.73	2.384	16	33.6	6	4	0	46.11	1.968	8	1.6
3	<b>2</b>	1	24.58	3.621	16	0.2	6	(	)	0	38.04	2.366	4	8.3	4	0	4	46.95	1.935	8	1.2
4	0	0	25.09	3.549	4	5.3	(	(	)	4	39.02	2.309	2	6.3	7	2	1	47.67	1.908	16	0.3
2	<b>2</b>	<b>2</b>	26.23	3.398	8	39.3	4	1	L	3	39.26	2.295	16	4.1	3	3	4	47.87	1.900	8	3.9
3	3	0	26.64	3.346	4	36.3	6	1	L	1	39.85	2.262	16	3.3	4	2	4	48.78	1.867	16	2.9
4	1	1	27.65	3.226	16	35.5	1	1	L	4	40.08	2.250	8	1.4	7	3	0	48.87	1.864	8	0.8
3	1	<b>2</b>	27.72	3.218	16	1.8	6	4	2	0	40.18	2.244	8	1.4	6	1	3	48.98	1.860	16	1.3
4	2	0	28.11	3.174	8	29.6	4	4	1	<b>2</b>	40.93	2.205	8	1.2	5	5	2	49.51	1.841	8	3.8
1	0	3	29.70	3.008	8	21.0	2	(	)	4	41.12	2.195	8	3.9	7	1	2	49.51	1.841	16	0.2
4	0	<b>2</b>	31.80	2.814	8	3.9	5	4	1	1	41.91	2.155	16	1.0	1	0	5	49.79	1.831	8	1.0
5	1	0	32.15	2.784	8	10.9	Ę		3	<b>2</b>	41.96	2.153	16	0.3							
2	1	3	32.32	2.770	16	79.3	f	(	)	2	42.96	2.105	8	3.8							



REFINED COMPOSITION:  $|(C_{12}N)_4|$  [Si₉₆O₁₉₂]

CRYSTAL DATA: Pnma (No. 62) a = 20.022 Å b = 19.899 Å c = 13.383 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.044$ 

REFERENCE: H. van Koningsveld, H. van Bekkum and J. C. Jansen, Acta Cryst. **B43** 127–132 (1987).

h	k	l	$2\theta$	d	M	$I_{ m rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	7.95	11.126	4	68.4	0	5	1	23.32	3.815	4	78.7	6	5	0	35.09	2.557	4	1.0
0	1	1	7.96	11.105	4	50.3	1	5	1	23.74	3.747	8	31.0	5	1	4	35.24	2.546	8	1.4
<b>2</b>	0	0	8.83	10.011	2	31.3	3	0	3	23.99	3.709	4	47.7	1	5	4	35.33	2.540	8	1.0
0	2	0	8.89	9.950	2	36.8	0	3	3	24.04	3.702	4	4.0	5	6	1	35.79	2.509	8	0.5
1	1	1	9.11	9.711	8	25.4	2	5	0	24.06	3.698	4	1.8	8	0	0	35.88	2.503	2	2.6
<b>2</b>	1	0	9.89	8.943	4	4.7	1	3	3	24.45	3.640	8	39.7	0	8	0	36.11	2.487	2	1.9
<b>2</b>	0	1	11.04	8.016	4	1.0	5	<b>2</b>	1	24.87	3.579	8	1.2	3	0	5	36.16	2.484	4	1.9
2	1	1	11.90	7.436	8	2.8	3	2	3	25.63	3.475	8	3.0	0	3	5	36.19	2.482	4	2.1
1	<b>2</b>	1	11.93	7.417	8	10.4	2	3	3	25.66	3.472	8	0.6	2	5	4	36.20	2.481	8	1.0
<b>2</b>	<b>2</b>	0	12.54	7.057	4	5.4	4	3	<b>2</b>	25.97	3.430	8	13.6	3	6	3	36.34	2.472	8	0.6
0	0	<b>2</b>	13.23	6.692	2	6.8	5	1	<b>2</b>	26.32	3.386	8	1.3	4	$\overline{7}$	0	36.34	2.472	4	0.9
1	0	<b>2</b>	13.95	6.346	4	17.4	1	5	<b>2</b>	26.43	3.372	8	1.6	8	1	1	36.81	2.442	8	0.9
1	1	2	14.65	6.046	8	8.6	0	0	4	26.64	3.346	2	1.2	8	2	0	37.04	2.427	4	1.0
3	0	1	14.83	5.973	4	10.9	6	0	0	26.71	3.337	2	2.7	2	8	0	37.25	2.414	4	0.5
0	3	1	14.91	5.943	4	4.1	4	0	3	26.77	3.330	4	5.9	7	0	3	37.35	2.408	4	2.7
3	1	1	15.49	5.720	8	0.8	0	6	0	26.88	3.316	2	2.9	5	3	4	37.56	2.394	8	0.8
1	3	1	15.55	5.697	8	10.0	1	0	4	27.02	3.300	4	9.6	3	5	4	37.62	2.391	8	2.3
<b>2</b>	0	2	15.93	5.563	4	6.2	1	1	4	27.40	3.256	8	0.7	6	5	2	37.66	2.389	8	2.1
0	2	2	15.96	5.553	4	5.6	6	0	1	27.55	3.238	4	0.7	1	7	3	37.79	2.380	8	1.6
2	3	0	16.03	5.529	4	3.5	3	3	3	27.55	3.237	8	1.6	8	0	2	38.40	2.344	4	0.9
2	1	2	16.55	5.358	8	1.8	2	5	<b>2</b>	27.56	3.237	8	2.1	4	$\overline{7}$	2	38.84	2.319	8	1.6
1	2	2	16.57	5.351	8	1.5	1	6	1	28.07	3.178	8	0.7	0	0	6	40.44	2.230	2	0.6
3	2	1	17.32	5.121	8	3.5	2	0	4	28.12	3.173	4	1.3	4	8	1	41.08	2.197	8	1.3
2	3	1	17.35	5.110	8	0.5	4	2	3	28.26	3.158	8	0.7	3	5	5	42.91	2.107	8	0.6
4	0	0	17.72	5.005	2	2.6	1	2	4	28.50	3.132	8	2.4	3	1	6	43.00	2.104	8	0.8
0	4	0	17.83	4.975	2	5.6	4	5	0	28.66	3.115	4	0.9	6	0	5	43.33	2.088	4	0.5
3	1	2	19.31	4.598	8	8.4	3	5	2	29.34	3.044	8	11.9	8	3	3	43.66	2.073	8	1.5
1	3	<b>2</b>	19.36	4.586	8	2.1	5	4	1	29.40	3.038	8	0.8	8	0	4	45.25	2.004	4	5.7
4	1	1	19.45	4.563	8	0.8	4	5	1	29.44	3.034	8	0.6	10	0	0	45.29	2.002	2	5.8
4	2	0	19.86	4.472	4	0.5	6	3	0	29.97	2.981	4	1.2	0	8	4	45.44	1.996	4	2.6
3	3	1	20.00	4.438	8	2.6	5	0	3	29.99	2.980	4	7.4	4	8	3	45.51	1.993	8	3.2
1	0	3	20.40	4.354	4	4.7	3	4	3	30.05	2.973	8	1.1	0	10	0	45.59	1.990	2	7.5
0	1	3	20.40	4.353	4	7.1	0	5	3	30.09	2.970	4	9.1	1	8	4	45.67	1.986	8	2.4
2	3	2	20.84	4.262	8	3.2	3	1	4	30.22	2.958	8	0.9	1	10	1	46.35	1.959	8	0.6
1	1	3	20.88	4.254	8	3.9	1	5	3	30.43	2.938	8	7.3	2	8	4	46.38	1.958	8	0.7
4	2	1	20.95	4.241	8	8.9	5	2	3	31.33	2.855	8	1.8	4	3	6	46.64	1.948	8	2.9
2	0	3	21.81	4.075	4	3.0	4	0	4	32.18	2.782	4	0.5	8	5	3	47.51	1.914	8	1.6
4	3	0	22.25	3.995	4	5.6	0	4	4	32.24	2.776	4	0.6	3	8	4	47.54	1.912	8	1.2
0	4	2	22.27	3.992	4	0.7	6	3	2	32.89	2.723	8	4.5	0	10	2	47.68	1.907	4	0.6
1	2	3	22.29	3.989	8	1.8	6	0	3	33.54	2.672	4	1.1	9	3	3	47.69	1.907	8	1.9
4	1	2	22.63	3.929	8	0.7	1	0	5	33.78	2.653	4	0.5	5	3	6	48.70	1.870	8	1.8
1	4	2	22.71	3.915	8	0.5	5	5	2	34.48	2.601	8	6.4	3	5	6	48.75	1.868	8	3.4
3	3	2	23.11	3.849	8	4.0	2	0	5	34.69	2.586	4	0.9	3	0	7	49.60	1.838	4	0.7
5	0	1	23.18	3.836	4	100.0	7	3	1	34.81	2.577	8	1.8	0	3	7	49.62	1.837	4	0.7
4	3	1	23.23	3.829	8	0.8	4	3	4	34.98	2.565	8	1.7	8	0	5	49.88	1.828	4	0.6



CHEMICAL COMPOSITION:	$ H_{0.32} $	$[Si_{95.68}Al_{0.32}O_{192}]$	
-----------------------	--------------	--------------------------------	--

REFINED COMPOSITION: [Si₉₆O₁₉₂]

CRYSTAL DATA:  $P12_1/n1$  (No. 14) unique axis **b**, cell choice 2 a = 19.879 Å b = 20.107 Å c = 13.369 Å  $\alpha = 90^{\circ}$   $\beta = 90.67^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.045$ 

REFERENCE: H. van Koningsveld, J. C. Jansen and H. van Bekkum, Zeolites 10 235–242 (1990).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
-1	0	1	7.93	11.153	2	37.1	-5	0	1	23.27	3.823	2	16.1	5	4	2	31.78	2.816	4	0.4
0	1	1	7.94	11.132	4	100.0	5	0	1	23.42	3.798	2	18.2	-7	0	1	32.15	2.784	2	0.7
1	0	1	8.01	11.033	2	31.9	-5	1	1	23.69	3.756	4	8.1	-3	6	2	32.74	2.735	4	1.6
0	2	0	8.80	10.054	2	47.8	5	1	1	23.84	3.732	4	10.4	3	6	2	32.87	2.724	4	1.2
2	0	0	8.90	9.939	2	51.6	-3	0	3	23.93	3.718	2	1.4	3	3	4	32.99	2.715	4	0.4
-1	1	1	9.07	9.753	4	13.9	0	3	3	23.98	3.711	4	23.0	0	6	3	33.46	2.678	4	1.3
1	1	1	9.14	9.673	4	14.1	5	2	0	24.07	3.697	4	0.9	-1	0	5	33.77	2.654	2	0.9
1	2	0	9.86	8.971	4	1.4	3	0	3	24.20	3.678	2	2.1	0	7	2	33.97	2.639	4	0.4
0	2	1	11.01	8.035	4	1.2	-3	1	3	24.35	3.656	4	7.6	-5	5	2	34.34	2.612	4	1.6
-2	1	1	11.88	7.450	4	1.1	3	1	3	24.61	3.618	4	8.2	5	5	2	34.55	2.596	4	1.1
2	1	1	11.99	7.378	4	0.6	-2	5	1	24.77	3.595	4	1.0	-3	7	1	34.66	2.588	4	0.9
2	2	0	12.52	7.068	4	0.5	2	5	1	24.82	3.587	4	0.5	-5	1	4	35.16	2.552	4	0.6
0	0	2	13.25	6.684	2	7.3	-2	3	3	25.54	3.488	4	1.5	-1	5	4	35.17	2.552	4	0.9
0	1	2	13.96	6.343	4	11.0	-3	2	3	25.54	3.487	4	0.4	0	8	0	35.72	2.513	2	1.6
-1	1	2	14.61	6.062	4	0.7	2	3	3	25.71	3.465	4	0.9	8	0	0	36.15	2.485	2	1.1
0	3	1	14.79	5.991	4	13.7	3	2	3	25.79	3.454	4	1.0	0	3	5	36.17	2.483	4	1.4
-3	0	1	14.85	5.964	2	2.7	-3	4	2	25.85	3.446	4	3.1	7	4	0	36.34	2.472	4	0.7
3	0	1	14.99	5.909	2	4.9	3	4	2	26.02	3.425	4	4.1	-3	1	5	36.36	2.471	4	0.6
-3	1	1	15.50	5.718	4	5.0	-1	5	2	26.22	3.399	4	1.2	3	0	5	36.38	2.469	2	0.4
3	1	1	15.63	5.669	4	5.0	-5	1	2	26.32	3.385	4	0.4	2	8	0	36.89	2.437	4	0.4
-2	0	2	15.89	5.577	2	2.0	5	1	2	26.59	3.352	4	0.7	0	7	3	37.24	2.414	4	1.3
0	2	2	15.92	5.566	4	6.1	0	6	0	26.60	3.351	2	2.8	-5	3	4	37.44	2.402	4	0.5
3	2	0	16.02	5.532	4	1.3	6	0	0	26.91	3.313	2	2.7	-5	6	2	37.50	2.399	4	0.8
2	0	2	16.07	5.517	2	1.4	0	1	4	27.05	3.297	4	5.1	-7	1	3	37.63	2.390	4	0.9
-2	1	2	16.50	5.374	4	1.5	-1	1	4	27.37	3.258	4	0.6	3	5	4	37.65	2.389	4	0.7
2	1	2	16.66	5.320	4	2.0	0	6	1	27.44	3.251	4	1.1	5	3	4	37.83	2.378	4	0.9
-2	3	1	17.24	5.143	4	0.6	-5	2	2	27.44	3.250	4	0.8	-7	4	2	38.70	2.327	4	0.4
2	3	1	17.32	5.119	4	1.1	5	2	2	27.70	3.220	4	0.7	8	4	1	41.15	2.193	4	0.4
0	4	0	17.64	5.027	2	3.6	0	2	4	28.14	3.171	4	0.6	0	7	4	41.45	2.178	4	0.7
4	0	0	17.85	4.969	2	5.4	-2	1	4	28.42	3.140	4	1.1	0	10	0	45.09	2.011	2	3.2
1	4	0	18.20	4.873	4	0.7	2	1	4	28.62	3.118	4	0.4	0	8	4	45.14	2.009	4	3.4
0	4	1	18.86	4.705	4	0.6	-5	3	2	29.22	3.057	4	3.0	-8	0	4	45.22	2.005	2	0.9
-1	3	2	19.24	4.613	4	2.2	5	3	2	29.46	3.032	4	3.3	-8	4	3	45.32	2.001	4	1.1
1	3	2	19.31	4.596	4	1.5	3	6	0	29.88	2.990	4	0.7	10	0	0	45.64	1.988	2	4.6
-1	0	3	20.37	4.359	2	2.2	0	5	3	29.93	2.985	4	6.6	8	4	3	45.73	1.984	4	0.8
0	1	3	20.41	4.350	4	1.9	-5	0	3	29.94	2.984	2	4.0	8	0	4	45.76	1.983	2	1.4
1	0	3	20.48	4.337	2	1.3	-1	3	4	30.17	2.962	4	0.8	-3	4	6	46.50	1.953	4	1.4
-3	2	2	20.74	4.282	4	0.8	l	6	2	30.19	2.960	4	0.4	8	2	4	46.69	1.945	4	0.5
-2	4	1	20.85	4.259	4	2.6	-5 -	1	3	30.28	2.952	4	2.6	3	4	6	46.80	1.941	4	0.8
2	4	1	20.92	4.246	4	3.4	5	0	3	30.30	2.949	2	1.9	-5 0	8	3	47.28	1.922	4	0.8
3	2	2	20.94	4.242	4	0.7	5	1	3	30.64	2.918	4	0.9	-3	9	3	47.48	1.915	4	0.6
0	2	3	21.82	4.074	4	2.1	-2	5	3	31.21	2.865	4	1.0	5	8	3	47.53	1.913	4	0.6
3	4	1	22.20	4.005	4	2.8	-5 0	2	ა ი	31.27	2.861	4	0.4	3	9	3	41.62	1.909	4	0.8
0	5	1	23.10	3.851	4	44.7	2	Ð ∡	ა ი	31.35	2.853	4	0.6	-5 -	3	b C	48.54	1.875	4	1.4
3	- 3	-2	23.19	3.836	4	1.0	-5	4	-2	31.55	2.830	4	0.6	5	- 3	b	49.02	1.858	4	1.0



### CHEMICAL COMPOSITION: [Si₃₆O₇₂]

REFINED COMPOSITION: [Si₃₆O₇₂]

CRYSTAL DATA: Imm2 (No. 44) a = 7.4510 Å b = 14.1711 Å c = 18.767 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ DLS refinement.

REFERENCE: J. L. Schlenker, J. B. Higgins and E. W. Valyocsik, Zeolites 10 293–296 (1990).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	, k	;	l	$2\theta$	d	M	$I_{\rm rel}$
0	1	1	7.82	11.309	4	100.0	0	3	5	30.42	2.939	4	3.9	3	1	-	4	41.63	2.169	8	1.5
0	0	2	9.42	9.384	2	57.8	2	3	1	30.94	2.890	8	0.7	3	3	3	2	42.22	2.140	8	0.5
0	2	0	12.49	7.086	2	18.3	0	2	6	31.26	2.861	4	0.7	2	5	5	3	42.61	2.122	8	0.5
1	0	1	12.78	6.925	4	37.0	1	4	3	31.40	2.849	8	0.8	3	0	)	5	43.70	2.071	4	0.5
1	1	0	13.43	6.595	4	0.8	0	4	4	31.65	2.827	4	0.3	C	1	-	9	43.89	2.063	4	0.2
0	1	3	15.48	5.723	4	8.7	1	1	6	31.66	2.826	8	0.3	1	4	Ł	7	44.07	2.055	8	0.6
0	2	2	15.67	5.655	4	11.8	0	5	1	31.93	2.802	4	2.7	1	3	3	8	44.82	2.022	8	0.2
1	1	<b>2</b>	16.43	5.396	8	16.5	2	3	3	33.83	2.650	8	1.0	1	Ę	5	6	44.84	2.021	8	1.5
1	2	1	17.91	4.953	8	1.4	1	5	0	33.84	2.649	4	0.8	C	7	7	1	45.04	2.013	4	0.1
1	0	3	18.52	4.791	4	11.2	2	1	5	34.50	2.599	8	0.3	1	0	)	9	45.15	2.008	4	0.3
0	0	4	18.91	4.692	2	4.1	0	5	3	34.75	2.582	4	0.8	3	2	2	5	45.63	1.988	8	2.2
0	3	1	19.38	4.581	4	0.5	2	4	0	34.95	2.567	4	0.3	2	0	)	8	45.70	1.985	4	1.6
1	3	0	22.28	3.990	4	1.6	1	5	2	35.20	2.549	8	2.1	2	4	Ł	6	45.72	1.984	8	1.7
1	2	3	22.40	3.969	8	3.6	1	0	7	35.59	2.523	4	0.4	C	4	Ł	8	46.42	1.956	4	1.9
0	2	4	22.73	3.912	4	3.8	2	4	2	36.28	2.476	8	0.9	1	7	7	0	46.48	1.954	4	0.3
1	1	4	23.27	3.823	8	11.1	3	0	1	36.49	2.462	4	1.3	2	6	5	2	46.54	1.951	8	0.2
0	3	3	23.60	3.770	4	31.2	1	3	6	36.50	2.462	8	1.4	C	5	5	7	46.63	1.948	4	0.1
2	0	0	23.88	3.726	2	4.7	2	0	6	37.55	2.395	4	1.2	3	4	Ł	3	46.98	1.934	8	0.3
1	3	2	24.24	3.671	8	0.8	1	2	7	37.86	2.377	8	1.6	2	5	5	5	47.00	1.933	8	0.2
0	1	5	24.53	3.628	4	4.1	0	0	8	38.37	2.346	2	0.3	1	2	2	9	47.03	1.932	8	1.2
0	4	0	25.14	3.543	2	17.5	0	4	6	38.39	2.345	4	0.2	1	6	5	5	47.07	1.931	8	0.2
2	1	1	25.17	3.538	8	2.6	3	2	1	38.71	2.326	8	0.2	3	1	-	6	47.16	1.927	8	1.2
2	0	2	25.73	3.463	4	26.4	2	3	5	39.04	2.307	8	3.9	C	7	7	3	47.19	1.926	4	5.8
1	0	5	26.59	3.352	4	3.3	1	5	4	39.05	2.307	8	1.7	1	7	7	2	47.54	1.913	8	0.4
0	4	2	26.90	3.314	4	3.6	0	6	2	39.34	2.290	4	0.1	C	3	3	9	47.67	1.908	4	2.2
2	2	0	27.04	3.297	4	0.2	2	2	6	39.72	2.269	8	0.4	3	5	ò	0	48.75	1.868	4	0.1
1	4	1	28.30	3.154	8	1.4	0	5	5	39.86	2.262	4	0.2	4	. (	)	0	48.89	1.863	2	3.9
0	0	6	28.54	3.128	2	2.3	2	5	1	40.27	2.240	8	0.4	4	- 1		1	49.60	1.838	8	0.5
2	1	3	28.59	3.122	8	17.6	1	6	1	40.35	2.235	8	0.2	3	Ę	5	2	49.77	1.832	8	0.3
2	2	2	28.69	3.111	8	2.5	0	2	8	40.51	2.227	4	0.4	4	. (	)	2	49.91	1.827	4	0.4
1	3	4	29.39	3.039	8	3.8	3	3	0	41.06	2.198	4	0.2								
1	2	5	20/18	3 030	8	59	3	2	3	11 13	2.105	8	0.2								



CHEMICAL COMPOSITION:	$ Na_{0.1}K_{4.3}(H_2O)_5 $ [Si _{11.3} Al _{4.7} O ₃₂ ]
	Pollena, Mt. Somma-Vesuvius, Italy

REFINED COMPOSITION:  $|K_{4.24}(H_2O)_4|$  [Si_{11.3}Al_{4.7}O₃₂]

CRYSTAL DATA:  $I 4_1/a m d$  (No. 141) origin at centre (2/m)a = 7.141 Å b = 7.141 Å c = 17.307 Å $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray powder refinement of idealized substructure, R = 0.10

REFERENCE: R. C. Rouse, P. J. Dunn, J. D. Grice, J. L. Schlenker and J. B. Higgins, *American Mineralogist* **75** 1415–1420 (1990).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	,	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	13.41	6.601	8	81.3	2	2	0	35.56	2.525	4	13.5	C	)	0	8	41.75	2.163	2	8.8
1	1	2	20.36	4.361	8	13.5	1	1	6	35.85	2.505	8	1.4	3	;	1	4	45.30	2.002	16	4.3
0	0	4	20.53	4.327	2	43.9	3	0	1	38.16	2.358	8	0.3	3	;	0	5	46.29	1.961	8	0.1
2	0	0	24.94	3.570	4	0.5	2	1	5	38.35	2.347	16	17.5	2	2	1	$\overline{7}$	46.45	1.955	16	0.2
2	0	2	27.01	3.301	8	100.0	1	0	$\overline{7}$	38.53	2.336	8	4.8	3	;	2	3	48.60	1.873	16	3.8
<b>2</b>	1	1	28.42	3.141	16	57.0	2	0	6	40.19	2.244	8	2.3	1		0	9	49.06	1.857	8	3.7
1	0	5	28.66	3.115	8	37.4	3	1	2	41.32	2.185	16	1.2	2	2	0	8	49.25	1.850	8	0.3
<b>2</b>	1	3	32.03	2.794	16	20.7	2	2	4	41.41	2.181	8	11.1								





CHEMICAL COMPOSITION:	$ \mathrm{Na}_8(\mathrm{H}_2\mathrm{O})_{24}  [\mathrm{Si}_{40}\mathrm{Al}_8\mathrm{O}_{96}]$ Challis, Idaho, U.S.A.
REFINED COMPOSITION:	$ Na_8(H_2O)_{25} $ [Si ₄₀ Al ₈ O ₉₆ ]
CRYSTAL DATA:	$\begin{array}{ll} Cmcm \mbox{ (No. 63)} \\ a = 18.11 \mbox{ \AA } b = 20.53 \mbox{ \AA } c = 7.528 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \mbox{ X-ray single crystal refinement, } R = 0.07 \end{array}$
REFERENCE:	V. Gramlich, PhD dissertation, ETH, Zurich, (1971).

And V. Gramlich, Private communication.

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.51	13.581	4	100.0	5	3	1	30.34	2.946	8	0.3	3	7	<b>2</b>	41.81	2.160	8	1.8
0	2	0	8.61	10.265	2	13.1	2	6	1	30.34	2.946	8	5.5	4	2	3	42.10	2.146	8	0.5
2	0	0	9.77	9.055	2	56.4	6	2	0	30.88	2.896	4	2.0	6	4	2	42.22	2.140	8	0.2
2	2	0	13.04	6.791	4	0.3	4	0	2	30.89	2.894	4	12.9	3	9	0	42.36	2.134	4	0.3
1	1	1	13.45	6.584	8	40.4	3	3	2	30.89	2.894	8	8.8	0	8	2	42.64	2.120	4	0.5
1	3	0	13.83	6.402	4	29.1	2	4	2	31.08	2.878	8	0.2	2	8	2	43.85	2.064	8	0.5
0	2	1	14.59	6.071	4	13.3	1	5	2	32.65	2.743	8	3.2	0	10	0	44.11	2.053	2	5.3
3	1	0	15.30	5.791	4	9.5	5	5	0	32.98	2.716	4	0.6	3	9	1	44.11	2.053	8	0.8
0	4	0	17.28	5.133	2	0.6	6	2	1	33.15	2.703	8	2.8	5	1	3	44.13	2.052	8	0.6
2	2	1	17.59	5.042	8	2.3	1	$\overline{7}$	1	33.15	2.702	8	6.6	7	3	2	44.51	2.036	8	3.3
1	3	1	18.19	4.877	8	4.4	3	$\overline{7}$	0	33.98	2.638	4	1.6	0	6	3	44.79	2.024	4	0.3
3	1	1	19.34	4.590	8	3.2	5	1	2	34.65	2.589	8	0.6	4	4	3	44.92	2.018	8	4.9
4	0	0	19.61	4.528	2	1.4	7	1	0	34.95	2.567	4	0.2	9	1	0	45.28	2.003	4	0.5
3	3	0	19.61	4.527	4	22.7	0	8	0	34.96	2.566	2	5.4	8	4	1	45.41	1.997	8	2.9
2	4	0	19.88	4.465	4	0.6	5	5	1	35.12	2.555	8	0.5	5	3	3	45.95	1.975	8	0.8
0	4	1	20.95	4.241	4	1.4	4	4	2	35.61	2.521	8	0.6	2	6	3	45.95	1.975	8	0.7
4	2	0	21.45	4.142	4	5.7	3	5	2	35.61	2.521	8	15.5	6	8	0	46.44	1.955	4	7.5
1	5	0	22.20	4.004	4	46.1	2	8	0	36.39	2.469	4	1.3	5	7	<b>2</b>	46.58	1.950	8	0.6
3	3	1	22.92	3.880	8	1.0	1	1	3	36.41	2.468	8	1.2	9	1	1	46.95	1.935	8	1.8
2	4	1	23.16	3.840	8	16.9	6	4	1	36.54	2.459	8	5.3	2	10	1	46.96	1.935	8	0.2
0	0	2	23.64	3.764	2	6.9	5	3	2	36.86	2.439	8	1.2	9	3	0	47.07	1.930	4	0.9
4	2	1	24.53	3.629	8	4.5	2	6	2	36.86	2.438	8	1.8	5	9	0	47.08	1.930	4	0.2
1	1	2	24.54	3.627	8	0.3	0	2	3	36.87	2.438	4	0.2	4	8	<b>2</b>	47.34	1.920	8	5.2
5	1	0	24.96	3.567	4	2.3	7	1	1	37.00	2.429	8	0.4	6	2	3	47.97	1.896	8	0.6
1	5	1	25.19	3.535	8	0.3	0	8	1	37.01	2.429	4	0.5	1	7	3	47.98	1.896	8	1.1
0	2	2	25.20	3.534	4	4.3	7	3	0	37.15	2.420	4	0.1	7	5	<b>2</b>	48.08	1.892	8	0.7
2	0	2	25.63	3.476	4	75.7	6	0	2	38.22	2.355	4	0.1	0	0	4	48.36	1.882	2	9.4
0	6	0	26.04	3.422	2	5.0	2	2	3	38.24	2.354	8	0.4	7	7	1	48.45	1.879	8	0.5
3	5	0	26.25	3.395	4	43.5	1	3	3	38.53	2.336	8	0.7	4	10	0	48.70	1.870	4	0.1
2	2	2	27.09	3.292	8	4.7	7	3	1	39.10	2.304	8	0.2	5	9	1	48.70	1.870	8	2.5
1	3	2	27.49	3.245	8	12.6	6	2	2	39.25	2.295	8	0.4	1	1	4	48.85	1.864	8	1.2
5	1	1	27.67	3.223	8	46.1	5	7	0	39.54	2.279	4	1.1	1	11	0	49.07	1.857	4	0.5
5	3	0	27.87	3.201	4	28.8	8	0	0	39.82	2.264	2	0.1	3	9	2	49.07	1.856	8	0.5
2	6	0	27.87	3.201	4	0.1	0	4	3	39.99	2.254	4	0.1	4	6	3	49.33	1.847	8	0.4
3	1	2	28.28	3.156	8	4.0	4	8	0	40.40	2.233	4	2.2	5	5	3	49.45	1.843	8	0.1
0	6	1	28.66	3.115	4	2.7	8	2	0	40.82	2.211	4	0.4	2	0	4	49.46	1.843	4	0.3
4	4	1	28.85	3.095	8	3.3	7	5	0	41.24	2.189	4	0.3	8	6	1	49.79	1.831	8	0.1
3	5	1	28.85	3.095	8	0.5	2	4	3	41.27	2.188	8	2.2							
0	4	2	29.43	3.035	4	0.2	6	6	1	41.67	2.168	8	1.4							



CF	CHEMICAL COMPOSITION:						Pb ₇ Ca ₂ Moon A	$(H_2 nch$	$_{2}O)$	₂₈   [Si ₃ Mine, '	₆ Al ₁₂ ( Tonopa	O, O ah, A	0H) ₁₀₀ AZ, U	] .S.A.						
Ι	REF	FIN	ED CO	OMPOS	SITI	ON:	Pb _{10.68}	$(H_2$	$O)_2$	$26.5O_4$	[Si _{36.38}	3Al11	$1.02O_{1}$	00]						
			CR	YSTAL	DA'	TA:	Cm2m ( $a = 19.4\alpha = 90^{\circ} X-ray si$	(No 132 ngle	. 38 Å e cr	8) <b>bca</b> b = 1 $\beta = 1$ systal r	setting 19.702 90° efinem	g Å ent,	c = $\gamma =$ $R_{\rm w} =$	7.538 Å 90° 0.051						
				REFEF	REN	CE:	R. C. R. America	ous in I	e ai Min	nd D. I eralogi	R. Peac st <b>79</b> 1	cor, 175–	184 (1	994).						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.39	13.835	4	100.0	) 6	0	1	30.03	2.976	4	0.2	6	4	2	41.06	2.198	8	0.2
0	2	0	8.98	9.851	2	4.0	) 2	6	1	31.10	2.876	8	0.2	4	8	0	41.09	2.197	4	0.3
2	0	0	9.10	9.716	2	0.3	3 2	4	2	31.27	2.861	8	0.8	5	7	1	41.38	2.182	8	0.6
0	0	1	11.74	7.538	2	1.0	) 4	2	2	31.38	2.850	8	3.6	8	4	0	41.45	2.179	4	0.1
2	2	0	12.80	6.917	4	2.3	3 6	2	1	31.40	2.849	8	2.0	4	2	3	41.48	2.177	8	0.4
1	1	1	13.38	6.619	8	1.8	8 1	7	0	32.13	2.786	4	0.6	1	9	0	41.51	2.175	4	0.2
1	3	0	14.24	6.222	4	0.9	9 5	5	0	32.35	2.767	4	0.3	9	1	0	42.10	2.146	4	0.7
3	1	0	14.39	6.153	4	1.9	9 7	1	0	32.57	2.749	4	0.4	3	7	2	42.44	2.130	8	0.3
0	2	1	14.80	5.986	4	1.7	7 4	6	0	32.92	2.720	4	0.2	5	1	3	43.11	2.098	8	0.4
2	2	1	17.40	5.097	8	0.4	4 6	4	0	33.10	2.706	4	1.1	1	9	1	43.29	2.090	8	0.3
1	3	1	18.49	4.798	8	4.6	³ 1	5	2	33.21	2.697	8	1.1	0	8	2	43.92	2.062	4	0.2
3	1	1	18.61	4.767	8	0.6	5 5	1	2	33.43	2.680	8	3.5	4	4	3	44.57	2.033	8	0.4
3	3	0	19.25	4.612	4	0.5	5 1	7	1	34.32	2.613	8	0.3	2	8	2	44.95	2.017	8	0.2
2	4	0	20.21	4.393	4	0.6	5 5	5	1	34.53	2.598	8	0.5	3	5	3	45.02	2.014	8	0.1
4	2	0	20.38	4.357	4	4.3	3 4	6	1	35.07	2.559	8	0.9	8	2	2	45.36	1.999	8	0.3
0	4	1	21.55	4.123	4	1.9	9 7	3	0	35.09	2.557	4	0.8	0	6	3	45.45	1.995	4	0.3
4	0	1	21.76	4.083	4	0.3	3 4	4	2	35.22	2.548	8	0.1	9	3	1	45.85	1.979	8	0.7
3	3	1	22.60	3.934	8	0.6	6 6	4	1	35.24	2.547	8	0.8	6	6	2	46.15	1.967	8	0.2
1	5	0	23.03	3.862	4	1.9	9 0	0	3	35.73	2.513	2	0.1	2	6	3	46.46	1.955	8	0.1
5	1	0	23.33	3.813	4	0.7	7 3	5	2	35.76	2.511	8	0.2	8	6	0	46.50	1.953	4	0.3
2	4	1	23.44	3.796	8	0.1	1 5	3	2	35.90	2.502	8	0.3	5	7	2	46.56	1.951	8	0.5
4	2	1	23.58	3.772	8	0.2	2 0	6	2	36.28	2.476	4	0.2	7	5	2	46.72	1.944	8	0.1
0	0	2	23.60	3.769	2	0.1	1 1	1	3	36.34	2.472	8	0.3	10	0	0	46.75	1.943	2	0.5
1	1	2	24.48	3.636	8	0.9	9 0	8	0	36.48	2.463	2	0.4	2	10	0	47.06	1.931	4	0.1
0	2	2	25.30	3.520	4	1.0	) 6	0	2	36.58	2.456	4	2.5	7	7	1	47.56	1.912	8	0.1
2	0	2	25.35	3.514	4	2.0	) 0	2	3	36.92	2.435	4	0.3	5	9	0	47.68	1.907	4	1.0
4	4	0	25.76	3.459	4	1.5	5 8	0	0	37.01	2.429	2	0.2	10	2	0	47.70	1.906	4	0.1
1	5	1	25.92	3.437	8	0.6	5 7	3	1	37.13	2.421	8	0.7	4	8	2	47.93	1.898	8	0.3
5	1	1	26.19	3.402	8	0.5	5 2	6	2	37.49	2.399	8	0.7	6	8	1	47.95	1.897	8	0.8
3	5	0	26.48	3.366	4	3.3	3 2	8	0	37.68	2.387	4	0.3	8	4	2	48.25	1.886	8	0.4
5	3	0	26.65	3.345	4	3.3	3 6	2	2	37.74	2.383	8	0.5	0	0	4	48.29	1.885	2	1.6
2	2	2	26.94	3.310	8	1.9	9 8	2	0	38.16	2.358	4	0.6	1	9	2	48.31	1.884	8	1.1
0	6	0	27.16	3.284	2	4.1	1 0	8	1	38.45	2.341	4	0.2	1	1	4	48.77	1.867	8	1.1
1	3	2	27.67	3.224	8	4.2	2 1	3	3	38.64	2.330	8	0.3	1	7	3	48.81	1.866	8	0.4
3	1	2	27.76	3.214	8	5.8	s 6	6	0	39.06	2.306	4	0.4	5	5	3	48.97	1.860	8	0.1
4	4	1	28.39	3.144	8	0.2	2 2	8	1	39.60	2.276	8	0.1	0	2	4	49.23	1.851	4	0.2
2	6	0	28.70	3.111	4	0.8	8 8	2	1	40.06	2.251	8	0.2	5	9	1	49.28	1.849	8	0.2
6	2	0	29.02	3.077	4	0.4	4 5	5	2	40.44	2.230	8	0.8	10	2	1	49.30	1.848	8	0.3
5	3	1	29.21	3.057	8	2.9	9 7	1	2	40.62	2.221	8	1.7	4	6	3	49.37	1.846	8	0.1
0	6	1	29.67	3.010	4	1.3	3 3	3	3	40.90	2.206	8	0.2	6	4	3	49.50	1.841	8	0.3
0	4	2	29.85	2.993	4	2.1	1 4	6	2	40.91	2.206	8	0.9	4	10	0	49.95	1.826	4	0.3
4	0	2	30.01	2.978	4	5.6	<b>5</b> 6	6	1	40.93	2.205	8	0.3							





⊂ ∞

CHEMICAL COMPOSITION:	$\begin{split}  (C_{12}H_{24}O_6)_{36}  & [Si_{33.48}Al_{2.52}O_{78}] \\ C_{12}H_{24}O_6 &= 1,4,7,10,13,16\text{-hexaoxacyclooctadecane} \ (18\text{-crown-6 ether}) \end{split}$
REFINED COMPOSITION:	$ K_{9.38}C_{12}H_{48} $ [Si ₃₆ O ₇₈ ]
CRYSTAL DATA:	$ \begin{array}{ll} R\overline{3}m \mbox{ (No. 166) rhombohedral setting} \\ a = 11.841 \mbox{ \AA } b = 11.841 \mbox{ \AA } c = 11.841 \mbox{ \AA } \\ \alpha = 93.29^{\circ}  \beta = 93.29^{\circ}  \gamma = 93.29^{\circ} \\ \mbox{ X-ray Rietveld refinement, } R_{\rm p} = 0.0533, R_{\rm wp} = 0.0704 \end{array} $
<b>REFERENCE</b> :	D. F. Shantz, A. Burton and R. F. Lobo,

Microporous and Mesoporous Materials **31** 61–73 (1999).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.49	11.800	6	100.0	2	<b>2</b>	-2	25.62	3.478	6	0.4	3	3	-3	38.84	2.318	6	0.2
1	0	-1	10.27	8.610	6	31.6	3	1	1	26.00	3.427	6	0.3	4	3	0	39.28	2.294	12	0.1
1	1	0	10.92	8.101	6	0.8	3	0	-2	26.46	3.369	12	0.7	5	0	-2	40.29	2.239	12	0.2
1	1	-1	12.73	6.955	6	12.2	3	-1	-2	27.41	3.254	12	0.2	4	3	1	40.69	2.218	12	0.2
1	1	1	13.77	6.432	2	13.9	3	1	-2	27.66	3.224	12	0.4	5	1	1	40.71	2.217	6	0.2
<b>2</b>	0	0	15.02	5.900	6	0.1	3	2	0	28.02	3.184	12	0.7	5	-1	-2	40.76	2.213	12	0.2
<b>2</b>	0	-1	16.38	5.410	12	2.2	4	0	0	30.30	2.950	6	0.5	3	3	3	42.15	2.144	2	0.1
2	1	0	17.21	5.153	12	3.6	2	2	-3	30.32	2.948	6	0.2	5	2	1	43.43	2.084	12	0.1
2	1	-1	18.23	4.867	12	0.6	3	2	-2	30.79	2.904	12	0.7	4	3	2	43.50	2.080	12	0.3
<b>2</b>	1	1	19.34	4.590	6	10.9	4	1	0	31.71	2.822	12	0.3	4	3	-3	44.02	2.057	12	0.2
2	0	-2	20.63	4.305	6	0.3	4	1	-1	32.07	2.791	12	0.1	4	4	0	44.75	2.025	6	0.1
2	2	0	21.94	4.050	6	1.3	3	2	2	33.05	2.711	6	0.2	4	4	1	46.11	1.969	6	0.2
2	1	-2	21.98	4.044	12	0.2	3	3	1	34.69	2.586	6	0.2	6	0	0	46.16	1.967	6	0.2
3	0	0	22.61	3.933	6	1.1	3	2	-3	34.76	2.581	12	0.1	6	1	-1	47.42	1.917	12	0.1
2	2	-1	22.61	3.933	6	0.4	4	2	0	34.82	2.576	12	0.1	4	3	3	47.51	1.914	6	0.3
2	2	1	23.82	3.736	6	1.1	4	2	1	36.28	2.476	12	0.3	6	0	-2	47.86	1.901	12	0.1
3	-1	-1	24.32	3.660	6	0.8	3	3	2	37.78	2.381	6	0.1							
3	1	-1	24.89	3.578	12	0.7	5	-1	-1	38.84	2.318	6	0.2							



# CHEMICAL COMPOSITION: [Si₄₄O₈₈]

# REFINED COMPOSITION: [Si₄₄O₈₈]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 9.5000 Å b = 30.7096 Å c = 7.3133 Å  $\alpha = 90.0^{\circ}$   $\beta = 91.7113^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray synchrotron Rietveld refinement,  $R_{\rm p} = 0.0729$ ,  $R_{\rm wp} = 0.0916$ ,  $R_{\rm b} = 0.0302$ 

REFERENCE: P. A. Barrett, M.-J. Diaz-Cabanas and M. A. Camblor, Chemistry of Materials **11** 2919–2927 (1999).

0         0         5.76         15.355         2         1000         -3         1         1         30.58         2.933         4         0.2         -3         0         1         0.232         2.238         2         0.238         2         0.398         2.861         4         0.2         -3         5         1         40.63         2.226         4         0.4           0         1         12.11         7.310         2         3.88         2         0         2         3.13         2.855         2         1.66         3         5         2         41.08         2.124         4         0.4           1         1         1.53         5.773         4         1.32         2         1.83         2.807         4         0.5         -1         1         1.43         4         0.4         0.2         -2         1.2         1.44         1.44         0.4         0.2         -2         1.2         1.44         1.44         0.4         0.4         0.2         -2         1.2         1.44         1.44         0.4         0.4         0.2         -2         1.2         1.44         1.44         0.4         0.4         0.	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1         1         0         9.75         9.072         4         8.1         -2         2         3.08         2.887         4         0.2         -3         1         4.053         2.276         4         0.4         0.1          0         1         1.153         7.677         2         4.9         0         1         1.16         2         1.1         3.16         2.861         4         0.7         -1         1         1         4.183         2.144         0.7         4         1.3         2.2         2         3.183         2.807         4         0.5         -1.173         1.1         1.1         1.5         5.773         4         1.3.3         2         2         2         3.18         2.872         4         0.2         -2         12         1         1.1         1.2         1.4         1.1         0.1         1.1         1.1         1.1         0.1         1.1         1.1         1.1         1.1         0.1         1.1         0.1         1.1         0.1         1.1         0.1         1.1         0.1         1.1         0.1         1.1         0.1         1.1         0.1         1.1         0.1         1.1         <	0	2	0	5.76	15.355	2	100.0	-3	1	1	30.58	2.923	4	0.2	4	0	1	40.29	2.238	2	0.2
0         0         0         1         1.1.5.3         7.677         2         4.9         3         1         1         3.126         2.861         4         0.5         -1         5         3         4.08         2.107         4         0.3          0         1         1.11         1.13.11         6.600         4         1.09         -3         3         1         3.10         2.823         4         0.7         -1         13         1         4.1.34         2.1.64         4         0.7           1         1         1.5.35         5.7.73         4         1.33         2         2         3.1.8         2.782         4         0.2         -2         1         4.1.3         2.1.61         4         0.2           1         1         7.40         5.097         4         0.3         2         8         1         32.62         2.745         4         0.0         1.10         1         0.1         1.11         0         33.45         2.678         4         0.1         1         1         1.2         1.2         1         4.214         2.114         4         0.4         2         1         4.214         2.114 <td>1</td> <td>1</td> <td>0</td> <td>9.75</td> <td>9.072</td> <td>4</td> <td>48.1</td> <td>-2</td> <td>2</td> <td>2</td> <td>30.98</td> <td>2.887</td> <td>4</td> <td>0.2</td> <td>-3</td> <td>9</td> <td>1</td> <td>40.53</td> <td>2.226</td> <td>4</td> <td>1.2</td>	1	1	0	9.75	9.072	4	48.1	-2	2	2	30.98	2.887	4	0.2	-3	9	1	40.53	2.226	4	1.2
0         0         1         12.11         7.310         2         3.8         2         0         2         1.332         2.855         2         1.6         3         5         2         1.00         2.01         4         0.4         0.4           1         1         15.45         5.773         4         1.33         2         2         2         3.88         2.807         4         0.5         -1         1         2         4.1.33         1.41.44         2.1.41.4         4         0.7           1         1         15.55         5.773         4         0.3         2         2         3.81         3.207         2.872         4         0.6         4         1.41.4         4         1.41.4         4         0.7         1.41.79         1.679         4         0.3         2.875         4         0.6         4         1.41.4         1.41.4         0.4         0.2         1.41.4         1.41.79         1.67         1.31.1         1.11<0	0	4	0	11.53	7.677	2	4.9	3	1	1	31.26	2.861	4	0.5	-1	5	3	40.69	2.217	4	0.4
1         3         0         12.72         6.962         4         5.0         10         1         31.60         2.831         4         0.7         -1         13         1         41.18         2.192         4         0.4          0         1         1         15.55         5.773         4         10.9         -2         3         1         2.807         4         0.5         -1         11         2         41.63         2.160         4         0.7           1         0         17.19         5.157         4         1.2         -2         8         1         32.18         2.782         4         0.0         4         1         2         41.03         2.154         4         0.5           1         3         1         7.73         5.118         2         0.9         3         3         1         32.62         2.745         4         0.0         4         1.1<1         2         41.04         4         0.4         1         1.1         1.1<1         0         33.45         2.676         4         0.1         4         1.2         41.24         4         1.4         1.4         1.4         1.4 <t< td=""><td>0</td><td>0</td><td>1</td><td>12.11</td><td>7.310</td><td>2</td><td>3.8</td><td>2</td><td>0</td><td>2</td><td>31.33</td><td>2.855</td><td>2</td><td>1.6</td><td>3</td><td>5</td><td>2</td><td>41.00</td><td>2.201</td><td>4</td><td>0.3</td></t<>	0	0	1	12.11	7.310	2	3.8	2	0	2	31.33	2.855	2	1.6	3	5	2	41.00	2.201	4	0.3
0       0       1       13.41       6.600       4       10.9       -3       3       1       31.70       2.887       4       3.4       -4       4       1       1.13.4       2.169       4       0.2         1       5       0       17.33       5.175       4       0.2       -2       8       0.2       -2       12       1       4.1.63       2.169       4       0.4         1       3       1       17.40       5.077       4       0.3       2       8       1       3.21       2.746       4       0.6       4       1.0       2       1.14       4       0.2       1.12       4       1.9       2.152       4       0.4         1       5       1       2.097       4       2.13       1       1.1       0       3.345       2.676       4       0.1       1       3.42.86       2.110       4       0.2       1       3.43.80       2.067       4       0.4       1.1       2       2       3       4.2.86       2.110       4       3.42.86       2.110       4       3.42.86       2.110       4       3.42.86       2.111       4       3.42.86 <td< td=""><td>1</td><td>3</td><td>0</td><td>12.72</td><td>6.962</td><td>4</td><td>5.0</td><td>0</td><td>10</td><td>1</td><td>31.60</td><td>2.831</td><td>4</td><td>0.7</td><td>-1</td><td>13</td><td>1</td><td>41.18</td><td>2.192</td><td>4</td><td>0.4</td></td<>	1	3	0	12.72	6.962	4	5.0	0	10	1	31.60	2.831	4	0.7	-1	13	1	41.18	2.192	4	0.4
1       1       15.35       5.773       4       13.3       2       2       2       1.88       2.807       4       0.5       -1       11       2       1.63       2.161       4       0.2         1       5       0       17.19       5.157       4       1.2       2       8       1       32.18       2.782       4       0.2       2       2       1.4       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.4       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4       0.5       4 <td< td=""><td>0</td><td>2</td><td>1</td><td>13.41</td><td>6.600</td><td>4</td><td>10.9</td><td>-3</td><td>3</td><td>1</td><td>31.70</td><td>2.823</td><td>4</td><td>3.4</td><td>-4</td><td>4</td><td>1</td><td>41.34</td><td>2.184</td><td>4</td><td>0.7</td></td<>	0	2	1	13.41	6.600	4	10.9	-3	3	1	31.70	2.823	4	3.4	-4	4	1	41.34	2.184	4	0.7
1       5       0       17.19       5.157       4       1.2       -2       8       1       32.18       2.767       4       0.6       -4       6       0       14.179       2.161       4       0.2         1       3       1       17.48       5.018       2       0.9       3       3       2       8       1       32.62       2.746       4       0.0       1       1       1       2       4.109       2.152       4       0.4         1       3       1       17.78       4.987       4       8.9       -2       4       2       2.622       2.710       4       1.1       2       2.9       3       42.662       2.121       4       0.4       0.4       0.2       1       1       40.5       0.5       1       3.43.82       2.676       4       0.4       1.4       1.4       42.86       2.101       4       0.4       0.2       -4       6       1       43.48       2.081       4       1.4       1.4       4.4       0.4       0.3       -1       7       3.43.80       2.000       4       0.3       4       1.4       4.4       0.4       0.3 <t< td=""><td>-1</td><td>1</td><td>1</td><td>15.35</td><td>5.773</td><td>4</td><td>13.3</td><td>2</td><td>2</td><td><b>2</b></td><td>31.88</td><td>2.807</td><td>4</td><td>0.5</td><td>-1</td><td>11</td><td>2</td><td>41.63</td><td>2.169</td><td>4</td><td>0.2</td></t<>	-1	1	1	15.35	5.773	4	13.3	2	2	<b>2</b>	31.88	2.807	4	0.5	-1	11	2	41.63	2.169	4	0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	0	17.19	5.157	4	1.2	-2	8	1	32.18	2.782	4	0.2	-2	12	1	41.79	2.161	4	0.2
-1       3       1       7.70       5.097       4       0.3       2       8       1       32.62       2.746       4       0.1       1       11       2       4.199       2.152       4       0.4         1       3       1       17.78       4.987       4       8.9       -2       4       2       32.62       2.746       4       0.1       1       12       2       1.4       1.44       0.4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       2.4       2       3.48       2.676       4       0.4       -1       7       3       42.62       2.114       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       3.48       2.676       4       0.3       -1       7       3       3.48       2.667       4       0.4       4       3.48       2.081       4       0.0       2       2.43 <t< td=""><td>0</td><td>6</td><td>0</td><td>17.33</td><td>5.118</td><td><b>2</b></td><td>0.9</td><td>3</td><td>3</td><td>1</td><td>32.36</td><td>2.767</td><td>4</td><td>0.6</td><td>4</td><td>6</td><td>0</td><td>41.95</td><td>2.154</td><td>4</td><td>0.5</td></t<>	0	6	0	17.33	5.118	<b>2</b>	0.9	3	3	1	32.36	2.767	4	0.6	4	6	0	41.95	2.154	4	0.5
1       3       1       17.78       4.987       4       8.99       -2       4       2       32.62       2.745       4       0.9       4       4       1       4.205       2.149       4       0.3         2       0       0       18.69       4.748       2       1.5       1       2.024       4.21       2       33.62       2.716       4       1.1       2       2       3       4.26       2.144       4       0.4       0.5         1       5       1       2.092       4.417       4       1.3       1       1       0       33.82       2.666       4       0.4       -2       4       3       4.266       2.110       4       1.4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4<	-1	3	1	17.40	5.097	4	0.3	2	8	1	32.61	2.746	4	0.1	1	11	2	41.99	2.152	4	0.4
2       0       0       18.69       4.748       2       1.5       -1       7       2       33.66       2.710       4       1.2       2       12       1       42.14       2.144       4       0.4         1       5       1       20.92       4.247       4       1.3       1       11       0       33.45       2.678       4       1.1       2       2       3       42.62       2.110       4       0.5         1       5       1       21.24       4.182       4       24.5       1       7       2       33.48       2.676       4       0.4       1.4       1.4       4.2.6       1.10       7       3       43.80       2.067       4       0.4       1.7       7       3       43.80       2.067       4       0.4       0.2       4       3       43.80       2.067       4       0.8       -4       0       2       44.0       2       44.03       1.14       1.4       4.0       0.4       1.0       1.4       4.0       0.4       0.3       1.1       1.4       4.0       0.4       0.3       1.1       1.4       4.0       0.4       0.3       3.1       <	1	3	1	17.78	4.987	4	8.9	-2	4	2	32.62	2.745	4	0.9	4	4	1	42.05	2.149	4	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>2</b>	0	0	18.69	4.748	2	1.5	-1	7	<b>2</b>	33.06	2.710	4	1.2	2	12	1	42.14	2.144	4	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	5	1	20.92	4.247	4	1.3	1	11	0	33.45	2.678	4	1.1	2	2	3	42.62	2.121	4	0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	6	1	21.19	4.193	4	2.4	2	4	<b>2</b>	33.48	2.676	4	0.4	-2	4	3	42.86	2.110	4	0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	1	21.24	4.182	4	24.5	1	$\overline{7}$	<b>2</b>	33.48	2.676	4	0.3	-1	7	3	43.29	2.090	4	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>2</b>	4	0	22.01	4.038	4	13.6	-3	5	1	33.83	2.649	4	0.2	-4	6	1	43.48	2.081	4	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	0	1	22.02	4.037	2	0.9	0	8	<b>2</b>	33.86	2.647	4	0.4	1	7	3	43.80	2.067	4	0.6
2       0       1       22.63       3.929       2       0.7       3       7       0       34.95       2.567       4       0.8       -4       0       2       44.90       2.019       2       0.3         2       2       1       22.77       3.904       4       23.0       0       12       0       35.66       2.552       2       0.1       -2       6       3       44.94       2.017       4       0.1         0       8       0       2.317       3.839       2       0.2       -1       11       1       35.60       2.528       4       0.3       3       11       1       4.02         2       2       2.435       3.655       2       0.8       -2       10       1       36.77       2.444       4       0.3       2       14       0       45.55       1.991       4       0.2         2       2.504       3.556       4       13.5       0       0       3       36.89       2.435       4       0.1       2       6       3       45.93       1.976       4       0.2         1       7       1       25.67       3.48	1	$\overline{7}$	0	22.32	3.983	4	10.5	3	5	1	34.46	2.603	4	1.0	2	4	3	43.88	2.063	4	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>2</b>	0	1	22.63	3.929	2	0.7	3	$\overline{7}$	0	34.95	2.567	4	0.8	-4	0	<b>2</b>	44.90	2.019	2	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	2	1	22.77	3.904	4	23.0	0	12	0	35.06	2.559	2	0.1	-2	6	3	44.94	2.017	4	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	8	0	23.17	3.839	2	0.2	-1	11	1	35.60	2.522	4	0.3	3	11	1	45.29	2.002	4	6.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>2</b>	2	1	23.37	3.806	4	0.3	1	11	1	35.80	2.508	4	0.6	-4	2	<b>2</b>	45.31	2.001	4	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	<b>2</b>	24.35	3.655	2	0.8	-2	10	1	36.77	2.444	4	0.5	1	15	0	45.31	2.001	4	0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	4	1	24.92	3.573	4	0.5	-3	$\overline{7}$	1	36.83	2.440	4	0.3	2	14	0	45.55	1.991	4	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	2	25.04	3.556	4	13.5	0	0	3	36.89	2.437	2	0.4	-3	9	2	45.86	1.979	4	0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	$\overline{7}$	1	25.33	3.516	4	3.4	-1	9	<b>2</b>	37.08	2.425	4	0.1	2	6	3	45.93	1.976	4	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>2</b>	4	1	25.47	3.497	4	6.8	-3	1	2	37.13	2.421	4	0.3	-4	8	1	46.35	1.959	4	0.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>2</b>	6	0	25.59	3.481	4	16.0	2	10	1	37.16	2.419	4	1.1	-1	9	3	46.56	1.951	4	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\overline{7}$	1	25.60	3.479	4	17.4	0	12	1	37.22	2.415	4	0.6	1	13	2	46.94	1.936	4	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	1	2	26.02	3.424	4	5.0	0	2	3	37.37	2.407	4	0.6	1	9	3	47.04	1.932	4	2.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	8	1	26.22	3.399	4	3.2	3	$\overline{7}$	1	37.41	2.404	4	1.4	-2	12	2	47.09	1.930	4	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	2	26.55	3.357	4	3.1	1	9	<b>2</b>	37.47	2.400	4	1.3	-2	14	1	47.15	1.927	4	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	2	27.02	3.300	4	8.2	-1	1	3	37.96	2.370	4	1.0	-3	3	3	47.23	1.924	4	0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	3	<b>2</b>	27.31	3.266	4	1.0	3	1	<b>2</b>	38.28	2.351	4	0.4	-2	8	3	47.73	1.905	4	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	9	0	27.78	3.211	4	0.6	0	10	<b>2</b>	38.28	2.351	4	0.7	5	1	0	47.99	1.896	4	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	2	27.81	3.207	4	1.1	4	2	0	38.37	2.346	4	0.9	0	14	2	48.39	1.881	4	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	6	1	28.15	3.170	4	5.2	3	9	0	38.81	2.321	4	0.1	-4	6	2	48.48	1.878	4	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	0	28.34	3.149	4	0.3	-1	3	3	38.89	2.316	4	0.2	3	3	3	48.65	1.871	4	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	1	28.64	3.116	4	0.5	3	3	2	39.20	2.298	4	0.1	2	8	3	48.68	1.871	4	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	10	0	29.08	3.071	2	0.7	1	13	0	39.30	2.292	4	0.6	5	3	0	48.77	1.867	4	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	0	29.54	3.024	4	4.4	2	8	2	39.33	2.291	4	0.2	-3	5	3	48.79	1.867	4	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	6	2	30.04	2.974	4	1.0	1	3	3	39.45	2.284	4	0.3	0	16	1	49.07	1.856	4	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	2	30.20	2.959	4	2.7	-4	0	1	39.56	2.278	2	0.2	4	6	2	49.72	1.834	4	0.4
-2  0  2  30.41  2.939  2  1.4  -4  2  1  40.01  2.253  4  0.2  3  13  1  49.98  1.825  4  0.6	-1	9	1	30.29	2.951	4	1.0	-3	5	<b>2</b>	39.91	2.259	4	0.8	-4	10	1	49.84	1.830	4	0.2
	-2	0	2	30.41	2.939	2	1.4	-4	2	1	40.01	2.253	4	0.2	3	13	1	49.98	1.825	4	0.6



# CHEMICAL COMPOSITION: $|((CH_3)_3N, CO_2)_y(N_2, Ar, CH_4)_x|$ [Si₁₃₆O₂₇₂]

REFINED COMPOSITION: |N₂₄| [Si₁₃₆O₂₇₂]

CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre ( $\overline{3}$ ) a = 19.402 Å b = 19.402 Å c = 19.402 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.06$ 

REFERENCE: H. Gies,

Z. Kristallogr. 167 73–82 (1984).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	7.89	11.202	8	43.4	6	<b>2</b>	<b>2</b>	30.56	2.925	24	0.1	8	4	0	41.63	2.169	12	1.0
2	2	0	12.91	6.860	12	55.2	5	5	1	32.97	2.717	24	1.5	7	5	3	42.44	2.130	24	0.2
3	1	1	15.14	5.850	24	100.0	$\overline{7}$	1	1	32.97	2.717	24	0.2	7	3	5	42.44	2.130	24	0.2
2	2	2	15.82	5.601	8	52.1	$\overline{7}$	1	3	35.54	2.526	24	2.4	8	4	4	45.82	1.980	24	2.3
4	0	0	18.29	4.851	6	27.2	5	5	3	35.54	2.526	24	2.6	7	7	1	46.57	1.950	24	2.5
3	3	1	19.95	4.451	24	16.3	7	3	1	35.54	2.526	24	2.4	9	3	3	46.57	1.950	24	1.9
4	2	2	22.45	3.960	24	29.2	8	0	0	37.07	2.425	6	0.8	7	5	5	46.57	1.950	24	0.1
5	1	1	23.83	3.734	24	67.1	$\overline{7}$	3	3	37.96	2.370	24	11.0	8	2	6	47.81	1.903	24	0.6
3	3	3	23.83	3.734	8	21.7	6	4	4	38.25	2.353	24	0.6	8	6	2	47.81	1.903	24	0.6
4	4	0	25.98	3.430	12	35.3	8	2	2	39.41	2.287	24	13.0	9	5	1	48.54	1.876	24	0.1
5	1	3	27.19	3.280	24	40.9	6	6	0	39.41	2.287	12	9.4	9	1	5	48.54	1.876	24	0.1
5	3	1	27.19	3.280	24	40.5	5	5	5	40.25	2.240	8	3.4	7	$\overline{7}$	3	48.54	1.876	24	0.2
4	4	<b>2</b>	27.58	3.234	24	6.0	7	1	5	40.25	2.240	24	0.4	6	6	6	48.78	1.867	8	2.9
6	2	0	29.11	3.068	12	5.9	7	5	1	40.25	2.240	24	0.4	10	<b>2</b>	<b>2</b>	48.78	1.867	24	5.9
6	0	2	29.11	3.068	12	6.0	6	6	2	40.53	2.226	24	0.9							
5	3	3	30.21	2.959	24	7.0	8	0	4	41.63	2.169	12	1.0							


CHEMICAL COMPOSITION: |(NH₄F)_{1.72}| [Si₂₄O₄₈]

REFINED COMPOSITION: |(NH₄F)_{1.72}| [Si₂₄O₄₈]

CRYSTAL DATA:  $P12_11$  (No. 4) unique axis b c = 21.519 Åa = 11.129 Åb = 5.025 Å $\alpha = 90^{\circ}$  $\beta = 89.85^{\circ}$  $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm exp}=0.033,\,R_{\rm wp}=0.085,\,R_{\rm F}=0.089$ 

REFERENCE:

B. Marler, C. Deroche, H. Gies, C. A. Fyfe, H. Grondey, G. T. Kokotailo, Y. Feng, S. Ernst, J. Weitkamp and D. E. Cox, J. Appl. Cryst. 26 636–644 (1993).

h	k	l	$2\theta$	d	M	$I_{ m rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.94	11.129	2	81.9	1	1	5	28.44	3.138	4	4.8	4	1	3	39.05	2.307	4	2.0
0	0	2	8.22	10.759	2	100.0	-1	1	5	28.47	3.135	4	5.0	-4	1	3	39.11	2.303	4	1.8
1	0	1	8.94	9.896	2	21.8	2	1	4	29.11	3.067	4	1.2	4	1	4	40.65	2.220	4	0.6
-1	0	1	8.96	9.875	2	19.0	-2	1	4	29.16	3.062	4	2.0	2	1	8	41.35	2.183	4	0.5
1	0	2	11.42	7.746	2	33.2	2	0	6	29.60	3.018	2	2.3	0	0	10	41.98	2.152	2	0.8
-1	0	<b>2</b>	11.45	7.725	2	26.0	-2	0	6	29.67	3.011	2	2.4	-1	1	9	42.68	2.119	4	0.6
1	0	3	14.67	6.036	2	2.7	3	1	0	29.94	2.984	4	0.6	-4	1	5	42.72	2.117	4	0.5
-1	0	3	14.71	6.022	2	4.9	-1	0	7	30.18	2.961	2	0.5	3	2	1	43.71	2.071	4	1.1
2	0	0	15.93	5.564	2	8.8	3	1	1	30.22	2.957	4	3.3	-3	2	1	43.72	2.070	4	1.9
0	0	4	16.48	5.380	2	9.4	-3	1	2	31.11	2.874	4	1.6	0	2	6	44.00	2.058	4	3.2
0	1	1	18.13	4.893	4	2.7	1	1	6	31.67	2.825	4	3.3	3	2	2	44.34	2.043	4	0.8
1	0	4	18.30	4.848	2	3.7	-1	1	6	31.70	2.822	4	1.3	-3	2	2	44.36	2.042	4	1.0
-1	0	4	18.34	4.839	2	3.4	2	1	5	31.72	2.821	4	0.9	5	1	0	44.52	2.035	4	3.0
1	1	1	19.82	4.480	4	34.1	-2	1	5	31.78	2.816	4	1.9	2	2	5	44.81	2.022	4	1.5
-1	1	1	19.82	4.478	4	30.2	3	0	5	31.80	2.814	2	5.9	-2	2	5	44.85	2.021	4	1.2
2	0	3	20.17	4.402	2	5.2	-3	0	5	31.89	2.806	2	4.5	4	1	6	44.96	2.016	4	3.2
-2	0	3	20.22	4.391	2	4.9	4	0	0	32.17	2.782	2	2.1	2	1	9	45.00	2.014	4	0.6
1	1	<b>2</b>	21.07	4.216	4	30.6	3	1	3	32.47	2.758	4	0.9	-4	1	6	45.06	2.012	4	0.6
-1	1	2	21.09	4.212	4	27.0	-3	1	3	32.52	2.753	4	1.0	-2	1	9	45.08	2.011	4	0.8
0	1	3	21.59	4.116	4	8.4	4	0	2	33.24	2.695	2	0.5	2	0	10	45.13	2.009	2	1.4
1	0	5	22.12	4.018	2	0.7	0	0	8	33.31	2.690	2	0.6	-2	0	10	45.22	2.005	2	1.7
-1	0	5	22.16	4.011	2	1.4	1	0	8	34.28	2.616	2	0.8	-3	1	8	45.44	1.996	4	0.5
2	0	4	22.96	3.873	2	17.1	-1	0	8	34.32	2.613	2	0.6	5	0	5	45.85	1.979	2	1.0
-2	0	4	23.02	3.863	2	18.4	3	1	4	34.33	2.612	4	1.7	0	1	10	45.87	1.978	4	0.8
1	1	3	23.03	3.862	4	24.7	-3	1	4	34.39	2.607	4	1.0	-5	0	5	45.95	1.975	2	0.9
-1	1	3	23.05	3.858	4	25.2	-2	1	6	34.73	2.583	4	1.4	1	1	10	46.61	1.948	4	0.5
2	1	0	23.86	3.729	4	2.2	-1	1	$\overline{7}$	35.18	2.551	4	0.7	-1	1	10	46.65	1.947	4	1.0
3	0	0	23.99	3.710	2	25.6	0	2	0	35.74	2.513	2	24.9	3	2	4	46.80	1.941	4	1.3
2	1	1	24.21	3.676	4	21.0	-4	0	4	36.39	2.469	2	0.5	-3	2	4	46.85	1.939	4	1.1
-2	1	1	24.23	3.674	4	25.8	3	1	5	36.60	2.455	4	2.8	4	1	$\overline{7}$	47.60	1.910	4	0.9
3	0	1	24.34	3.657	2	4.2	1	2	0	36.67	2.451	4	1.1	5	1	4	47.74	1.905	4	0.6
-3	0	1	24.36	3.654	2	4.2	-3	1	5	36.68	2.450	4	5.0	-5	1	4	47.82	1.902	4	0.5
0	0	6	24.82	3.586	2	44.1	0	2	2	36.73	2.447	4	2.0	5	0	6	48.05	1.893	2	2.3
2	1	<b>2</b>	25.26	3.526	4	5.9	-1	2	1	36.92	2.435	4	0.5	-5	0	6	48.17	1.889	2	2.4
-2	1	<b>2</b>	25.29	3.522	4	7.0	4	1	0	36.93	2.434	4	6.0	3	2	5	48.58	1.874	4	1.8
3	0	<b>2</b>	25.38	3.510	2	11.6	4	1	1	37.16	2.419	4	2.1	-3	2	5	48.64	1.872	4	1.2
-3	0	<b>2</b>	25.42	3.504	2	12.3	-4	1	1	37.18	2.418	4	0.9	3	1	9	48.75	1.868	4	0.5
1	1	4	25.53	3.489	4	3.7	1	2	2	37.64	2.390	4	1.1	4	2	0	48.84	1.865	4	0.7
-1	1	4	25.56	3.485	4	7.7	4	1	2	37.88	2.375	4	1.3	-3	1	9	48.86	1.864	4	0.6
1	0	6	26.08	3.416	2	4.6	2	1	$\overline{7}$	37.90	2.374	4	2.6	2	0	11	49.34	1.847	2	3.5
-1	0	6	26.12	3.411	2	4.7	-4	1	2	37.92	2.373	4	2.0	-2	0	11	49.42	1.844	2	3.1
2	0	5	26.14	3.409	2	18.1	0	1	8	37.94	2.371	4	0.6	0	2	8	49.65	1.836	4	1.1
-2	0	5	26.21	3.400	2	14.1	-2	1	$\overline{7}$	37.96	2.370	4	2.5	-2	2	7	49.67	1.835	4	1.0
2	1	3	26.93	3.311	4	1.6	1	1	8	38.81	2.320	4	4.8	6	0	2	49.87	1.829	2	0.9
0	1	5	27.28	3.269	4	3.7	-1	1	8	38.84	2.318	4	2.4	-6	0	2	49.91	1.827	2	0.9



# CHEMICAL COMPOSITION: [Si₅₆O₁₁₂]

REFINED COMPOSITION: [Si₅₆O₁₁₂]

CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 24.8633 Å b = 5.01238 Å c = 24.3275 Å  $\alpha = 90^{\circ}$   $\beta = 107.7215^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.058$ ,  $R_{wp} = 0.181$ ,  $R_{I} = 0.069$ 

REFERENCE: C. A. Fyfe, H. Gies, G. T. Kokotailo, B. Marler and D. E. Cox, J. Phys. Chem. **94** 3718–3721 (1990).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
<b>2</b>	0	0	7.47	11.842	2	78.3	-8	0	2	28.76	3.104	2	0.4	7	1	4	39.06	2.306	4	0.2
0	0	2	7.63	11.587	2	100.0	-8	0	4	29.41	3.037	2	2.1	2	2	3	39.24	2.296	4	0.5
-2	0	2	8.91	9.929	2	63.6	-2	0	8	29.43	3.035	2	4.1	-9	1	6	39.42	2.286	4	0.5
2	0	2	12.21	7.251	2	5.0	-4	0	8	29.93	2.985	2	0.4	9	1	1	39.92	2.258	4	2.1
-2	0	4	14.84	5.971	2	7.7	1	1	6	30.35	2.945	4	0.2	3	1	8	40.51	2.227	4	0.3
4	0	0	14.96	5.921	2	0.4	5	1	3	30.68	2.914	4	0.3	-9	1	7	40.92	2.206	4	0.3
0	0	4	15.29	5.793	2	8.3	3	1	5	30.85	2.898	4	0.4	-10	0	8	41.24	2.189	2	0.9
1	1	0	18.09	4.904	4	0.2	-7	1	2	30.86	2.898	4	1.4	-3	1	10	41.25	2.188	4	0.3
1	1	1	18.73	4.737	4	1.0	6	0	4	31.06	2.880	2	3.9	-8	0	10	41.54	2.174	2	0.4
4	0	2	18.79	4.722	2	8.8	-7	1	3	31.06	2.879	4	2.7	7	1	5	41.64	2.169	4	0.3
2	0	4	18.99	4.673	2	3.8	-1	1	7	31.64	2.828	4	0.6	5	1	7	41.83	2.159	4	0.3
-1	1	2	19.20	4.622	4	7.0	7	1	0	31.91	2.804	4	0.7	2	0	10	41.94	2.154	2	0.6
1	1	2	20.10	4.417	4	4.4	-6	0	8	32.29	2.772	2	0.4	-1	1	10	42.06	2.148	4	0.2
-1	1	3	20.84	4.263	4	0.4	-7	1	5	32.89	2.723	4	1.8	-6	2	2	42.14	2.144	4	0.3
3	1	0	20.99	4.232	4	75.7	7	1	1	33.13	2.704	4	1.9	4	2	3	42.17	2.143	4	0.3
-3	1	2	21.14	4.202	4	1.1	8	0	2	33.44	2.679	2	0.6	-6	2	3	42.41	2.131	4	0.3
-6	0	2	21.46	4.141	2	2.9	3	1	6	33.88	2.646	4	3.1	6	2	0	42.74	2.116	4	0.7
-2	0	6	21.93	4.054	2	1.4	-7	1	6	34.46	2.603	4	1.5	0	2	6	43.02	2.102	4	0.7
3	1	1	21.96	4.048	4	2.3	7	1	2	34.76	2.581	4	2.7	-6	2	4	43.05	2.101	4	0.3
1	1	3	22.07	4.027	4	0.7	-1	1	8	34.97	2.566	4	0.9	-4	2	6	43.21	2.094	4	0.4
-3	1	3	22.25	3.996	4	0.4	5	1	5	35.77	2.511	4	0.6	9	1	3	43.49	2.081	4	0.3
6	0	0	22.52	3.947	2	7.0	-5	1	8	35.83	2.506	4	2.1	8	0	6	43.83	2.066	2	0.4
-1	1	4	23.01	3.865	4	0.5	0	2	0	35.83	2.506	2	9.8	-11	1	3	43.96	2.060	4	0.3
0	0	6	23.03	3.862	2	18.8	-10	0	2	36.33	2.473	2	0.3	-11	1	4	44.04	2.056	4	1.0
-6	0	4	23.08	3.853	2	9.7	-7	1	$\overline{7}$	36.39	2.469	4	1.0	-11	1	5	44.48	2.037	4	0.3
-4	0	6	23.36	3.809	2	22.6	-2	2	1	36.61	2.455	4	0.6	-4	0	12	44.71	2.027	2	5.0
3	1	2	23.53	3.781	4	1.2	2	2	0	36.65	2.452	4	0.3	-12	0	6	44.76	2.025	2	0.2
-3	1	4	23.93	3.718	4	2.2	0	2	2	36.69	2.450	4	1.4	-11	1	1	44.88	2.020	4	0.7
1	1	4	24.51	3.632	4	0.5	-2	2	2	36.99	2.430	4	1.0	-10	0	10	45.69	1.986	2	0.4
4	0	4	24.55	3.626	2	2.0	1	1	8	37.03	2.428	4	0.7	9	1	4	45.72	1.984	4	1.3
-5	1	1	25.30	3.520	4	6.0	-4	0	10	37.11	2.423	2	1.8	11	1	0	45.87	1.978	4	0.7
-5	1	2	25.30	3.520	4	1.1	3	1	7	37.11	2.423	4	1.5	6	2	3	46.30	1.961	4	0.6
3	1	3	25.60	3.480	4	1.3	-9	1	3	37.18	2.418	4	0.7	-11	1	7	46.42	1.956	4	0.5
5	1	0	25.88	3.443	4	10.2	-9	1	4	37.52	2.397	4	0.6	-8	2	1	46.88	1.938	4	0.8
-5	1	3	25.90	3.440	4	2.6	-2	2	3	37.79	2.381	4	1.0	-8	2	4	47.01	1.933	4	1.9
6	0	2	25.97	3.431	2	0.5	-10	0	6	38.05	2.365	2	0.4	-2	2	8	47.02	1.932	4	0.6
-3	1	5	26.10	3.415	4	1.1	-9	1	5	38.28	2.351	4	0.2	-12	0	8	47.17	1.927	2	0.2
2	0	6	26.36	3.381	2	11.9	-1	1	9	38.45	2.341	4	0.6	11	1	1	47.19	1.926	4	0.3
-6	0	6	26.94	3.310	2	8.1	4	0	8	38.53	2.336	2	0.6	-9	1	10	47.28	1.922	4	0.9
5	1	1	27.01	3.301	4	0.2	9	1	0	38.64	2.330	4	1.2	8	2	0	47.53	1.913	4	0.5
-5	1	4	27.04	3.297	4	5.7	-7	1	8	38.64	2.330	4	0.2	3	1	10	47.72	1.906	4	1.1
3	1	4	28.07	3.179	4	6.0	5	1	6	38.70	2.327	4	1.2	6	<b>2</b>	4	48.13	1.890	4	1.3
-1	1	6	28.50	3.132	4	1.0	-4	2	1	38.75	2.324	4	0.2	-1	1	12	49.63	1.837	4	1.0
5	1	2	28.64	3.117	4	0.7	-5	1	9	38.76	2.323	4	1.6	-11	1	9	49.64	1.836	4	0.5
-3	1	6	28.64	3.117	4	0.3	4	2	0	39.03	2.308	4	0.3	-9	1	11	49.93	1.827	4	0.4



# CHEMICAL COMPOSITION: [Si₇₂O₁₄₄]

# REFINED COMPOSITION: [Si₇₂O₁₄₄]

CRYSTAL DATA: P6/mmm (No. 191)

REFERENCE: M. A. Camblor, A. Corma, M.-J. Diaz-Cabanas and Ch. Baerlocher, J. Phys. Chem. B 102 44–51 (1998).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	3.54	24.945	2	23.9	2	2	3	27.30	3.266	12	1.7	5	1	0	40.83	2.210	12	0.4
0	0	2	7.09	12.472	2	74.3	1	1	$\overline{7}$	28.01	3.185	12	15.1	5	0	5	40.89	2.207	12	0.3
1	0	0	7.18	12.305	6	90.6	3	0	5	28.16	3.168	12	0.2	4	0	8	41.22	2.190	12	0.4
1	0	1	8.01	11.035	12	100.0	0	0	8	28.63	3.118	2	0.8	4	2	4	41.44	2.179	24	0.1
1	0	2	10.10	8.759	12	69.6	2	1	6	28.80	3.100	24	5.7	1	1	11	41.81	2.160	12	1.9
0	0	3	10.64	8.315	2	2.6	2	0	$\overline{7}$	28.95	3.084	12	4.2	3	0	10	42.41	2.131	12	0.4
1	1	0	12.46	7.104	6	0.3	4	0	1	29.25	3.053	12	1.8	4	2	5	42.91	2.108	24	1.5
1	0	3	12.85	6.889	12	2.4	1	0	8	29.55	3.023	12	0.4	3	2	8	43.23	2.093	24	0.6
1	1	1	12.96	6.832	12	8.3	3	1	4	29.84	2.994	24	2.4	5	1	4	43.44	2.083	24	0.9
0	0	4	14.20	6.236	2	28.6	3	0	6	30.62	2.920	12	0.3	6	0	1	44.32	2.044	12	0.3
1	1	2	14.35	6.173	12	6.0	4	0	3	31.00	2.885	12	0.3	2	1	11	44.44	2.038	24	1.2
2	0	0	14.40	6.152	6	15.8	1	1	8	31.33	2.855	12	0.1	4	1	8	44.53	2.035	24	0.3
2	0	1	14.83	5.973	12	7.0	3	2	0	31.70	2.823	12	2.4	4	2	6	44.65	2.029	24	0.1
1	0	4	15.93	5.563	12	5.3	3	1	5	31.77	2.817	24	0.4	5	0	7	44.75	2.025	12	0.7
2	0	2	16.06	5.518	12	13.4	3	2	1	31.90	2.805	24	0.5	6	0	2	44.79	2.024	12	0.1
1	1	3	16.41	5.401	12	3.0	0	0	9	32.30	2.772	2	0.1	4	3	0	44.80	2.023	12	2.3
0	0	5	17.78	4.989	2	2.8	4	0	4	32.45	2.759	12	3.7	5	1	5	44.86	2.021	24	0.1
<b>2</b>	0	3	17.93	4.946	12	1.2	1	0	9	33.13	2.704	12	0.7	4	3	1	44.96	2.016	24	0.3
<b>2</b>	1	0	19.08	4.651	12	1.8	3	0	7	33.31	2.690	12	0.2	3	1	10	45.01	2.014	24	0.5
1	0	5	19.20	4.623	12	2.4	3	2	3	33.52	2.673	24	6.3	4	3	2	45.42	1.997	24	0.5
2	1	1	19.41	4.572	24	1.4	3	1	6	33.99	2.638	24	1.5	3	2	9	45.88	1.978	24	0.4
2	0	4	20.28	4.380	12	6.2	2	1	8	34.63	2.590	24	4.0	5	2	0	46.07	1.970	12	0.4
2	1	2	20.38	4.358	24	4.4	1	1	9	34.74	2.582	12	0.2	4	3	3	46.18	1.966	24	0.6
0	0	6	21.37	4.157	2	3.6	3	2	4	34.89	2.572	24	0.9	5	2	1	46.22	1.964	24	1.7
3	0	0	21.67	4.102	6	6.4	4	1	3	35.12	2.555	24	1.3	5	1	6	46.54	1.951	24	0.2
1	1	5	21.77	4.083	12	3.1	2	0	9	35.52	2.527	12	1.8	6	0	4	46.62	1.948	12	1.0
2	1	3	21.90	4.059	24	0.7	2	2	$\overline{7}$	35.69	2.516	12	0.7	4	2	7	46.64	1.947	24	2.1
3	0	1	21.96	4.047	12	9.9	0	0	10	36.00	2.494	2	0.4	5	2	2	46.67	1.946	24	1.0
1	0	6	22.57	3.939	12	5.7	3	0	8	36.19	2.482	12	0.4	4	0	10	46.89	1.938	12	0.2
3	0	2	22.82	3.896	12	20.2	4	0	6	36.33	2.473	12	0.2	4	1	9	47.12	1.929	24	1.1
2	0	5	22.95	3.875	12	0.9	4	1	4	36.43	2.466	24	0.2	6	0	5	47.96	1.897	12	0.5
2	1	4	23.87	3.728	24	16.4	3	1	7	36.45	2.465	24	0.3	1	0	13	47.98	1.896	12	0.1
3	0	3	24.20	3.678	12	0.2	5	0	0	36.51	2.461	6	0.9	5	1	7	48.47	1.878	24	0.2
1	1	6	24.81	3.588	12	1.0	3	2	5	36.57	2.457	24	0.2	6	1	0	48.51	1.876	12	1.7
0	0	$\overline{7}$	24.99	3.564	2	4.3	5	0	1	36.69	2.449	12	0.5	4	3	5	48.56	1.875	24	0.8
2	2	0	25.07	3.552	6	5.7	5	0	2	37.24	2.414	12	2.1	4	2	8	48.86	1.864	24	0.1
<b>2</b>	2	1	25.33	3.517	12	3.0	3	3	0	38.00	2.368	6	2.9	6	1	2	49.10	1.856	24	1.5
<b>2</b>	0	6	25.86	3.445	12	0.2	3	2	6	38.55	2.335	24	0.5	1	1	13	49.18	1.852	12	0.5
3	0	4	26.00	3.427	12	4.4	4	0	$\overline{7}$	38.67	2.329	12	0.3	5	0	9	49.53	1.840	12	0.4
1	0	7	26.03	3.423	12	2.4	4	2	0	38.72	2.325	12	0.5	6	0	6	49.56	1.839	12	0.7
<b>2</b>	2	2	26.08	3.416	12	0.6	2	0	10	38.96	2.312	12	0.2	5	2	5	49.75	1.833	24	0.2
3	1	0	26.11	3.413	12	30.4	3	1	8	39.13	2.302	24	0.1	2	0	13	49.78	1.832	12	0.9
2	1	5	26.20	3.402	24	2.8	3	0	9	39.23	2.296	12	1.1	6	1	3	49.82	1.830	24	0.2
3	1	1	26.36	3.381	24	1.6	0	0	11	39.75	2.268	2	0.4	4	1	10	49.90	1.828	24	0.1
3	1	2	27.09	3.292	24	8.8	3	2	7	40.78	2.213	24	1.1	4	0	11	49.96	1.825	12	0.2



CHEMICAL COMPOSITION:	$  \mathrm{Na}_{16}(\mathrm{H}_{2}\mathrm{O})_{16}  [\mathrm{Si}_{24}\mathrm{Al}_{16}\mathrm{O}_{80}] $ Aussig, Bohemia
REFINED COMPOSITION:	$ Na_{16}(H_2O)_{16} $ [Si ₂₄ Al ₁₆ O ₈₀ ]
CRYSTAL DATA:	$ \begin{array}{ll} Fdd2 \mbox{ (No. 43)} \\ a = 18.30 \mbox{ \AA} & b = 18.63 \mbox{ \AA} & c = 6.60 \mbox{ \AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \mbox{X-ray single crystal refinement, } R_{\rm wp} = 0.08 \end{array} $
REFERENCE:	W. M. Meier, Z. Kristallogr. <b>113</b> 430–444 (1960).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
<b>2</b>	2	0	13.56	6.528	4	59.6	2	4	2	34.73	2.583	8	7.5	4	8	0	43.61	2.075	4	0.6
1	1	1	15.04	5.890	8	100.0	4	2	2	34.88	2.572	8	12.2	1	3	3	43.94	2.061	8	2.1
0	4	0	19.05	4.657	<b>2</b>	24.9	4	6	0	34.92	2.569	4	0.7	3	1	3	44.02	2.057	8	1.9
4	0	0	19.40	4.575	2	16.0	6	4	0	35.17	2.552	4	1.3	8	4	0	44.11	2.053	4	1.6
1	3	1	20.22	4.391	8	40.5	1	$\overline{7}$	1	36.74	2.446	8	15.7	5	$\overline{7}$	1	44.26	2.046	8	0.2
3	1	1	20.39	4.356	8	47.2	7	1	1	37.31	2.410	8	15.3	7	5	1	44.50	2.036	8	0.2
2	4	0	21.41	4.151	4	22.5	0	8	0	38.66	2.329	2	3.0	4	6	2	44.70	2.027	8	0.4
4	2	0	21.64	4.106	4	13.6	4	4	2	38.81	2.321	8	5.5	6	4	2	44.90	2.019	8	0.6
3	3	1	24.50	3.633	8	1.6	3	7	1	39.38	2.288	8	1.3	1	9	1	46.23	1.964	8	1.5
4	4	0	27.32	3.264	4	3.2	8	0	0	39.39	2.287	2	2.1	3	3	3	46.24	1.963	8	3.2
1	5	1	27.93	3.195	8	32.0	7	3	1	39.83	2.263	8	0.6	9	1	1	47.01	1.933	8	1.1
5	1	1	28.29	3.155	8	37.3	0	6	2	39.86	2.261	4	5.2	1	5	3	48.30	1.884	8	4.3
0	2	2	28.70	3.111	4	11.5	2	8	0	39.95	2.257	4	1.1	3	9	1	48.44	1.879	8	0.8
2	0	2	28.76	3.104	4	13.8	6	0	<b>2</b>	40.26	2.240	4	3.0	5	1	3	48.53	1.876	8	6.0
<b>2</b>	2	2	30.35	2.945	8	33.4	8	2	0	40.61	2.221	4	1.7	2	8	2	48.89	1.863	8	0.8
<b>2</b>	6	0	30.40	2.940	4	2.6	2	6	2	41.12	2.195	8	12.5	9	3	1	49.12	1.855	8	0.6
6	2	0	30.85	2.899	4	3.8	6	2	2	41.46	2.178	8	10.3	8	2	2	49.46	1.843	8	1.7
3	5	1	31.22	2.865	8	61.7	6	6	0	41.50	2.176	4	4.3	2	10	0	49.96	1.826	4	6.1
5	3	1	31.44	2.845	8	54.9	1	1	3	41.63	2.169	8	0.6							



CHEMICAL COMPOSITION:	$ Na_{6.42}K_{0.01}Ca_{1.50}(H_2O)_{12.37} $ [Si _{10.73} Al _{9.22} O ₄₀ ] Tvedalen, Langesund District, Norway
REFINED COMPOSITION:	$ Na_{6.528}Ca_{1.472}(H_2O)_{12}H_8  [Si_{10.25}Al_{9.75}O_{40}]$
CRYSTAL DATA:	$\begin{array}{ll} I\overline{4}2d \mbox{ (No. 122)} \\ a = 13.21 \mbox{ \AA } b = 13.21 \mbox{ \AA } c = 6.622 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \mbox{ X-ray single crystal refinement, } R = 0.03 \end{array}$
REFERENCE:	F. Mazzi, A. O. Larsen, G. Gottardi and E. Galli, Neues Jarhb. Mineral. Monatsh. 219–228 (1986).
h h l 90 d M I	h l 20 d M I h l l

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
2	0	0	13.41	6.605	4	23.6	3	1	2	34.57	2.595	16	15.2	6	2	0	43.32	2.089	8	1.4
1	0	1	14.96	5.920	8	62.1	5	1	0	34.62	2.591	8	4.8	2	1	3	43.78	2.068	16	3.1
<b>2</b>	<b>2</b>	0	19.00	4.670	4	31.9	4	3	1	36.62	2.454	16	21.9	6	1	1	43.87	2.064	16	0.3
<b>2</b>	1	1	20.14	4.408	16	49.8	4	0	2	38.50	2.338	8	4.6	5	1	2	44.40	2.040	16	0.3
3	1	0	21.27	4.177	8	17.5	4	4	0	38.55	2.335	4	5.1	3	0	3	45.99	1.973	8	3.0
4	0	0	27.00	3.303	4	2.1	5	2	1	39.16	2.300	16	3.0	5	4	1	46.08	1.970	16	2.7
3	<b>2</b>	1	27.83	3.206	16	46.6	3	3	<b>2</b>	39.74	2.268	8	8.7	3	<b>2</b>	3	48.12	1.891	16	7.4
1	1	2	28.60	3.121	8	17.2	5	3	0	39.79	2.265	8	1.0	6	3	1	48.21	1.888	16	1.5
<b>2</b>	0	2	30.19	2.960	8	33.4	4	2	2	40.94	2.204	16	19.7	5	3	2	48.70	1.870	16	2.1
4	<b>2</b>	0	30.26	2.954	8	4.4	6	0	0	40.99	2.202	4	6.0	6	4	0	49.77	1.832	8	9.8
4	1	1	31.01	2.884	16	100.0	1	0	3	41.47	2.177	8	0.4							



C	HEN	ЛІС	CAL CO	OMPOS	SITI	ON:	Na ₁₆ Ca Poona,	a ₁₆ (F India	I₂O a	$)_{64}$ [Si	$_{72}Al_{48}$	$O_{240}$	]							
	REF	FIN	ED CO	OMPOS	SITIC	ON:	Na ₁₆ Ca	a ₁₆ (F	$I_2O$	) ₆₄   [Si	$i_{72}Al_{48}$	$O_{240}$	]							
			CR	YSTAL	DA	TA:	Fdd2 (1	No. 4	13)											
							a - 18	4049	Å	h - 5	6 655	Å	c = 6	5443 Å						
							a = 10.9	)	11	$\beta = 0$	0.000 1	L L	c = 0	.0110 11 00	-					
							$\alpha = 90$	1		$\rho = \varepsilon$	лО С		$\gamma = 9$	0						
							X-ray si	ingle	cry	vstal re	fineme	ent, 1	$R_{\rm w} = 0$	0.052						
				REFER	RENO	CE:	G. Arti	oli, J	. V	. Smitl	h and .	J. J.	Pluth	,						
							Acta Ci	ryst.	$\mathbf{C}4$	<b>2</b> 937-	-942(1	.986)	).							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	4	0	6.24	14.164	2	2.2	2 0	10	2	31.57	2.834	4	1.4	1	3	3	41.98	2.152	8	0.8
2	2	0	10.11	8.752	4	0.8	8 2	8	2	31.65	2.827	8	2.0	8	10	0	42.40	2.132	4	0.7
2	4	0	11.47	7.717	4	0.9	96	8	0	31.79	2.815	4	1.2	7	13	1	42.46	2.129	8	1.8
0	8	0	12.50	7.082	2	0.5	5 5	11	1	32.89	2.723	8	2.9	1	5	3	42.48	2.128	8	1.2
2	6	0	13.44	6.590	4	65.9	9 2	20	0	33.09	2.707	4	0.7	1	25	1	42.50	2.127	8	0.4
1	1	1	14.45	6.130	8	13.1	1 6	10	0	33.21	2.697	4	0.6	2	26	0	42.64	2.120	4	1.2
1	3	1	15.11	5.862	8	100.0	0 3	17	1	33.52	2.673	8	1.3	4	24	0	43.07	2.100	4	0.8
1	5	1	16.37	5.416	8	14.4	4 4	4	2	34.22	2.621	8	0.9	1	7	3	43.23	2.093	8	1.9
1	7	1	18.09	4.905	8	2.9	94 95	18	0	34.52	2.598	4	1.0	6	10	2	43.48	2.081	8	0.4
0	12	0	18.80	4.721	2	40.0	U 5 7 0	13	1	34.72	2.584	8	1.5	6	20	0	43.48	2.081	4	1.0
4	1	1	19.29	4.601	2	26.		12	2	34.75	2.581	8	5.9	8	12	0	43.77	2.068	4	2.0
3 1	1	1	19.90	4.402 4.405	8	8.1 49.5	1 0 2 1	12	0	34.88 24.06	2.072	4	1.9	37	15	う 1	44.09	2.054	8	1.2
1	9	1	20.10 20.20	4.405	0	42.	5 4 5 0	14	2	34.90	2.500 2.544	0	1.9	1	10	2 1	44.19	2.049	0	0.0
4 २	4	1	20.29	4.370	4	50.1	5 U 1 1	14	2	35.00	2.044	4	0.8 0.7	1 3	9 2	ა ვ	44.22	2.040 2.043	8	$\frac{2.4}{2.7}$
$\frac{1}{2}$	12	0	20.05 21.15	4.300	4	20.4	4 3	19	1	36.20	2.430 2.482	8	1.0	5 4	18	2	44 53	2.045 2.035	8	0.4
3	5	1	21.34	4.163	8	3.7	1 0 7 1	21	1	36.35	2.472	8	13.7	0	22	2	44.78	2.000 2.024	4	0.4
4	6	0	21.48	4.136	4	11.5	5 2	14	2	36.64	2.452	8	1.0	3	5	3	44.81	2.021 2.022	8	1.8
1	11	1	22.49	3.953	8	4.7	$\frac{5}{7}$ $\frac{-}{6}$	14	0	36.76	2.445	4	1.3	6	12	2	44.82	2.022	8	0.5
3	7	1	22.70	3.917	8	6.7	7 7	1	1	36.88	2.437	8	0.5	3	25	1	44.83	2.022	8	0.6
4	8	0	23.05	3.858	4	2.4	4 7	3	1	37.16	2.420	8	15.3	8	14	0	45.34	2.000	4	1.5
2	14	0	24.02	3.704	4	1.1	1 4	10	<b>2</b>	37.27	2.413	8	1.0	1	11	3	45.42	1.997	8	1.2
3	9	1	24.40	3.648	8	1.4	4 4	20	0	37.27	2.412	4	0.5	3	7	3	45.53	1.992	8	1.3
4	10	0	24.93	3.572	4	0.7	7 0	24	0	38.12	2.361	2	2.2	1	27	1	45.67	1.986	8	2.7
3	11	1	26.38	3.378	8	5.2	2 7	7	1	38.54	2.336	8	1.1	2	22	<b>2</b>	45.91	1.976	8	0.7
2	16	0	26.98	3.305	4	1.5	5 2	16	2	38.72	2.325	8	1.0	4	26	0	46.09	1.969	4	0.5
4	12	0	27.06	3.295	4	2.0	0 4	12	2	38.78	2.322	8	1.9	6	14	2	46.36	1.958	8	1.4
0	2	2	27.44	3.251	4	1.6	6 5	17	1	38.97	2.311	8	2.3	3	9	3	46.48	1.954	8	5.8
1	15	1	27.70	3.221	8	28.3	3 3	21	1	38.98	2.311	8	2.4	5	23	1	46.48	1.954	8	0.8
5	1	1	27.85	3.203	8	1.2	2 8	0	0	39.16	2.301	2	1.5	4	20	2	46.79	1.942	8	1.3
5	3	1	28.21	3.163	8	38.4	4 2	24	0	39.41	2.287	4	1.9	9	3	1	46.79	1.942	8	2.1
3	13	1	28.59	3.122	8	1.0	b 7	10	1	39.62	2.275	8	1.4	1	13	3	46.83	1.940	8	0.9
0	0 E	2	28.88	3.092	4	14.1		18	2	39.73	2.268	4	(.3	ა ე	11	び 1	47.04	1.909	8	1.8
о о	Э О	1	28.92	3.087	8	12.0	4 0	0	2	40.30	2.238	4	3.9	う 1	27 15	1	41.88	1.900	8	1.8
2	2	2	20.90 20.14	3.065	4	10.8	90 16	0	2	40.33	2.200	4	2.0 1.6	1	10 94	ა ე	40.44 18.57	1.079 1.874	8	2.2 1.0
$\frac{2}{2}$	2 1	2	29.14 29.65	3.005	8	2.1	1 0 1 1	14	2	40.45	2.201 2.201	8	1.0	2 5	24	2	48.57	1.074 1.867	8	1.0
6	- - 4	0	29.80	2,998	4	1 9		4	2	40.82	2.210	8	0.7	8	4	2	48.81	1.866	8	1.0
5	7	1	29.96	2.983	8	5.5	5 7	11	1	40.93	2.205	8	0.9	9	9	1	48.85	1.864	8	1.7
$\frac{1}{2}$	18	0	30.00	2.978	4	4.5	2 2	18	2	40.98	2.202	8	15.0	8	18	0	49.05	1.857	4	0.9
1	17	1	30.49	2.932	8	2.5	56	18	$\overline{0}$	41.09	2.197	4	9.6	$\tilde{5}$	-5	3	49.21	1.851	8	1.1
2	6	2	30.50	2.931	8	51.0	0 8	8	0	41.26	2.188	4	0.7	5	25	1	49.22	1.851	8	0.6
6	6	0	30.64	2.917	4	5.6	$6  \tilde{6}$	6	2	41.47	2.178	8	10.9	$\overset{\circ}{2}$	30	0	49.25	1.850	4	5.5
3	15	1	30.98	2.887	8	99.2	2 1	1	3	41.72	2.165	8	1.2	8	6	2	49.38	1.846	8	2.5
5	9	1	31.29	2.858	8	79.3	3 3	23	1	41.86	2.158	8	1.2	5	7	3	49.88	1.828	8	2.4



СН	EM	IIC	AL CO	OMPO	SITI	ON:	$ Ca_4(H_2) $ Bombay,	O) ₁ In	2  [ dia	Si ₁₂ Al ₈	₃ O ₄₀ ]									
R	EF	INI	ED CC	MPOS	SITI	ON:	$ Ca_4(H_2) $	$O)_1$	2	$\mathrm{Si}_{12}\mathrm{Al}_8$	₃ O ₄₀ ]									
			CRY	YSTAL	J DA	TA:	$C1c1 (N)$ $a = 6.52$ $\alpha = 90^{\circ}$ X-ray sin	o. 9 22 ngle	9) ı Å e cr	$\begin{array}{l} \text{inique} \\ b = 1 \\ \beta = 1 \\ \text{ystal result} \end{array}$	axis <b>b</b> 18.9678 109.97 efinem	, cell 8 Å 2° ent,	$c = 9$ $\gamma = 9$ $R_{\rm w} = 0$	e 1 .8398 Å 00° 0.031	Å					
	REFERENCE						J. V. Sm in <i>Proce</i> Ed. by I	nith <i>edir</i> D. I	, J. <i>ngs</i> H. (	J. Plu of the Olson a	$\begin{array}{c} \text{ith, G.} \\ \textit{6th In} \\ \text{ind A.} \end{array}$	Art terne Bisie	ioli and ational o (But	d F. K. <i>Zeolite</i> terwort	Ro e <i>Co</i> h: (	ss, o <i>nfe</i> Gui	e <i>rence,</i> ldford)	Reno 842–8	<i>1983</i> 350 (	3 , 1984).
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	2	1	$13 \ 37$	6 621	4	49.3	0	4	3	34 71	2.585	4	2.0	-1	5	4	43 89	2.063	4	1.0
-1	1	1	15.10	5.869	4	100.0	-2	2	3	34.80	2.578	4	2.8	1	5	3	44.13	2.052	4	1.5
1	1	0	15.19	5.833	4	13.1	2	4	0	34.85	2.574	4	1.2	-3	3	2	44.28	2.046	4	2.4
0	4	0	18.71	4.742	2	37.5	2	2	1	35.14	2.554	4	2.0	-3	1	3	44.29	2.045	4	0.1
0	0	2	19.19	4.624	2	35.1	-1	7	1	36.20	2.481	4	3.0	-2	6	3	44.32	2.044	4	0.5
-1	3	1	20.11	4.416	4	26.1	1	7	0	36.25	2.478	4	5.2	-3	3	1	44.38	2.041	4	2.7
1	3	0	20.18	4.401	4	24.4	-1	5	3	36.52	2.460	4	0.6	-2	4	4	44.53	2.034	4	2.6
-1	1	2	20.26	4.383	4	42.7	' 1	5	2	36.72	2.447	4	3.3	3	1	0	44.60	2.032	4	5.0
1	1	1	20.47	4.338	4	10.3	-1	1	4	36.87	2.438	4	6.3	2	6	1	44.60	2.032	4	1.7
0	4	1	21.05	4.220	4	12.3	1	1	3	37.15	2.420	4	9.5	2	4	<b>2</b>	44.95	2.017	4	0.2
Ο	9	2	91 99	4 156	4	7 9	0	0	Ο	27.05	9 971	0	0.0	1	0	1	15 19	1 004	4	0.0

0	0	<b>2</b>	19.19	4.624	2	35.1	-1	7	1	36.20	2.481	4	3.0	-2	6	3	44.32	2.044	4	0.5
-1	3	1	20.11	4.416	4	26.1	1	7	0	36.25	2.478	4	5.2	-3	3	1	44.38	2.041	4	2.7
1	3	0	20.18	4.401	4	24.4	-1	5	3	36.52	2.460	4	0.6	-2	4	4	44.53	2.034	4	2.6
-1	1	2	20.26	4.383	4	42.7	1	5	2	36.72	2.447	4	3.3	3	1	0	44.60	2.032	4	5.0
1	1	1	20.47	4.338	4	10.3	-1	1	4	36.87	2.438	4	6.3	2	6	1	44.60	2.032	4	1.7
0	4	1	21.05	4.220	4	12.3	1	1	3	37.15	2.420	4	9.5	2	4	2	44.95	2.017	4	0.2
0	2	2	21.38	4.156	4	7.8	0	8	0	37.95	2.371	2	0.9	-1	9	1	45.48	1.994	4	2.2
-1	3	2	24.26	3.669	4	4.6	-2	4	3	38.60	2.332	4	2.8	1	9	0	45.51	1.993	4	0.6
1	3	1	24.44	3.642	4	10.6	-1	7	<b>2</b>	38.78	2.322	4	4.1	-3	3	3	46.42	1.956	4	8.4
0	4	2	26.93	3.311	4	2.2	1	7	1	38.90	2.315	4	1.3	-1	1	5	46.43	1.956	4	1.3
-1	5	1	27.60	3.232	4	10.4	2	4	1	38.92	2.314	4	1.0	3	3	0	46.72	1.944	4	0.7
1	5	0	27.65	3.226	4	9.0	0	0	4	38.95	2.312	2	2.3	1	1	4	46.73	1.944	4	0.3
-1	1	3	28.00	3.187	4	9.6	0	8	1	39.22	2.297	4	4.0	-2	8	1	47.41	1.918	4	1.2
0	6	0	28.23	3.161	2	0.2	-1	3	4	39.32	2.291	4	0.9	-1	9	2	47.64	1.909	4	0.5
1	1	2	28.26	3.158	4	15.2	1	3	3	39.59	2.276	4	0.8	1	9	1	47.74	1.905	4	3.9
-2	0	2	28.93	3.086	2	6.1	-2	6	1	39.71	2.270	4	8.0	0	10	0	47.96	1.897	2	1.4
-2	2	1	28.95	3.084	4	9.3	-2	0	4	40.03	2.252	2	3.4	-2	8	2	48.41	1.880	4	1.5
2	0	0	29.13	3.065	2	7.3	0	2	4	40.14	2.246	4	4.7	0	8	3	48.43	1.879	4	0.9
0	6	1	29.87	2.991	4	6.3	2	0	2	40.48	2.228	2	0.5	-1	3	5	48.48	1.878	4	0.8
-2	2	2	30.46	2.934	4	31.5	-2	6	2	40.87	2.208	4	9.7	2	8	0	48.54	1.875	4	0.1
0	2	3	30.49	2.932	4	11.5	0	6	3	40.89	2.207	4	9.9	-3	5	1	48.56	1.875	4	1.7
2	2	0	30.65	2.916	4	13.1	2	6	0	41.01	2.201	4	3.0	-3	1	4	48.58	1.874	4	1.7
-1	5	2	30.81	2.902	4	33.9	-2	2	4	41.19	2.191	4	4.7	1	3	4	48.78	1.867	4	3.0
1	5	1	30.96	2.889	4	54.7	2	2	2	41.64	2.169	4	8.0	0	6	4	48.80	1.866	4	2.6
-1	3	3	31.07	2.878	4	26.2	-3	1	2	42.07	2.148	4	1.2	0	10	1	49.02	1.858	4	3.5
1	3	2	31.31	2.857	4	52.9	-3	1	1	42.18	2.143	4	3.0	3	1	1	49.07	1.857	4	3.2
-2	4	1	33.35	2.687	4	1.0	0	8	2	42.86	2.110	4	1.3	2	2	3	49.51	1.841	4	4.3
0	6	2	34.36	2.610	4	1.6	0	4	4	43.55	2.078	4	3.3	-2	6	4	49.70	1.834	4	0.5
-2	4	2	34.68	2.586	4	3.6	1	$\overline{7}$	2	43.76	2.069	4	0.9							



CHEMICAL COMPOSITION:	$ ({\rm H}_{2}{\rm O})_{20} $	$[Si_{68}O_{136}]$
-----------------------	-------------------------------	--------------------

REFINED COMPOSITION: |(H₂O)₂₀| [Si₆₈O₁₃₆]

CRYSTAL DATA:  $P1 2_1/c1$  (No. 14) unique axis **b**, cell choice 1 a = 14.324 Å b = 22.376 Å c = 25.092 Å  $\alpha = 90^{\circ}$   $\beta = 151.515^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\exp} = 0.075$ ,  $R_{wp} = 0.14$ ,  $R_{I} = 0.065$ 

REFERENCE: M. D. Shannon, J. L. Casci, P. A. Cox and S. J. Andrews, Nature **353** 417–420 (1991).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
-1	0	2	7.05	12.546	2	10.9	-4	2	6	26.15	3.407	4	1.1	-1	0	6	33.99	2.637	2	0.7
0	2	0	7.90	11.188	2	100.0	-2	2	6	26.29	3.389	4	1.0	-3	7	4	34.07	2.632	4	0.5
-1	1	1	8.34	10.597	4	12.9	2	1	0	26.39	3.377	4	3.1	-2	8	4	35.13	2.555	4	1.2
0	1	1	8.38	10.553	4	19.6	-3	4	6	26.61	3.349	4	1.3	2	6	0	35.64	2.519	4	0.7
-1	2	2	10.59	8.350	4	9.3	-4	1	5	26.65	3.345	4	6.0	-5	0	10	35.79	2.509	2	3.9
0	2	1	10.83	8.173	4	0.5	-1	1	5	26.82	3.324	4	1.9	-4	6	5	35.83	2.506	4	0.7
1	0	0	12.96	6.832	2	5.7	-1	6	3	26.99	3.303	4	0.5	-5	2	10	36.71	2.448	4	2.2
-2	1	3	12.99	6.814	4	2.4	-3	0	2	27.01	3.301	2	0.9	0	9	1	36.93	2.434	4	0.4
1	1	0	13.55	6.534	4	0.5	1	0	2	27.10	3.290	2	1.1	-3	8	5	37.37	2.406	4	0.5
-1	3	1	13.97	6.339	4	0.3	1	6	0	27.24	3.273	4	3.5	-4	6	8	37.47	2.400	4	0.7
0	3	1	13.99	6.330	4	1.4	2	2	0	27.30	3.267	4	13.2	-3	8	4	37.56	2.395	4	0.9
-2	0	4	14.12	6.273	2	0.6	0	4	3	27.46	3.248	4	0.5	-5	1	5	37.59	2.393	4	0.8
-2	<b>2</b>	4	16.20	5.472	4	3.7	-3	5	5	27.46	3.248	4	4.4	-1	8	4	37.62	2.391	4	1.0
-2	3	3	17.17	5.163	4	1.0	-2	5	5	27.52	3.241	4	5.3	-4	7	6	37.74	2.383	4	0.4
1	3	0	17.60	5.038	4	0.4	-1	2	5	27.71	3.220	4	1.9	0	1	5	37.80	2.380	4	0.6
-3	0	4	19.15	4.635	2	0.4	-2	6	4	27.83	3.206	4	0.8	-3	8	6	38.73	2.325	4	0.6
-3	1	5	19.22	4.619	4	8.3	-2	6	2	28.15	3.170	4	0.7	-3	5	1	38.76	2.323	4	0.5
-2	1	5	19.29	4.600	4	11.1	-2	5	1	28.16	3.168	4	1.8	2	5	1	38.80	2.321	4	0.3
-2	1	1	20.19	4.399	4	1.9	-3	2	2	28.18	3.166	4	0.4	-5	3	5	39.34	2.290	4	0.8
1	1	1	20.23	4.389	4	4.1	0	6	2	28.20	3.165	4	0.5	-5	4	5	40.82	2.211	4	0.4
-3	2	5	20.42	4.349	4	1.6	1	5	1	28.20	3.165	4	1.1	-5	5	10	41.25	2.189	4	0.7
-2	2	5	20.49	4.334	4	0.4	1	2	2	28.27	3.157	4	0.5	-4	8	5	41.91	2.156	4	0.6
1	4	0	20.52	4.328	4	26.6	-4	0	8	28.46	3.136	2	1.3	1	10	0	42.51	2.126	4	0.4
-1	2	4	20.86	4.259	4	1.6	-1	7	1	28.90	3.089	4	1.0	0	5	5	42.85	2.111	4	0.4
-2	4	4	21.28	4.175	4	6.7	0	7	1	28.91	3.088	4	1.3	3	4	0	42.88	2.109	4	0.6
-3	3	5	22.29	3.989	4	10.7	-4	3	5	28.98	3.081	4	1.0	-6	5	9	42.98	2.105	4	0.5
-2	3	5	22.35	3.977	4	12.5	-1	3	5	29.14	3.065	4	0.9	-3	5	9	43.18	2.095	4	0.5
-1	3	4	22.69	3.919	4	0.5	-4	4	6	29.64	3.014	4	0.4	-6	0	12	43.27	2.091	2	1.1
-3	2	6	22.70	3.917	4	13.1	-2	4	6	29.77	3.001	4	0.4	-7	1	11	44.49	2.036	4	0.4
-2	3	1	23.14	3.844	4	0.7	-3	5	3	29.92	2.987	4	0.7	3	5	0	44.65	2.030	4	0.8
1	3	1	23.17	3.838	4	1.4	0	5	3	30.01	2.978	4	0.5	-4	1	11	44.73	2.026	4	0.4
-2	5	3	23.45	3.794	4	1.2	-3	6	5	30.55	2.926	4	1.8	-4	9	5	45.26	2.003	4	0.6
-1	5	3	23.49	3.788	4	0.4	-3	6	4	30.77	2.906	4	0.9	-2	10	1	45.29	2.002	4	0.4
1	5	0	23.77	3.743	4	2.9	-4	2	4	30.78	2.905	4	0.5	-1	9	5	45.37	1.999	4	0.5
0	6	0	23.86	3.729	2	9.2	-1	6	4	30.85	2.898	4	0.9	0	0	6	45.48	1.995	2	0.6
-3	4	5	24.68	3.608	4	1.6	-4	4	5	30.89	2.895	4	0.6	3	6	0	46.74	1.944	4	1.0
-2	4	5	24.74	3.599	4	0.4	-4	3	8	30.93	2.891	4	0.5	0	7	5	47.45	1.916	4	0.4
-3	4	4	24.95	3.569	4	1.4	-1	4	5	31.04	2.881	4	0.4	-7	4	10	47.69	1.907	4	0.7
-1	6	1	25.00	3.562	4	0.8	1	6	1	31.22	2.865	4	1.2	-3	4	10	47.97	1.897	4	1.0
-1	4	4	25.04	3.556	4	0.4	-3	4	2	31.47	2.843	4	0.4	-5	8	10	48.75	1.868	4	1.2
-2	4	1	25.45	3.500	4	0.6	-4	4	8	32.73	2.736	4	0.3	-7	5	11	48.97	1.860	4	0.4
1	4	1	25.49	3.495	4	0.5	-1	8	2	32.81	2.730	4	0.8	3	7	0	49.12	1.855	4	0.4
-4	1	7	25.96	3.432	4	0.9	0	6	3	32.88	2.724	4	0.3	-4	5	11	49.20	1.852	4	0.5
-3	1	7	26.05	3.421	4	1.7	-1	5	5	33.33	2.688	4	0.7	1	11	1	49.20	1.852	4	0.4
2	0	0	26.09	3.416	2	7.4	-5	0	6	33.77	2.654	2	0.5	-3	5	10	49.59	1.838	4	0.3



d

M  $I_{\rm rel}$ 

Cl	HEI	MIC	CAL C	OMPO	SITI	ON:	$\begin{array}{l}  \mathrm{Na}_{2.5}\mathrm{K}  \\ \mathrm{Mt.} \ \mathrm{Ad}_{2} \end{array}$	_{0.2} M ams	[g _{3.]} on,	₁ Ca _{4.9} ( Northe	(H ₂ O) ₉ ern Vie	3  [S ctori	Si _{117.2} A a Lanc	l _{18.8} O ₂ l, Anta	72] rctio	ca	
]	REI	FIN	ED C	OMPO	SITI	ON:	Na _{66.8}	† [Si	115.	$_{6}Al_{20.4}$	O ₂₇₂ ]						
			CF	RYSTAI	DA	TA:	Cmce (1) a = 13.6 $\alpha = 90.4$ X-ray si	No. 598 . 0° ngle	64) Å	b = 2 $\beta = 9$ ystal re	25.213 90.0° efinemo	Å ent,	$c = 2$ $\gamma = 9$ $R_{\rm F} = 0$	$2.660 \stackrel{?}{P}$	$ {A}$	= 0	0.0968
				REFEI	REN	CE:	A. Albe <i>Eur. J.</i>	rti, <i>Min</i>	G. 1era	Vezzali 1. <b>8</b> 69	ini, E. )–75 (1	Gall 996)	li and S	S. Qua	rtier	i,	
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$
0	2	0	7.01	12.606	2	1.1	3	1	5	27.96	3.191	8	9.0	5	1	5	38.57
0	0	2	7.80	11.330	2	100.0	4	2	2	28.13	3.173	8	0.6	5	5	3	39.28
1	1	1	8.32	10.630	8	42.9	1	$\overline{7}$	3	28.21	3.163	8	0.4	6	0	0	39.47

0	2	0	7.01	12.606	2	1.1	3	1	5	27.96	3.191	8	9.0	5	1	5	38.57	2.334	8	1.6
0	0	<b>2</b>	7.80	11.330	2	100.0	4	2	2	28.13	3.173	8	0.6	5	5	3	39.28	2.294	8	1.8
1	1	1	8.32	10.630	8	42.9	1	$\overline{7}$	3	28.21	3.163	8	0.4	6	0	0	39.47	2.283	2	0.3
0	2	2	10.50	8.427	4	4.0	0	8	0	28.32	3.152	2	1.6	4	8	2	39.67	2.272	8	0.3
1	1	2	10.72	8.250	8	0.5	1	1	7	28.55	3.126	8	2.2	1	5	9	40.59	2.223	8	0.4
2	0	0	12.93	6.849	2	3.6	3	5	3	28.91	3.089	8	4.5	0	10	5	40.96	2.203	4	0.3
1	3	1	12.96	6.830	8	2.5	2	6	4	29.50	3.027	8	1.9	3	1	9	41.09	2.196	8	1.2
1	1	3	13.84	6.398	8	3.1	3	3	5	29.74	3.004	8	1.8	3	5	8	41.57	2.172	8	0.3
0	4	0	14.05	6.303	2	0.6	1	5	6	30.28	2.952	8	4.4	4	6	6	41.58	2.172	8	0.7
2	2	0	14.72	6.018	4	0.5	2	4	6	30.52	2.929	8	3.9	1	11	3	41.70	2.166	8	0.2
0	4	2	16.09	5.508	4	4.1	4	4	2	30.74	2.908	8	1.0	2	0	10	42.00	2.151	4	1.6
2	<b>2</b>	<b>2</b>	16.68	5.315	8	2.9	3	5	4	30.77	2.906	8	3.7	6	4	0	42.09	2.147	4	0.8
1	3	3	17.06	5.198	8	1.3	4	2	4	31.34	2.855	8	1.2	5	5	5	42.52	2.126	8	0.3
1	5	1	19.16	4.632	8	17.9	2	8	1	31.50	2.840	8	0.3	<b>2</b>	2	10	42.63	2.121	8	0.2
3	1	1	20.15	4.407	8	11.4	2	6	5	31.84	2.810	8	0.3	6	0	4	42.70	2.118	4	1.5
1	5	<b>2</b>	20.34	4.367	8	1.4	3	$\overline{7}$	1	31.89	2.806	8	2.6	3	9	5	42.80	2.113	8	0.4
2	0	4	20.34	4.365	4	36.1	2	8	2	32.25	2.776	8	0.7	0	8	8	42.93	2.107	4	0.2
2	4	<b>2</b>	20.69	4.292	8	3.3	0	2	8	32.39	2.764	4	2.9	0	12	0	43.05	2.101	2	1.2
0	4	4	21.08	4.213	4	9.4	1	7	5	32.42	2.762	8	0.3	3	11	1	44.40	2.040	8	0.5
0	6	0	21.14	4.202	2	0.3	1	9	1	32.87	2.725	8	0.3	$\overline{2}$	4	10	44.50	2.036	8	0.3
2	2	4	21.54	4.125	8	1.2	3	5	5	33.03	2.712	8	1.3	5	5	6	44.64	2.030	8	1.0
1	5	3	22.17	4.010	8	30.2	4	6	0	33.76	2.655	4	1.5	5	3	$\overline{7}$	44.65	2.029	8	0.4
0	6	<b>2</b>	22.57	3.940	4	19.9	3	1	7	34.14	2.626	8	0.6	4	10	1	44.82	2.022	8	0.3
3	1	3	23.03	3.861	8	3.7	2	0	8	34.26	2.617	4	0.3	3	5	9	44.87	2.020	8	0.4
1	3	5	23.22	3.830	8	2.6	2	6	6	34.51	2.599	8	1.1	2	12	0	45.14	2.009	4	0.4
0	0	6	23.56	3.777	$\overline{2}$	10.3	4	6	2	34.71	2.585	8	0.4	6	6	0	45.20	2.006	4	1.2
1	5	4	24.51	3.632	8	3.6	0	4	8	34.72	2.584	4	3.1	0	10	$\overline{7}$	45.60	1.989	4	0.3
2	2	5	24.59	3.620	8	0.2	1	9	3	34.78	2.580	8	0.6	1	3	11	45.83	1.980	8	0.3
0	2	6	24.61	3.618	4	1.5	4	0	6	35.38	2.537	4	1.1	4	8	6	45.92	1.976	8	0.5
2	4	4	24.81	3.589	8	1.2	0	10	0	35.61	2.521	2	5.9	6	0	6	46.48	1.954	4	1.8
2	6	0	24.86	3.582	4	1.3	3	5	6	35.62	2.521	8	0.5	5	5	$\overline{7}$	47.04	1.932	8	1.1
1	$\overline{7}$	1	25.88	3.443	8	5.2	0	10	1	35.83	2.506	4	1.6	3	9	$\overline{7}$	47.30	1.922	8	0.3
4	0	0	26.02	3.424	2	14.1	4	2	6	36.11	2.487	8	0.5	2	6	10	47.48	1.915	8	0.5
2	6	<b>2</b>	26.09	3.415	8	2.7	0	10	2	36.51	2.461	4	3.1	1	13	1	47.52	1.913	8	0.6
0	6	4	26.41	3.375	4	2.4	1	5	8	36.99	2.430	8	0.4	4	10	4	47.57	1.911	8	2.1
3	5	1	26.63	3.347	8	8.2	0	8	6	37.15	2.420	4	0.2	$\overline{7}$	1	3	48.17	1.889	8	0.2
2	0	6	26.96	3.307	4	7.8	2	4	8	37.19	2.417	8	2.8	0	10	8	48.33	1.883	4	1.7
4	2	0	26.98	3.305	4	1.6	5	5	1	37.57	2.394	8	1.8	3	5	10	48.34	1.883	8	0.3
4	0	2	27.20	3.278	4	22.6	0	10	3	37.61	2.392	4	0.2	3	1	11	48.62	1.873	8	1.6
1	5	5	27.25	3.273	8	13.9	3	9	1	37.89	2.375	8	1.0	3	11	5	48.79	1.867	8	2.3
3	5	2	27.50	3.243	8	2.2	5	5	2	38.22	2.355	8	0.8	1	9	9	49.10	1.855	8	0.3
2	4	5	27.52	3.241	8	0.2	2	10	1	38.24	2.353	8	0.6	1	11	$\overline{7}$	49.16	1.853	8	0.6
0	4	6	27.53	3.240	4	0.3	0	6	8	38.32	2.349	4	1.6	$\overline{7}$	3	3	49.31	1.848	8	0.2
2	6	3	27.56	3.236	8	0.6	1	9	5	38.34	2.348	8	0.6	5	5	8	49.70	1.834	8	1.3
2	2	6	27.89	3.199	8	2.3	3	5	$\overline{7}$	38.48	2.339	8	0.7	3	3	11	49.75	1.833	8	0.5

The space group symbol Cmce now replaces the older form, Cmca. [†]Na atoms represent unresolved cations and water in the channels.



CHEMICAL COMPOSITION:  $|(C_5H_{11}NH_2)_4|$  [Si₈₈O₁₇₆] C₅H₁₁NH₂ = 2-aminopentane

REFINED COMPOSITION: |C₃₆| [Si₈₈O₁₇₆]

CRYSTAL DATA: Fmmm (No. 69) a = 22.232 Å b = 15.058 Å c = 13.627 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.125$ 

REFERENCE: B. Marler, N. Dehnbostel, H. H. Eulert, H. Gies and F. Liebau, J. Inclusion Phenomena 4 339–349 (1986).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
<b>2</b>	0	0	7.95	11.116	2	24.5	8	0	0	32.21	2.779	2	1.7	10	2	0	42.39	2.132	4	0.8
1	1	1	9.61	9.198	8	52.7	3	5	1	32.76	2.733	8	3.2	8	4	2	42.56	2.124	8	0.8
0	<b>2</b>	0	11.75	7.529	2	5.4	5	3	3	33.37	2.685	8	11.0	1	$\overline{7}$	1	42.75	2.115	8	0.5
0	0	2	12.99	6.814	2	4.3	6	4	0	33.95	2.641	4	0.4	10	0	2	42.78	2.114	4	2.3
<b>2</b>	<b>2</b>	0	14.21	6.234	4	2.9	7	3	1	34.05	2.633	8	0.2	5	3	5	42.89	2.109	8	0.2
3	1	1	14.82	5.976	8	1.6	8	2	0	34.40	2.607	4	0.5	4	0	6	43.02	2.102	4	0.7
<b>2</b>	0	2	15.25	5.809	4	2.8	8	0	2	34.87	2.573	4	1.0	6	4	4	43.35	2.087	8	0.2
1	3	1	19.26	4.608	8	61.7	7	1	3	34.98	2.565	8	2.0	6	6	0	43.55	2.078	4	0.2
2	2	2	19.30	4.599	8	14.4	0	4	4	35.54	2.526	4	2.1	8	2	4	43.72	2.070	8	0.4
4	<b>2</b>	0	19.85	4.472	4	31.2	3	1	5	35.60	2.522	8	0.7	7	1	5	44.20	2.049	8	0.1
4	0	2	20.62	4.307	4	100.0	0	6	0	35.78	2.510	2	11.4	3	7	1	44.35	2.043	8	0.3
1	1	3	20.81	4.268	8	30.3	6	0	4	35.80	2.508	4	1.3	1	5	5	45.05	2.012	8	0.5
5	1	1	21.84	4.070	8	0.2	6	4	2	36.49	2.462	8	2.3	9	3	3	45.54	1.992	8	1.8
3	3	1	22.36	3.975	8	47.3	5	5	1	36.64	2.453	8	2.6	2	6	4	45.63	1.988	8	0.4
0	4	0	23.63	3.764	2	4.7	2	6	0	36.71	2.448	4	3.5	6	6	2	45.64	1.988	8	0.4
3	1	3	23.72	3.751	8	10.4	8	2	2	36.92	2.435	8	4.2	7	5	3	46.09	1.969	8	0.4
4	2	2	23.80	3.738	8	2.0	9	1	1	37.48	2.400	8	1.4	3	5	5	46.58	1.950	8	0.4
6	0	0	24.02	3.705	2	21.8	1	3	5	37.78	2.381	8	2.6	0	4	6	46.71	1.945	4	1.2
2	4	0	24.97	3.566	4	26.1	6	2	4	37.81	2.379	8	0.2	1	7	3	46.91	1.937	8	2.4
0	0	4	26.16	3.407	2	5.4	0	6	2	38.22	2.355	4	0.2	6	0	6	46.92	1.936	4	2.5
1	3	3	26.77	3.330	8	24.4	7	3	3	38.98	2.311	8	3.1	1	1	7	47.26	1.923	8	1.2
6	2	0	26.82	3.325	4	3.5	2	6	2	39.10	2.304	8	0.8	5	7	1	47.42	1.917	8	0.7
2	0	4	27.38	3.257	4	26.4	4	4	4	39.17	2.300	8	1.5	2	4	6	47.46	1.916	8	0.1
6	0	2	27.40	3.255	4	0.4	5	1	5	39.23	2.296	8	3.5	10	4	0	47.49	1.914	4	0.1
5	3	1	27.59	3.233	8	14.7	4	6	0	39.39	2.287	4	1.8	7	3	5	47.55	1.912	8	0.6
4	4	0	28.64	3.117	4	1.6	3	3	5	39.54	2.279	8	4.0	4	6	4	47.90	1.899	8	2.5
5	1	3	28.71	3.109	8	3.2	0	0	6	39.68	2.271	2	0.8	9	5	1	48.11	1.891	8	0.6
0	2	4	28.76	3.104	4	0.5	8	4	0	40.34	2.236	4	1.6	0	8	0	48.35	1.882	2	0.6
3	3	3	29.12	3.066	8	1.9	2	0	6	40.54	2.225	4	0.3	8	6	0	48.90	1.863	4	1.2
7	1	1	29.48	3.030	8	2.1	5	5	3	41.30	2.186	8	1.7	2	8	0	49.09	1.856	4	0.2
2	2	4	29.89	2.989	8	4.5	0	2	6	41.53	2.174	4	1.3	10	4	2	49.45	1.843	8	1.1
6	2	2	29.90	2.988	8	1.9	4	6	2	41.65	2.168	8	0.2	4	4	6	49.67	1.836	8	0.2
1	5	1	30.67	2.915	8	1.1	9	1	3	42.07	2.148	8	0.7	11	1	3	49.75	1.833	8	1.3
4	4	-2	31.56	2.834	8	4 2	2	- 2	6	42.35	2 134	8	0.1							



CHEMICAL COMPOSITION:  $|Na_{0.1}K_{1.09}Mg_{1.11}Ca_{1.07}Sr_{0.01}Ba_{0.01}(H_2O)_{17.63}|$   $[Al_{5.52}Fe_{0.01}^{3+}Si_{12.49}O_{36}]$ Poia Creek, Adamello, Italy **REFINED COMPOSITION:**  $|KMgCa_{1.32}O_{16.04}|$  [Si_{12.6}Al_{5.4}O₃₆] CRYSTAL DATA:  $P\overline{6}m2$  (No. 187) c=7.593 Å a = 13.331 Å b = 13.291 Å $\beta = 90^{\circ}$  $\alpha = 90^{\circ}$  $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.058,  $R_w = 0.038$ **REFERENCE**: A. Alberti, G. Cruciani, E. Galli and G. Vezzalini, Zeolites 17 457–461 (1996). hkl  $2\theta$ dM $I_{\rm rel}$ hkl $2\theta$ dM $I_{\rm rel}$ hkl $2\theta$ dM $I_{\rm rel}$ 0 0  $\mathbf{6}$ 100.0  $\mathbf{2}$ 1  $\mathbf{2}$ 2.8632446.93 3 123.41 7.6611.54531.241 42.452.129Ω Ω 11.65 7.593 2 13.8 3 Ω 2 22.15 2.70312 1.3 9 0 42 76 2.11519 4.8 1 9

0	0	T	11.00	1.595	4	10.0	5	0	4	00.10	2.103	14	1.0	0	0	0	42.70	2.110	14	4.0
1	1	0	13.30	6.655	6	12.1	4	0	1	33.21	2.698	12	8.8	4	1	2	43.10	2.099	24	1.0
1	0	1	13.96	6.344	12	9.7	3	2	0	33.88	2.646	12	1.5	4	<b>2</b>	1	43.18	2.095	24	3.4
<b>2</b>	0	0	15.35	5.772	6	19.3	0	0	3	35.47	2.531	2	1.3	5	1	0	43.67	2.073	12	0.4
2	0	1	19.31	4.595	12	23.1	4	1	0	35.65	2.518	12	15.5	2	2	3	45.00	2.015	12	0.1
<b>2</b>	1	0	20.37	4.360	12	31.9	2	2	2	35.88	2.502	12	0.5	5	1	1	45.35	2.000	24	3.9
3	0	0	23.11	3.848	6	20.0	3	2	1	35.95	2.498	24	4.9	3	1	3	45.70	1.985	24	1.0
0	0	2	23.43	3.796	2	3.0	1	0	3	36.34	2.472	12	0.4	5	0	2	46.00	1.973	12	3.0
<b>2</b>	1	1	23.53	3.781	24	57.1	3	1	2	36.73	2.447	24	1.1	3	3	2	47.46	1.915	12	0.4
1	0	2	24.68	3.607	12	37.0	4	1	1	37.63	2.390	24	0.1	4	0	3	47.80	1.903	12	3.0
3	0	1	25.96	3.433	12	3.1	2	0	3	38.85	2.318	12	1.5	0	0	4	47.92	1.898	2	7.7
<b>2</b>	2	0	26.79	3.328	6	7.6	5	0	0	39.01	2.309	6	1.2	4	2	2	48.13	1.890	24	0.3
1	1	2	27.04	3.298	12	2.0	4	0	<b>2</b>	39.21	2.298	12	0.2	1	0	4	48.61	1.873	12	2.5
3	1	0	27.88	3.200	12	3.5	3	3	0	40.67	2.218	6	7.6	6	0	1	48.83	1.865	12	0.3
<b>2</b>	0	2	28.13	3.172	12	8.1	5	0	1	40.85	2.209	12	0.9	5	2	0	49.33	1.847	12	1.2
<b>2</b>	2	1	29.30	3.048	12	0.6	2	1	3	41.24	2.189	24	1.0	4	3	1	49.56	1.839	24	0.6
3	1	1	30.31	2.949	24	7.4	4	2	0	41.42	2.180	12	0.8							
4	0	0	30.98	2.886	6	25.3	3	2	2	41 61	2.171	24	0.1							



#### CHEMICAL COMPOSITION: [Al₁₆P₁₆O₆₄]

## REFINED COMPOSITION: [Al₁₆P₁₆O₆₄]

CRYSTAL DATA: Imm2 (No. 44) a = 18.3549 Å b = 18.3206 Å c = 5.0530 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.044$ ,  $R_{\rm wp} = 0.059$ 

REFERENCE: D. E. Akporiaye, H. Fjellvåg, E. N. Halvorsen, T. Haug, A. Karlsson, and K. P Lillerud, J. Chem. Soc., Chem. Commun. 1553–1554 (1996).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.82	12.967	4	100.0	2	5	1	31.70	2.823	8	0.6	4	2	2	42.00	2.151	8	0.2
<b>2</b>	0	0	9.64	9.177	2	16.9	7	1	0	34.55	2.596	4	0.9	7	5	0	42.39	2.132	4	0.2
0	2	0	9.66	9.160	2	30.5	5	5	0	34.59	2.593	4	0.3	6	5	1	42.45	2.130	8	0.2
2	2	0	13.66	6.483	4	1.2	1	$\overline{7}$	0	34.62	2.591	4	1.1	5	6	1	42.46	2.129	8	0.7
3	1	0	15.27	5.803	4	1.6	6	1	1	34.62	2.591	8	0.6	8	1	1	43.60	2.076	8	0.2
1	3	0	15.29	5.795	4	2.4	1	6	1	34.67	2.587	8	0.1	7	4	1	43.62	2.075	8	0.1
1	0	1	18.21	4.872	4	1.1	6	4	0	35.28	2.544	4	0.4	4	7	1	43.66	2.073	8	1.3
0	1	1	18.21	4.871	4	0.2	4	6	0	35.31	2.542	4	0.6	1	8	1	43.67	2.073	8	0.2
4	0	0	19.34	4.589	2	3.3	0	0	2	35.53	2.526	2	8.3	1	5	2	43.80	2.067	8	0.2
0	4	0	19.38	4.580	2	5.9	5	4	1	36.04	2.492	8	3.1	4	8	0	44.20	2.049	4	0.6
3	3	0	20.55	4.322	4	43.0	4	5	1	36.05	2.491	8	4.2	1	9	0	44.79	2.023	4	0.3
<b>2</b>	1	1	20.64	4.303	8	32.1	1	1	<b>2</b>	36.22	2.480	8	1.1	4	4	2	45.52	1.993	8	1.0
1	2	1	20.65	4.301	8	27.6	2	0	<b>2</b>	36.90	2.436	4	0.1	8	3	1	45.91	1.977	8	0.2
<b>2</b>	4	0	21.68	4.098	4	2.2	0	2	2	36.91	2.436	4	0.5	3	8	1	45.97	1.974	8	0.4
3	0	1	22.82	3.896	4	5.9	7	3	0	37.32	2.409	4	2.4	5	3	2	46.07	1.970	8	0.5
0	3	1	22.84	3.893	4	0.3	3	$\overline{7}$	0	37.37	2.406	4	1.5	3	5	2	46.09	1.969	8	0.8
1	5	0	24.78	3.593	4	0.7	6	3	1	37.39	2.405	8	0.2	6	0	2	46.62	1.948	4	0.4
3	2	1	24.83	3.585	8	2.3	3	6	1	37.42	2.403	8	0.4	0	6	2	46.66	1.947	4	0.4
2	3	1	24.84	3.584	8	2.3	2	2	2	38.23	2.354	8	0.2	3	9	0	47.05	1.932	4	0.2
4	1	1	26.69	3.340	8	7.0	7	0	1	38.69	2.327	4	0.9	6	2	2	47.73	1.905	8	1.2
1	4	1	26.71	3.337	8	13.0	0	7	1	38.75	2.324	4	0.6	2	6	2	47.76	1.904	8	0.7
4	4	0	27.51	3.242	4	7.4	3	1	2	38.88	2.316	8	0.2	9	0	1	48.11	1.891	4	1.2
6	0	0	29.19	3.059	2	1.8	8	0	0	39.27	2.294	2	0.1	0	9	1	48.19	1.888	4	1.1
0	6	0	29.25	3.053	2	1.6	7	2	1	39.97	2.256	8	0.8	7	7	0	49.19	1.852	4	0.5
5	0	1	30.09	2.970	4	0.5	2	7	1	40.02	2.253	8	0.1	9	2	1	49.19	1.852	8	0.6
4	3	1	30.10	2.969	8	0.9	8	2	0	40.53	2.226	4	0.2	7	6	1	49.22	1.851	8	1.2
3	4	1	30.11	2.968	8	1.0	2	8	0	40.60	2.222	4	0.5	6	7	1	49.24	1.851	8	0.5
0	5	1	30.13	2.966	4	0.5	4	0	2	40.77	2.213	4	0.7	2	9	1	49.27	1.849	8	0.2
6	2	0	30.81	2.902	4	5.0	0	4	2	40.79	2.212	4	0.5	10	0	0	49.67	1.835	2	0.1
2	6	0	30.86	2.897	4	3.7	3	3	2	41.39	2.181	8	0.5	6	8	0	49.73	1.833	4	0.2
5	2	1	31.67	2.825	8	1.6	6	6	0	41.80	2.161	4	0.4	0	10	0	49.77	1.832	2	0.8



### CHEMICAL COMPOSITION: $|K_6(H_2O)_9|$ [Be₃Si₆O₁₈]

REFINED COMPOSITION:  $|K_{5.37}(H_2O)_9|$  [Be_{3.51}Si_{5.52}O₁₈]

CRYSTAL DATA:  $P3_2$  (No. 145) a = 10.0928 Å b = 10.0928 Å c = 7.6264 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.0596

REFERENCE: K. O. Kongshaug, H. Fjellvåg, K. P. Lillerud, T. E. Gier, G. D. Stucky and A. K. Cheetham, Private communication (2000).

h	k	l	$2\theta$	d	M	$I_{ m rel}$	h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	1	0	10.12	8.741	6	100.0	2	2	0	35.58	2.523	6	19.3	3	1	2	44.27	2.046	6	5.8
1	0	1	15.42	5.746	6	15.5	3	-2	2	35.97	2.497	6	7.0	1	3	2	44.27	2.046	6	4.6
0	1	1	15.42	5.746	6	13.9	1	2	2	35.97	2.497	6	7.7	3	-2	3	44.99	2.015	6	0.9
1	1	0	17.57	5.046	6	24.9	3	-1	2	35.97	2.497	6	8.2	1	2	3	44.99	2.015	6	0.8
0	2	0	20.32	4.370	6	20.1	2	1	<b>2</b>	35.97	2.497	6	5.7	3	-1	3	44.99	2.015	6	1.3
<b>2</b>	-1	1	21.11	4.208	6	1.1	1	0	3	36.82	2.441	6	0.2	2	1	3	44.99	2.015	6	1.2
1	1	1	21.11	4.208	6	0.4	1	3	0	37.08	2.424	6	8.2	2	3	0	45.22	2.005	6	0.2
0	2	1	23.46	3.792	6	3.3	3	1	0	37.08	2.424	6	6.2	3	2	0	45.22	2.005	6	0.1
2	0	1	23.46	3.792	6	4.0	2	2	1	37.55	2.395	6	0.7	2	3	1	46.85	1.939	6	0.3
0	1	2	25.48	3.495	6	1.0	4	-2	1	37.55	2.395	6	0.4	5	-3	1	46.85	1.939	6	0.2
1	0	2	25.48	3.495	6	0.8	3	0	2	38.90	2.315	6	0.2	3	2	1	46.85	1.939	6	0.1
1	2	0	26.99	3.304	6	13.0	0	3	2	38.90	2.315	6	0.2	5	-2	1	46.85	1.939	6	0.2
2	1	0	26.99	3.304	6	12.8	4	-3	1	38.98	2.310	6	4.5	3	0	3	47.46	1.915	6	0.3
1	1	2	29.36	3.042	6	50.3	1	3	1	38.98	2.310	6	3.3	0	3	3	47.46	1.915	6	0.3
2	-1	2	29.36	3.042	6	43.7	4	-1	1	38.98	2.310	6	2.7	4	1	0	47.68	1.907	6	1.0
3	-2	1	29.46	3.031	6	2.2	3	1	1	38.98	2.310	6	5.2	1	4	0	47.68	1.907	6	1.0
3	-1	1	29.46	3.031	6	2.1	2	-1	3	39.70	2.270	6	0.3	0	4	2	47.98	1.896	6	0.1
1	2	1	29.46	3.031	6	2.2	2	0	3	41.08	2.197	6	1.9	4	0	2	47.98	1.896	6	0.2
2	1	1	29.46	3.031	6	2.7	0	2	3	41.08	2.197	6	1.6	0	1	4	48.89	1.863	6	0.1
0	3	0	30.69	2.914	6	0.4	4	-2	2	42.98	2.104	6	0.2	1	0	4	48.89	1.863	6	0.2
2	0	2	31.13	2.873	6	8.5	2	2	2	42.98	2.104	6	0.1	5	-4	1	49.24	1.850	6	0.2
0	2	2	31.13	2.873	6	5.8	0	4	1	43.06	2.101	6	1.8	4	1	1	49.24	1.850	6	0.3
3	0	1	32.91	2.722	6	4.7	4	0	1	43.06	2.101	6	2.1	5	-1	1	49.24	1.850	6	0.2
0	3	1	32.91	2.722	6	8.0	4	-3	2	44.27	2.046	6	6.2							
0	0	3	35.31	2.542	2	6.3	4	-1	2	44.27	2.046	6	4.8							



Cl	HEI	MIC	CAL C	OMPOS	SITI	ON:	$ Ca_8(H_2) $ Taurus I	O)1 Mou	6  [ 1nta	Si ₁₆ Al ₁ ains, Tu	_{.6} O ₆₀ (C urkey	OH)8	3]							
]	RE	FIN	NED C	OMPOS	SITI	ON:	$ Ca_8(H_2) $	$O)_{1}$	6 [	$\rm Si_{16}Al_1$	_{.6} O ₆₀ (0	OH)8	3]							
			CF	RYSTAL	J DA	TA:	C1 2/c 1 a = 21.5 $\alpha = 90^{\circ}$ X-ray sin	(No 55 ngle	o. 1 Å e cr	b = 8 $\beta = 9$ ystal re	que ax 3.761 Å 91.55° efineme	is <b>b</b> , ent,	, cell cho c = 9.3 $\gamma = 90^{\circ}$ R = 0.07	ice 1 04 Å						
				REFEI	REN	CE:	N. Engel Z. Krist	l an allo	.d F <i>gr.</i>	K. Yvoi <b>169</b> 10	n, 65–175	(19)	84).							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
2	0	0	8.21	10.774	2	100.0	-3	1	3	32.79	2.731	4	0.3	-2	4	1	43.21	2.094	4	6.8
1	1	0	10.90	8.116	4	57.5	4	2	2	32.91	2.722	4	0.1	-6	2	3	43.28	2.090	4	1.8
-1	1	1	14.41	6.146	4	9.9	3	3	0	33.11	2.705	4	21.6	2	4	1	43.31	2.089	4	0.8
1	1	1	14.56	6.084	4	40.3	3	1	3	33.39	2.683	4	1.9	-8	2	2	43.58	2.077	4	0.7
3	1	0	15.96	5.554	4	1.2	-6	2	1	33.48	2.676	4	11.8	-7	3	1	43.64	2.074	4	1.0
4	0	0	16.46	5.387	2	6.4	: 6	2	1	33.88	2.646	4	0.7	7	3	1	44.01	2.057	4	0.8
3	1	1	18.78	4.725	4	1.0	-3	ა ე	1	34.43	2.605	4	0.5	0	2	4	44.09	2.054	4	0.9
0	0	2	19.08	4.050	2	5.3	5 J	3 1	1	34.62	2.591	4	3.7	6	2	ა ი	44.24	2.047	4	2.9
0	2	0	20.27	4.380	2	9.1	-1	1	2	30.04	2.492	4	2.8	9	1	2	44.24	2.047	4	4.3
-2	0	2	20.00	4.312	2	10.3	-2	2	ა ი	30.29	2.470	4	2.0	8	2	2	44.43	2.039	4	0.1
2	0	2	21.01 21.00	4.220	4	2.0	1	ა ე	2	30.03 26.66	2.400 9.451	4	5.0 1.9	-2	2 1	4	44.72	2.020 2.014	4	1.2
2 1	1	0	21.90	4.050	4	9.4	: 4	1	ა ე	26 71	2.401	4	1.0	-0	1	4	45.00	2.014	4	2.0
-1 1	1	2	21.90	4.000	4	6.5	-J 5	2	0	37 10	2.440	4	4.0	2 1	2 1	4	45.14	2.009	4	0.0 0.0
1	1 0	2 1	22.10	4.017	4	0.0 3.4	6	ა ე	0 9	37.19	2.410 2.407	4	4.0	-4	4	1 9	45.07	1.907	4	2.2
5	∠ 1	1	22.40	3.903	4	0.4 10.9	-0 5	1	2	37.69	2.407	4	0.8	4	4	2 1	45.79	1.901	4	0.5
0 9	1 2	1	23.00	3.007	4	10.2		2	0 9	38.00	2.391	4	0.0	4	4	1	45.07	1.976	4 9	1.2
-2 2	2	1	23.83	3 705	4	43.2	, U , S	2 0	2	38.16	2.303 2.350	4 9	0.3	-0 10	0	4 9	45.92	1.970	2	1.2
2	1	1 9	24.02 94.71	3.703	4	2.1	-0	3	2	38 39	2.339 2.340	2 1	1.0	-10	1	2 1	40.94	1.970	2 1	1.0
-0 5	1	2 1	24.71 24.72	3.005	4	27.6		3 2	2 1	38.62	2.349	4	0.9	5	1	4 9	40.03	1.972 1.053	4	9.2
-5 6	1	1	24.72	3.002 3.501	4 9	15.5	3	3 2	1 2	38.02	2.001	4	2.2	-2	4	2	40.00 46.71	1.900 1 045	4	17
1	0	2	24.15	3.531	2	10.0	0	0	1	38 73	2.020 2.325	4 9	5.7	27	4 2	2	46.71	1.940 1.049	4	37
5	1	1	24.00 25.15	3 540	4	0.1		2	ч 2	38.00	2.320 2 310	4	0.7	-1	0	2	46.15	1.042	л 2	2.8
3	1	2	25.10 25.23	3.540	4	21.1		1	0	39.00	2.310 2.309	4	0.1	-4	2	4	46.95	1.930 1.934	4	$\frac{2.0}{2.1}$
4	0	2	25.20 25.64	3474	2	0.6	8	0	2	39.10	2.303 2.304	2	1.0	10	2	0	47.00	1 933	4	0.8
4	$\frac{0}{2}$	0	26.22	3.399	4	13.9	8	2	0	39.27	2.294	4	0.4	-5	3	3	47.33	1.921	4	2.1
-4	2	1	27.79	3.210	4	0.6	2	0	4	39.88	2.260	2	3.5	7	3	2	47.49	1.915	4	3.6
0	2	2	27.98	3.189	4	35.1	-9	1	1	39.98	2.255	4	1.6	4	2	4	47.77	1.904	4	2.4
2	2	2	29.36	3.042	4	32.1	-8	2	1	40.27	2.240	4	2.7	-10	2	1	47.82	1.902	4	0.2
-5	1	2	29.69	3.009	4	2.6	1	1	4	40.46	2.229	4	0.1	5	3	3	48.08	1.893	4	1.8
5	1	2	30.42	2.938	4	35.8	9	1	1	40.49	2.228	4	13.4	10	2	1	48.31	1.884	4	5.7
-1	1	3	30.77	2.906	4	59.2	8	2	1	40.72	2.216	4	0.1	-11	1	1	48.35	1.882	4	1.2
7	1	0	30.79	2.904	4	0.4	. 0	4	0	41.22	2.190	2	4.2	-9	1	3	48.54	1.876	4	0.2
1	3	0	30.90	2.894	4	0.9	-3	1	4	41.80	2.161	4	0.4	6	4	0	48.69	1.870	4	0.2
1	1	3	30.98	2.886	4	1.1	-5	3	2	41.85	2.158	4	6.5	-4	4	2	48.79	1.867	4	2.3
-6	0	2	31.05	2.880	2	11.1	-4	0	4	41.90	2.156	2	0.7	-8	2	3	48.83	1.865	4	0.3
6	0	2	31.89	2.806	2	6.9	10	0	0	41.93	2.155	2	4.0	4	4	2	49.18	1.853	4	0.3
-7	1	1	32.05	2.792	4	32.9	-7	1	3	42.09	2.147	4	2.4	9	3	0	49.21	1.851	4	1.9
6	2	0	32.23	2.777	4	12.1	5	3	<b>2</b>	42.40	2.132	4	5.9	-6	4	1	49.59	1.838	4	1.4
-4	2	2	32.36	2.767	4	13.7	· 3	1	4	42.46	2.129	4	0.4	-7	1	4	49.59	1.838	4	0.5
-1	3	1	32.37	2.766	4	0.7	-1	3	3	42.66	2.119	4	1.7	9	1	3	49.85	1.829	4	0.3
1	3	1	32.43	2.760	4	6.6	5 7	3	0	42.68	2.119	4	7.0	6	4	1	49.88	1.828	4	0.8
7	1	1	32.53	2.752	4	8.8	4	0	4	42.77	2.114	2	1.2							



C	HE	MI	CAL C	COMPO	SITI	ION:	Na ₁₃ K ₆ Rock Isl	₈ Ca and	136E Da	$Ba_{1.5}(H)$ am, Wa	[ ₂ O) ₇₀₅ ashingt	[Si ton,	₅₂₀ Al ₁ U.S.A	. ₅₂ O ₁₃₄₄ ]						
	RE	FIN	NED C	OMPO	SITI	ON:	Na _{9.68} K	50.5	$_{1}C$	$a_{26.75}B$	$a_{1.06}(H$	$I_2O)$	₄₅₂   [S	5i _{520.12} A	151.8	880	1344]			
			CI	RYSTAI	DA	ATA:	$Im\overline{3}m (1)$ a = 35.0 $\alpha = 90^{\circ}$ X-ray sin	No. 93 ngle	22 Å e cr	9) b = 3 $\beta =$ ystal r	35.093 90° efinem	Å ent,	$c = 3$ $\gamma =$ $R = 0$	35.093 Å 90° ).14						
				REFE	REN	ICE:	E. K. Go Science	ordo 154	on, <b>1</b> 1(	S. San 004–10	nson ai 07 (196	nd V 56).	V. B. ]	Kamb,						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	3.56	24.814	12	42.1	9	4	1	25.12	3.545	48	0.7	10	10	0	36.20	2.481	12	3.1
<b>2</b>	0	0	5.04	17.546	6	63.6	10	2	0	25.89	3.441	24	2.1	14	2	0	36.20	2.481	24	0.8
<b>2</b>	1	1	6.17	14.327	24	4.4	10	2	2	26.39	3.377	24	4.5	14	3	1	36.76	2.445	48	1.2
2	2	0	7.12	12.407	12	13.7	6	6	6	26.39	3.377	8	0.9	11	9	2	36.76	2.445	48	2.3
3	1	0	7.97	11.097	24	24.7	10	3	1	26.64	3.346	48	39.2	10	9	5	36.76	2.445	48	3.8
2	2	2	8.73	10.130	8	0.6	10	4	0	27.37	3.258	24	45.2	14	5	1	38.21	2.355	48	1.7
3	2	1	9.43	9.379	48	12.3	9	6	1	27.61	3.231	48	2.6	15	1	0	38.57	2.334	24	0.5
4	1	0	10.08	8.773	6	2.5	11	1	0	28.08	3.177	24 49	0.5	14	5	3	38.92	2.314	48	2.4
4	1 9	1	10.70	8.271	24 19	3.3	9 10	5	4	28.08	3.177	48	(.5 17.9	14 19	6 7	0	39.10	2.304	24 19	1.1
3	ა ე	0	11.70	0.271 7 847	14 94	100.0	10	ວ ຈ	1	20.00	3.120 3.126	40	17.2	10	10	4	39.27	2.294	40 94	0.7
43	23	2	11.20	7 482	24 94		0	∠ 6	1 3	20.00 28.55	3.120 3.126	40	12.0	10	10	2	39.45	2.204 2.284	24 18	2.1
4	2	2	12.36	7 163	24 24	11.0	8	8	0	20.00 28.78	3.120 3.102	12	1.3	11	11	0	39.40 39.96	2.264 2.256	12	$\frac{2.1}{3.0}$
5	1	0	12.86	6.882	24	2.8	11	3	0	29.01	3.078	24	64.1	12	8	6	40.14	2.200 2.247	48	0.5
4	3	1	12.86	6.882	48	83.2	9	7	Ő	29.01	3.078	24	1.7	14	7	1	40.31	2.237	48	2.8
4	4	0	14.28	6.204	12	13.7	10	5	3	29.46	3.032	48	1.4	16	0	0	41.16	2.193	6	0.7
6	0	0	15.15	5.849	6	21.8	8	6	6	29.69	3.009	24	1.0	16	1	1	41.32	2.185	24	0.6
<b>5</b>	3	2	15.57	5.693	48	26.2	11	4	1	29.91	2.987	48	28.1	14	6	6	42.15	2.144	24	0.8
6	1	1	15.57	5.693	24	2.3	10	6	2	30.13	2.966	48	13.0	11	10	7	42.32	2.136	48	0.5
<b>5</b>	4	1	16.37	5.415	48	9.6	9	6	5	30.35	2.945	48	0.8	11	11	6	42.97	2.105	24	2.1
6	<b>2</b>	2	16.76	5.290	24	4.1	11	5	0	30.79	2.904	24	1.4	12	12	0	43.78	2.068	12	1.1
6	3	1	17.14	5.174	48	4.0	9	7	4	30.79	2.904	48	1.6	12	11	5	43.94	2.061	48	1.9
7	1	0	17.87	4.963	24	23.7	11	5	2	31.21	2.865	48	3.6	17	1	0	43.94	2.061	24	0.8
6	3	3	18.58	4.776	24	44.4	10	6	4	31.43	2.846	48	3.9	13	11	0	43.94	2.061	24	0.6
6	4	2	18.92	4.689	48	10.2	12	3	1	31.64	2.828	48	2.1	17	2	1	44.25	2.047	48	2.4
6	5	1	19.20	4.008 4.457	24 18	1.9	9 10	8 7	3 2	31.04 32.06	2.828 2.702	48	1.5	14 19	( 11	1	44.25 44.25	2.047 2.047	24 48	0.0 0.6
8	0	0	19.92 20.24	4.457	40 6	1.9	10	4	0	32.00 32.27	2.132 2.774	-40 -24	4.0	17	3	0	44.20 44.57	2.047	$\frac{40}{24}$	1.0
8	1	1	20.21 20.56	4.320	24	0.5	12	4	2	32.68	2.740	48	2.7	12	12	4	45.04	2.000 2.013	24	1.6
5	5	4	20.56	4.320	24	2.0	11	6	3	32.88	2.724	48	20.5	11	11	8	45.20	2.006	24	1.4
6	4	4	20.87	4.256	24	5.8	10	8	2	33.09	2.707	48	1.7	13	11	4	45.20	2.006	48	4.7
8	2	0	20.87	4.256	24	4.4	13	2	1	33.69	2.660	48	0.7	14	10	4	45.66	1.987	48	1.3
6	5	3	21.18	4.194	48	1.3	12	4	4	33.89	2.645	24	0.9	14	11	1	46.12	1.968	48	0.8
8	2	2	21.49	4.136	24	1.0	9	9	4	34.08	2.630	24	6.7	13	12	3	46.43	1.956	48	1.3
$\overline{7}$	5	0	21.79	4.079	24	0.9	12	5	3	34.08	2.630	48	3.3	18	0	0	46.58	1.950	6	0.6
7	4	3	21.79	4.079	48	10.6	10	8	4	34.28	2.616	48	29.7	14	11	3	46.74	1.944	48	2.3
8	4	0	22.66	3.924	24	0.9	10	9	1	34.48	2.601	48	2.1	18	2	0	46.89	1.938	24	1.3
9	1	0	22.95	3.875	24	2.7	12	6	2	34.67	2.587	48	0.7	17	6	3	47.34	1.920	48	0.8
8	3	3	22.95	3.875	24	10.2	11	7	4	34.87	2.573	48	5.4	15	10	3	47.34	1.920	48	0.7
6	5	5	23.51	3.784	24	1.2	10	9	3	35.25	2.546	48	1.2	13	13	0	47.64	1.909	12	0.8
9 7	3 r	U	24.06	3.699	24	5.7	11	8	3	35.63 25.63	2.520	48	(.U	12	11	9	48.24	1.887	48	0.6
1	0 9	4 0	24.00 24 50	3.099	48 19	1.1	13	4 6	ა ⊿	30.03 25 00	2.520	48 10	4.1	10	( 1	4	48.83	1.805	48 94	U.0 1 E
9	3 1	2 1	24.39 24.86	3.020 3.520	4ð 94	9.0	12	0	4	35.82 35.89	2.007 2.507	48 6	1.3 9.9	19	2 2	0	49.41 40.00	1.844	24 94	1.0 0.9
8	+ 5	-± 3	24.00 25.12	3.502	24 48	24.4 15	14	1	1	36.01	2.307	24	2.2 1.3	19	о О	0	49.99 49.90	1.824	24 24	0.0



СН	EM	IC.	AL CC	OMPOS	SITI	ON:	K ₂ Ca _{1.7} Casal Br	Na runo	0.4( ori,	$H_2O)_{12}$ Rome	3.5  [Si] , Italy	_{10.6} A	l _{5.3} O ₃₂ ]							
R	EF	INI	ED CC	MPOS	SITI	ON:	$ K_2Ca_{1.6} $	48(]	$H_2($	$D)_{12} [S_{12}] $	Si _{10.7} A	l _{5.3} C	) ₃₂ ]							
			CRY	'STAL	, DA	TA:	$P1 2_1/m$ a = 9.86 $\alpha = 90^{\circ}$ X-ray sin	1 ( 5 Å	No e cr	b = 1 b = 1 $\beta = 1$ ystal re	nique a 14.300 124.20 [°] efinemo	axis Å o	$b$ $c = 8.6$ $\gamma = 90^{\circ}$ $R_{\rm w} = 0.9$	$_{\circ}^{68}$ Å $_{\circ}^{057}$						
			Ι	REFEF	REN	CE:	R. Rinal Acta Cr	di, <i>yst.</i>	J B:	J. Plut <b>30</b> 242	h and 6–2433	J. V (19	. Smith, 74).							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	10.84	8.159	2	10.8	3 1	0	2	32.44	2.760	2	22.1	-1	4	3	41.45	2.178	4	1.3
-1	Õ	1	10.93	8.095	2	24.3	8 1	4	1	32.52	2.753	4	13.3	3	4	0	41.73	2.165	4	4.8
0	0	1	12.35	7.169	2	82.5	5 -1	0	3	32.59	2.747	2	13.7	-3	4	3	41.95	2.154	4	9.0
0	2	0	12.38	7.150	2	64.3	3 -1	4	2	32.61	2.746	4	18.2	2	1	2	42.36	2.134	4	1.4
1	1	0	12.49	7.087	4	30.5	5 1	1	2	33.06	2.710	4	26.8	-3	5	2	42.39	2.132	4	1.6
-1	1	1	12.56	7.045	4	1.4	1	$\overline{5}$	0	33.19	2.699	4	27.1	-3	1	4	42.47	2.128	4	0.3
0	1	1	13.82	6.409	4	37.0	) -3	0	3	33.20	2.698	2	6.5	1	6	1	43.37	2.086	4	3.3
1	2	0	16.48	5.377	4	33.6	3 -1	1	3	33.20	2.698	4	11.0	-1	6	2	43.44	2.083	4	0.7
-1	2	1	16.54	5.359	4	18.6	3 -1	5	1	33.22	2.697	4	4.8	3	2	1	43.58	2.077	4	2.4
0	2	1	17.52	5.063	4	45.8	3 2	2	1	33.23	2.696	4	10.0	2	2	2	43.82	2.066	4	2.2
-2	0	1	17.98	4.932	2	75.3	3 2	4	0	33.32	2.689	4	1.7	-3	2	4	43.93	2.061	4	1.9
-2	1	1	19.03	4.663	4	11.7	-2	4	$\tilde{2}$	33.44	2.679	4	6.5	-2	6	2	44.09	2.054	4	1.7
1	0	1	20.58	4 315	2	10.6	-2 i -2	2	3	33 46	2.678	4	23.4	-2	2	4	44 10	2.053	4	5.1
-1	Õ	2	20.72	4 287	2	14.1	3	1	Ő	33.54	2.672	4	10.9	2	5	1	44 40	2.040	4	2.9
1	1	1	20.12 21.51	4 131	4	44.8	3 0	5	1	33.74	2.612	4	81	4	Ő	0	44 41	2.040	2	5.3
1	3	0	21.51	4 116	4	11.0	-3	3	2	33.74	2.656	4	2.4	-2	5	3	44 59	2.010 2.032	4	0.7
_1	3	1	21.63	4.107	4	6.8	-3	1	3	33.80	2.000 2.652	4	6.4	-4	4	2	44 64	2.002 2.030	4	0.5
_1	1	2	21.00 21.64	4.107	- 1	46.8	, -5 ≥ 1	2	2	3/ 8/	2.002 2.575	- 1	6.2	-1	0	3	45.13	2.000	2	1.0
-1	2	1	21.04	4.100	4	27.1	-1	$\frac{2}{2}$	3	34 99	2.515 2.565	4	4.6	-1	0	$\frac{3}{4}$	45.10	$\frac{2.003}{2.002}$	2	4.3
- <u>2</u> _2	0	2	21.05	4.000	2	5.4	1 I 3	2	0	35 31	2.500 2 5/2	- 1	4.0 6.8	-1	1	3	45.60	1 080	1	2.5
-2	3	1	21.30 22.40	3 060	4	0.4 २ १		4	2	35.46	2.042 2.531	4	16.1	0	6	3 9	45.00	1.909	4	2.0
2	1	0	22.40 22.67	3 0 9 3	4	10.2	7 9	- - -	2	35 56	2.001 2.525	4	73	1	7	0	45.71	1.900	4	65
1	2	1	22.07	3.925 3.605	4	2 10.7	-5	0	5 9	36.43	2.525	-4 -9	7.5 3.1	1	2	1	45.04	1.902 1.075	4	$0.0 \\ 2.7$
1	2	2	24.03	3.035 3.677	4	2.1		1	2	36.00	2.400 2.430	4	0.1 9.3	ม ว	5	0	46.05	1.975 1.071	4	2.7
-1	0	2	24.21	3 585	-4 -9	0.3	2 0	0	2	30.33 37.64	2.400	-4 -9	2.5 0.5	ງ ເ	3	2	46.18	1.971	4	1.4
0	1	2	24.04	3.000 3.477	4	6.8		4	1	37.04 37.65	2.330	4	14.3	0	7	1	46.10	1.900 1.065	4	0.4
_2	3	1	26.02	3 428	4	7.9	) -5	4	2	37.66	2.309 2.388	4	4.5	-3	5	3	46.21	1.905	4	3.7
-2	4	0	20.00 27.23	3.420 3.974	- 1	40.0		4	2	37 73	2.300 2.384	- 1	4.0 5.2	-0 _3	3	1	46.28	1.000 1.062	1	1.5
1	-1	1	21.20 97.97	3.274 3.270	4	21.5	5 -5 5 1	5	1	37 73	2.304 2.384	4	0.2	-5	0 9	1	46.28	1.902 1.062	4	2.2
-1	4	1	21.21	3.270 3.911	4 9	41.0 13 5	) 1 5 1	5	1 9	37.81	2.364 2.370	4	3.0	4 5	0	0	40.20	1.902 1.057	4 9	3.0
-3	2	2	27.10	3.211 3.204	2 1	50.5	) -1 5 3	3 2	0	38.00	2.379	4	3.0	-5	0	2	40.40	1.957	2	0.9 4.6
0	4	1	27.84	3 100	4	100.0	) 0	1	3	38.18	2.302 2.357	4	0.9 1 0	-5	4	૨	46.52	1.952 1.050	1	1.5
2	4	2	27.03	3.133 3.100	4 9	17.0	) 0 ) 3	2	2 2	28 22	2.001	4	1.5	-4	4 9	1	46.64	1.900 1.047	4	2.0
-5	2	1	27.09	2 100		7.0	, -3 ) -3	5	0	20.33	2.040	4	0.4	-4	1	4	40.04	1.947	4	2.1
1	ა ი	1	27.09	0.199 0.100	4	1.3		5 E	0	00.44 20 E4	2.042	4	1.0	-0 E	1	2	40.00	1.909	4	0.4
-1	ა 1	1	21.99	3.100 2.122	4	11.1 69.1	-2	0 0	2	38.94 28.69	∠.əə0 9.991	4	11.4	-0	L C	ა 1	40.97	1.954 1.014	4	2.4
-ə 9	1	1	20.49 20 EO	0.100 9 100	4 1	02.1 45 5	-4	4	2 9	00.02 20 71	2.001 9.992	4	1.0	-ə 9	0 6	1	41.01 17 E0	1.914 1.011	4	1.J 9.0
-ə 0	1 9	4	20.09 20.09	0.1 <i>44</i> 2.000	4 1	40.0	, -4	1	ა 1	30.71 30.03	2.020 9.207	∠ 1	1.0	-0 E	0	2 2	41.00	1.911	4	ა.ბ ი ი
2	ა ი	0	20.0U 20.04	3.099 2.099	4 1	1.4	t -4	1	1	09.00 20.04	⊿.∂U/ Э.ЭОС	4 1	1.0	-ə 4	2	2	40.22	1.001	4± 1	∠.0 1 1
-2	ა ი	2	28.94 20 ⊑9	0.080 0.000	4	10.5	) -4	1 C	う 1	39.24 20.90	2.290 0.000	4	3.9 0.7	4	ა ⊿	1	48.33 40-11	1.8/3	4	1.1
-ð	2	1	30.52 20.61	2.929	4	22.9		0	1	39.80 20.02	2.202	4	0.7	び 1	4	1	49.11	1.000	4	1.2
-3	2	2	30.61 20.71	2.920	4	14.5	$\sim 2$	4	1	39.93	2.257	4	0.3	1	3	3 1	49.22	1.851	4	0.4
2	0	1	30.71	2.911	2	0.8	s -2	4	3	40.14	2.247	4	0.9	1	1	1	49.35	1.846	4	0.6
-2	4	1	30.89	2.895	4	1.2		5	2	40.34	2.236	4	0.5	-3	4	4	49.43	1.844	4	0.4
-2	0	ა ი	30.90	2.888	2	12.7	-4	3	2	41.21	2.190	4	2.2	-2	4	4	49.59	1.838	4	1.1
()	3	.,	31 22	2 Xh5	4	0.8	s 1	- 4	.,	4133	2 185	4	0.7	()	b	- 3	AU 72	I X34	4	8 b



СН	EM	IIC	AL CC	OMPOS	SITI	ON:	Ba ₂ Ca ₀ Andreas	.5(H berg	[ ₂ O g, F	$)_{12} $ [Si Hartz, 9	i ₁₂ Al ₄ ( Germa	D ₃₂ ] .ny								
R	EF	INI	ED CO	MPOS	SITI	ON:	$ Ba_2Ca_0 $	.6(H	[ ₂ O	$)_{12} $ [S	$i_{12}Al_4O$	) ₃₂ ]								
			CRY	7STAL	, DA	TA:	$P1 2_1/m$ a = 9.87 $\alpha = 90^{\circ}$ X-ray sin	.1 ( 9 Å ngle	No.	b = 1 b = 1 $\beta = 1$ ystal re	nique 14.139 124.81 efinem	${}^{\mathrm{axis}}_{\circ}$	$b$ $c = 8.69$ $\gamma = 90^{\circ}$ $R_{\rm w} = 0.0$	93 Å ) )39						
			Ι	REFEF	REN	CE:	R. Rinal Acta Cr	di, <i>yst.</i>	J. J B:	J. Plut <b>30</b> 242	h and 6–2433	J. V 8 (19	. Smith, 74).							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
-1	0	1	10.87	8.136	2	51.2	1	0	<b>2</b>	32.68	2.740	2	6.7	3	4	0	42.07	2.148	4	5.2
1	0	0	10.91	8.111	2	62.2	-1	4	<b>2</b>	32.82	2.729	4	17.1	-2	0	4	42.10	2.146	2	1.3
0	0	1	12.40	7.137	2	70.8	1	4	1	32.86	2.726	4	14.6	-2	6	1	42.50	2.127	4	2.2
-1	1	1	12.55	7.052	4	12.0	-1	1	3	33.25	2.695	4	11.7	0	3	3	42.57	2.124	4	0.6
1	1	0	12.58	7.036	4	5.8	: 1	1	2	33.30	2.690	4	22.6	-3	5	1	42.63	2.121	4	0.7
0	1	1	13.90	6.372	4	100.0	-2	2	3	33.42	2.681	4	10.3	2	1	2	42.72	2.117	4	0.7
Ő	2	1	17.66	5.023	4	33.7	2	2	1	33 51	2.674	4	11.5	-4	3	1	43 29	2 090	4	1.5
-2	0	1	17.96	4 939	2	0.7	· _1	5	1	33.55	2.671	4	14.0	-1	6	2	43.83	2.066	4	3.6
-1	0	2	20.60	1.000	2	18.6	1	5	0	33 56	2.011 2.670	1	1/3	1	6	1	13.85	2.000 2.064	1	5.0
-1	0	1	20.03 20.75	4.292	2	10.0		4	2	33.50	2.010	4	7.0	2	2	1	43.05	2.004 2.060	4	0.0 9.1
1	1	2	20.10	4.107	4	14.1	-2		0	22 62	2.000	- 1	1.0	ວ າ	2	1	44 10	2.000 2.054		2.1
-1	1	1	21.04	4.107	4	14.1		-1 1	0	00.00 99.65	2.000	4	1.5	-2	2	4	44.10	2.004	4	1.0
1	1	1	21.09	4.098	4	25.0		1	ა ი	33.09 99.70	2.005	4	4.2	2	2	2	44.20	2.049	4	4.5
-1	3	1	21.79	4.078	4	29.2	-3	3	2	33.78	2.654	4	0.8	4	0	0	44.69	2.028	2	4.2
1	3	0	21.81	4.075	4	14.5	-3	3	1	33.81	2.651	4	0.8	-4	4	2	44.76	2.025	4	1.2
-2	2	1	21.95	4.049	4	42.4	. 0	5	1	34.10	2.629	4	9.9	-2	5	3	44.79	2.024	4	2.5
0	3	1	22.61	3.933	4	2.6	-1	2	3	35.07	2.559	4	3.6	2	5	1	44.86	2.021	4	1.9
-2	1	2	22.75	3.909	4	8.6	5 1	2	2	35.12	2.555	4	3.0	-4	1	4	45.03	2.013	4	4.4
2	1	0	22.81	3.898	4	18.6	-3	2	3	35.45	2.532	4	16.2	-1	0	4	45.38	1.998	2	3.1
-1	2	2	24.26	3.669	4	2.9	3	2	0	35.55	2.525	4	10.8	1	0	3	45.44	1.996	2	3.1
1	2	1	24.30	3.662	4	3.5	0	4	2	35.75	2.511	4	11.4	1	1	3	45.92	1.976	4	1.5
0	0	2	24.95	3.569	2	2.9	-4	0	2	36.38	2.470	2	2.0	1	5	2	46.12	1.968	4	1.6
0	4	0	25.19	3.535	2	3.6	-2	3	3	36.40	2.468	4	6.1	0	6	2	46.16	1.966	4	2.5
-2	2	2	25.26	3.526	4	1.4	2	3	1	36.48	2.463	4	1.4	-3	3	4	46.22	1.964	4	2.9
0	1	2	25.75	3.460	4	10.6	-4	1	2	36.95	2.433	4	1.3	-1	7	1	46.31	1.960	4	0.9
-2	3	1	26.13	3 410	4	3.8	. 0	0	3	37.81	2 379	2	2.3	3	3	1	46.35	1 959	4	0.8
-1	4	1	27.51	3.242	4	16.4	-1	3	3	37.93	2.370 2.372	4	2.0 4 1	-5	0	3	46.37	1.050	2	1.3
1	1	0	27.01 27.53	3 240	1	27.6	. 1	3	2	37.08	2.012	1	6.1	-3	5	3	46 30	1.000 1.057	1	1.0
2	0	2	21.00 27.78	3 911	т 0	21.0	1	5	1	38 14	2.505	- 1	2.0	-5	0	ວ າ	46.49	1.056	т 9	2.0
-J 9	0	2 1	21.10	2 206	2	9.0		6	1	20.14	2.300	4	2.9	-5	0	2 1	40.42	1.950	2 1	0.9 9.1
-3	0	1	21.02	5.200 9.100		1.0		1	0	30.19	2.307	4	1.0	-4	2	4	40.40	1.900	4	0.1 1 0
1	2	2	28.01	3.180	4	8.0	0	1	3	38.37	2.340	4	1.3	3	Э 0	0	40.47	1.954	4	1.8
-1	3	2	28.12	3.173	4	2.6		3	0	38.38	2.345	4	6.4	4	2	0	46.59	1.949	4	6.7
0	4	1	28.17	3.168	4	32.2	-4	0	3	38.53	2.330	2	1.8	2	3	2	46.60	1.949	4	1.9
-3	1	2	28.51	3.131	4	42.8	-4	2	2	38.62	2.332	4	4.0	-4	4	3	46.60	1.949	4	1.3
-3	1	1	28.54	3.127	4	38.9	-2	5	2	38.78	2.322	4	6.6	-5	1	3	46.84	1.939	4	1.2
-2	3	2	29.00	3.079	4	11.2	2	5	0	38.82	2.320	4	9.7	-1	2	4	47.27	1.923	4	1.9
2	3	0	29.05	3.074	4	12.0	-4	1	3	39.08	2.305	4	3.6	1	2	3	47.32	1.921	4	3.0
-3	2	2	30.58	2.924	4	6.8	-4	1	1	39.16	2.301	4	8.7	-3	6	2	47.88	1.900	4	1.6
-3	2	1	30.61	2.920	4	20.5	-1	6	1	39.82	2.263	4	0.9	-3	6	1	47.91	1.899	4	2.5
-2	0	3	30.86	2.897	2	5.2	1	6	0	39.83	2.263	4	2.8	-3	4	4	49.44	1.843	4	1.8
2	0	1	30.96	2.888	2	1.4	. 0	2	3	39.98	2.255	4	3.4	-1	3	4	49.54	1.840	4	1.0
-2	4	1	31.11	2.875	4	3.4	-2	4	3	40.25	2.241	4	4.0	1	3	3	49.60	1.838	4	0.9
0	3	2	31.44	2.845	4	6.3	0	6	1	40.30	2.238	4	1.1	-2	4	4	49.70	1.834	4	1.6
-2	1	3	31.52	2.838	4	3.2	2	4	1	40.32	2.237	4	5.6	2	4	2	49.80	1.831	4	1.2
2	1	1	31.62	2.830	4	1.0	-4	2	3	40.67	2.218	4	2.8	-5	0	4	49.92	1.827	2	1.2
-1	0	3	32.62	2.745	2	4.5	-3	4	3	41.99	2.152	4	10.2	2	6	1	49.95	1.826	4	1.4





#### CHEMICAL COMPOSITION: |Na₃Cs₃(H₂O)₇₃| [Si₃₆Al₁₂O₉₆]

REFINED COMPOSITION: |Na_{2.88}Cs_{3.12}(H₂O)_{73.27}| [Si_{35.95}Al_{12.05}O₉₆]

CRYSTAL DATA:  $Im\overline{3}m$  (No. 229) a = 15.031 Å b = 15.031 Å c = 15.031 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{wp} = 0.18$ ,  $R_{F} = 0.134$ 

REFERENCE:

L. B. McCusker and Ch. Baerlocher,
in *Proceedings of the 6th International Zeolite Conference, Reno 1983*,
Ed. by D. H. Olson and A. Bisio (Butterworth: Guildford) 812–822 (1984).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	Ì	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.32	10.629	12	70.2		5	1	0	30.32	2.948	24	26.1	5	5	0	42.53	2.126	12	3.8
2	0	0	11.77	7.516	6	1.9		5	2	1	32.63	2.744	48	33.5	6	4	0	43.41	2.084	24	0.1
2	1	1	14.43	6.136	24	5.0		4	4	0	33.73	2.657	12	3.0	7	2	1	44.28	2.045	48	0.3
2	<b>2</b>	0	16.68	5.314	12	18.2		4	3	3	34.80	2.578	24	3.5	5	5	2	44.28	2.045	24	5.5
3	1	0	18.67	4.753	24	49.0		5	3	0	34.80	2.578	24	3.5	6	4	2	45.14	2.009	48	0.3
2	2	2	20.47	4.339	8	13.0		6	0	0	35.84	2.505	6	0.2	7	3	0	45.98	1.974	24	1.4
3	<b>2</b>	1	22.13	4.017	48	16.2		4	4	2	35.84	2.505	24	32.1	7	3	2	47.64	1.909	48	1.5
4	0	0	23.68	3.758	6	7.8		5	3	2	36.86	2.438	48	2.9	6	5	1	47.64	1.909	48	6.8
3	3	0	25.14	3.543	12	2.6		6	1	1	36.86	2.438	24	0.1	8	0	0	48.45	1.879	6	8.5
4	1	1	25.14	3.543	24	100.0		6	2	0	37.85	2.377	24	1.3	7	4	1	49.25	1.850	48	2.5
4	<b>2</b>	0	26.52	3.361	24	49.5		5	4	1	38.83	2.319	48	0.5	8	1	1	49.25	1.850	24	1.1
3	3	2	27.84	3.205	24	11.4		6	2	2	39.78	2.266	24	2.1	5	5	4	49.25	1.850	24	4.0
4	2	2	29.10	3.068	24	8.4		6	3	1	40.71	2.216	48	4.7							
4	3	1	30.32	2.948	48	7.1		7	1	0	42.53	2.126	24	2.9							


CHEMICAL COMPOSITION:  $|Li_{11.6}Na_{0.192}K_{1.2}Ca_{5.5}(H_2O)_{38}\Box_{13.5}|$  [Be₂₄P₂₄O₉₆]  $\Box$  = cation vacancy. Custer, S. Dakota, U.S.A.

REFINED COMPOSITION:  $|Li_{11.6}Na_{0.192}K_{1.2}Ca_{5.5}(H_2O)_{38}| [Be_{24}P_{24}O_{96}]$ 

CRYSTAL DATA: *I*23 (No. 197)

 $\begin{array}{ll} a=13.781 \text{ \AA} & b=13.781 \text{ \AA} & c=13.781 \text{ \AA} \\ \alpha=90^{\circ} & \beta=90^{\circ} & \gamma=90^{\circ} \\ \text{X-ray single crystal refinement, } R_{\rm w}=0.035 \end{array}$ 

REFERENCE: R. C. Rouse, D. R. Peacor and S. Merlino, American Mineralogist **74** 1195–1202 (1989).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	9.07	9.745	12	100.0	4	1	3	33.15	2.703	24	5.2	6	2	<b>2</b>	43.56	2.078	24	6.2
<b>2</b>	1	1	15.75	5.626	24	14.7	4	3	1	33.15	2.703	24	3.4	6	1	3	44.59	2.032	24	2.1
2	<b>2</b>	0	18.21	4.872	12	11.7	5	0	1	33.15	2.703	12	9.9	6	3	1	44.59	2.032	24	0.1
3	1	0	20.38	4.358	12	19.0	5	2	1	35.68	2.516	24	5.5	4	4	4	45.61	1.989	8	4.0
3	0	1	20.38	4.358	12	0.7	5	1	<b>2</b>	35.68	2.516	24	4.2	5	3	4	46.60	1.949	24	1.6
2	<b>2</b>	2	22.35	3.978	8	8.3	4	3	3	38.07	2.363	24	1.2	5	5	0	46.60	1.949	12	3.8
3	1	2	24.16	3.683	24	31.3	5	3	0	38.07	2.363	12	2.3	7	1	0	46.60	1.949	12	1.1
3	<b>2</b>	1	24.16	3.683	24	7.3	6	0	0	39.22	2.297	6	7.4	7	0	1	46.60	1.949	12	1.3
4	0	0	25.86	3.445	6	6.8	4	4	2	39.22	2.297	24	1.1	5	4	3	46.60	1.949	24	0.7
4	1	1	27.46	3.248	24	43.7	5	3	2	40.34	2.236	24	0.4	6	0	4	47.58	1.911	12	1.8
3	3	0	27.46	3.248	12	0.4	6	1	1	40.34	2.236	24	6.1	6	3	3	48.54	1.875	24	0.7
4	<b>2</b>	0	28.97	3.082	12	0.4	5	2	3	40.34	2.236	24	5.3	7	1	2	48.54	1.875	24	0.3
4	0	2	28.97	3.082	12	19.7	6	0	2	41.44	2.179	12	0.6	7	2	1	48.54	1.875	24	0.7
3	3	<b>2</b>	30.42	2.938	24	32.0	6	2	0	41.44	2.179	12	3.1	5	5	2	48.54	1.875	24	0.3
4	<b>2</b>	2	31.81	2.813	24	8.5	5	1	4	42.51	2.126	24	0.9	6	2	4	49.49	1.842	24	3.9
5	1	0	33.15	2.703	12	0.3	5	4	1	42.51	2.126	24	3.3	6	4	<b>2</b>	49.49	1.842	24	0.1



# RHO

#### CHEMICAL COMPOSITION: |Rb₂₄(D₂O)_{3.2}| [Be₂₄As₂₄O₉₆]

REFINED COMPOSITION:  $|Rb_{24}(D_2O)_{3.6}|$  [Be₂₄As₂₄O₉₆]

CRYSTAL DATA: I23 (No. 197) a = 14.001 Å b = 14.001 Å c = 14.001 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ neutron  $R_{\rm wp} = 0.041$ , X-ray  $R_{\rm wp} = 0.145$ 

REFERENCE: J. B. Parise, D. R. Corbin, T. E. Gier, R. L. Harlow, L. Abrams and R. B. Von Dreele, *Zeolites* **12** 360–368 (1992). And J. B. Parise, Private communication (1994).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.93	9.900	12	50.6	5	0	1	32.61	2.746	12	10.3	6	3	1	43.86	2.064	24	14.9
2	0	0	12.64	7.001	6	9.6	5	1	0	32.61	2.746	12	0.5	6	1	3	43.86	2.064	24	3.0
2	1	1	15.50	5.716	24	17.6	5	1	<b>2</b>	35.10	2.556	24	31.7	4	4	4	44.85	2.021	8	0.7
2	2	0	17.92	4.950	12	4.4	5	2	1	35.10	2.556	24	18.4	5	4	3	45.83	1.980	24	4.6
3	1	0	20.05	4.428	12	1.6	4	4	0	36.30	2.475	12	6.9	7	1	0	45.83	1.980	12	0.2
3	0	1	20.05	4.428	12	22.9	5	0	3	37.45	2.401	12	4.7	$\overline{7}$	0	1	45.83	1.980	12	0.3
2	2	2	21.99	4.042	8	5.0	4	3	3	37.45	2.401	24	3.5	5	3	4	45.83	1.980	24	5.8
3	2	1	23.78	3.742	24	84.6	5	3	0	37.45	2.401	12	0.9	5	5	0	45.83	1.980	12	2.0
3	1	2	23.78	3.742	24	23.3	6	0	0	38.58	2.334	6	2.0	6	0	4	46.79	1.942	12	7.6
4	0	0	25.45	3.500	6	1.7	4	4	2	38.58	2.334	24	1.8	6	4	0	46.79	1.942	12	1.1
4	1	1	27.02	3.300	24	100.0	6	1	1	39.68	2.271	24	4.6	6	3	3	47.73	1.905	24	3.4
3	3	0	27.02	3.300	12	2.6	5	3	<b>2</b>	39.68	2.271	24	0.5	7	1	2	47.73	1.905	24	5.9
4	2	0	28.51	3.131	12	4.0	5	2	3	39.68	2.271	24	6.9	5	5	2	47.73	1.905	24	1.0
4	0	2	28.51	3.131	12	53.3	6	2	0	40.76	2.214	12	5.3	7	<b>2</b>	1	47.73	1.905	24	7.5
3	3	2	29.93	2.985	24	65.5	6	0	2	40.76	2.214	12	0.2	6	4	2	48.67	1.871	24	8.7
4	2	2	31.30	2.858	24	27.0	5	1	4	41.81	2.160	24	7.6	6	2	4	48.67	1.871	24	2.9
4	3	1	32.61	2.746	24	22.7	5	4	1	41.81	2.160	24	8.9	7	3	0	49.58	1.838	12	0.8
4	1	3	32.61	2.746	24	6.3	6	2	2	42.84	2.111	24	4.2	7	0	3	49.58	1.838	12	2.3



## RHO

CHEMICAL COMPOSITION:	$\begin{array}{l}  \mathrm{Ca}_{16}(\mathrm{H}_{2}\mathrm{O})_{<2.5}  \; [(\mathrm{Be}(\mathrm{OH})_{2})_{8}\mathrm{Si}_{32}\mathrm{Al}_{16}\mathrm{O}_{104}] \\ \mathrm{Pizzo \; Marcio, \; Val \; Vigezzo, \; Italy} \end{array}$
<b>REFINED COMPOSITION:</b>	$ Ca_{16}(H_2O)_{18.72}  [(Be(OH)_2)_8Si_{32}Al_{16}O_{104}]$

CRYSTAL DATA: I 4/m cm (No. 140) a = 18.33 Å b = 18.33 Å c = 9.16 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm obs} = 0.034$ 

REFERENCE: G. Giuseppetti, F. Mazzi, C. Tadini and E. Galli, Neues Jahrb. Mineral. Monatsh. **7** 307–314 (1991).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.82	12.961	4	100.0	2	1	3	31.26	2.861	16	6.3	6	6	0	41.82	2.160	4	0.8
<b>2</b>	0	0	9.65	9.165	4	35.0	5	1	2	31.64	2.828	16	12.8	2	2	4	41.84	2.159	8	0.8
<b>2</b>	<b>2</b>	0	13.66	6.481	4	2.8	5	4	1	32.78	2.732	16	0.7	6	1	3	42.13	2.145	16	0.3
<b>2</b>	1	1	14.50	6.109	16	25.5	4	4	2	33.89	2.645	8	8.5	7	3	2	42.43	2.131	16	2.6
3	1	0	15.29	5.796	8	6.0	6	3	1	34.24	2.618	16	0.7	3	1	4	42.44	2.130	16	0.3
4	0	0	19.37	4.582	4	0.6	3	2	3	34.26	2.618	16	1.0	8	3	1	43.31	2.089	16	0.5
0	0	2	19.38	4.580	2	0.2	7	1	0	34.60	2.592	8	0.5	8	4	0	44.19	2.049	8	0.6
3	2	1	19.97	4.445	16	0.6	5	5	0	34.60	2.592	4	2.5	8	0	2	44.20	2.049	8	3.1
3	3	0	20.56	4.320	4	1.8	5	3	2	34.61	2.592	16	0.5	4	0	4	44.21	2.048	8	0.2
1	1	2	20.57	4.318	8	3.0	6	4	0	35.31	2.542	8	0.2	9	1	0	44.77	2.024	8	2.0
4	2	0	21.68	4.099	8	0.6	6	0	2	35.32	2.541	8	11.4	3	3	4	44.79	2.023	8	0.5
2	0	2	21.69	4.097	8	5.0	4	1	3	35.67	2.517	16	1.4	8	2	2	45.35	2.000	16	0.3
4	1	1	22.23	4.000	16	0.4	6	2	2	36.69	2.449	16	5.0	6	6	2	46.48	1.954	8	0.5
2	2	2	23.79	3.740	8	5.2	7	2	1	37.03	2.428	16	0.3	7	6	1	46.75	1.943	16	1.9
5	1	0	24.77	3.595	8	1.1	7	3	0	37.36	2.407	8	0.1	9	2	1	46.75	1.943	16	0.3
3	1	2	24.77	3.594	16	21.7	4	3	3	38.37	2.346	16	2.8	9	3	0	47.03	1.932	8	5.5
4	3	1	26.18	3.404	16	28.0	8	0	0	39.32	2.291	4	2.2	7	5	2	47.03	1.932	16	0.1
4	0	2	27.53	3.239	8	5.3	0	0	4	39.34	2.290	2	4.8	5	1	4	47.05	1.931	16	0.6
5	2	1	27.96	3.191	16	14.9	6	5	1	39.64	2.273	16	1.5	4	4	4	48.69	1.870	8	0.2
5	3	0	28.39	3.144	8	9.7	5	2	3	39.65	2.273	16	0.7	6	5	3	48.95	1.861	16	0.9
3	3	2	28.40	3.143	8	6.2	5	5	2	39.96	2.256	8	0.8	7	7	0	49.21	1.852	4	3.2
4	2	2	29.24	3.054	16	0.4	1	1	4	39.98	2.255	8	1.5	5	3	4	49.23	1.851	16	7.7
6	2	0	30.85	2.898	8	5.0	8	2	0	40.58	2.223	8	3.1	8	6	0	49.74	1.833	8	1.0
6	1	1	31.25	2.863	16	5.2	2	0	4	40.61	2.222	8	0.3	6	0	4	49.76	1.832	8	0.9



# -RON

C	HEN	ЛIС	CAL C	OMPOS	SITI	ON:	$ K_4Na_{12} $	$(H_2 O)$	$D)_{1}$	$_{8} $ [Si ₂₈	$Zn_8O_7$	2]								
	REI	FIN	ED CO	OMPOS	SITI	ON:	$ K_4Na_{12} $	$(H_2$	$()_{2}$	$_{0.7} $ [Si ₂ ]	28Zn ₈ C	) ₇₂ ]								
			CR	YSTAL	DA	TA:	C1m1 (I) a = 7.23 $\alpha = 90^{\circ}$ X-ray Ri	No. 8 8 Å ietve	8) ı eld :	$\begin{array}{l} \text{unique} \\ b = 40 \\ \beta = 9 \\ \text{refinem} \end{array}$	axis <b>b</b> 0.56 Å 1.8° nent, <i>F</i>	, cell $R_{exp}$ =	choice c = 7. $\gamma = 90$ = 0.238	e 1 308 Å )° 8, R _{wp}	= 0.	164	$, R_{\rm I} =$	0.090		
				REFEF	REN	CE:	C. Röhri Angew.	ig ar <i>Cher</i>	nd 1 m.,	H. Gies Int. ea	, l. <b>34</b> 6	63-65	(1995)	).						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	4	0	8.72	10.140	2	16.5	2	6	1	30.90	2.894	4	2.2	3	3	1	40.31	2.238	4	1.9
0	0	1	12.12	7.304	2	3.5	1	13	0	31.22	2.865	4	1.6	3	7	0	40.52	2.226	4	2.5
1	1	0	12.43	7.122	4	6.0	1	7	2	31.79	2.814	4	8.9	-3	5	1	40.58	2.223	4	1.8
0	2	1	12.88	6.872	4	46.7	-2	8	1	32.49	2.756	4	5.4	1	5	3	41.02	2.200	4	2.7
0	6	0	13.10	6.760	2	1.4	2	8	1	33.09	2.707	4	23.6	0	8	3	41.13	2.195	4	4.2
1	3	0	13.88	6.379	4	100.0	2	10	0	33.18	2.700	4	2.3	-1	17	1	41.61	2.170	4	7.1
0	4	1	14.95	5.927	4	7.6	0	14	1	33.27	2.693	4	10.0	-1	7	3	41.79	2.162	4	1.4
1	5	0	16.42 17.19	5.399	4	4.3	-l	13	1	33.45	2.678	4	5.3	1	17	1	41.80	2.158	4	1.4
-1	1	1	17.12	5.180	4	24.4	: L 1	13	1	33.73 24 92	2.000	4	2.1 5.7	0	18	1	41.90	2.155 2.147	4	4.4
1	0	1	17.49	5.070	2 1	20.4	: 1 เ ว	9	2	34.23 34.34	2.020 2.611	4	0.7 16.6		0	1	42.00	2.147	4	1.0 2.6
0	6	1	17.00 17.88	1 961	4	21.9	-2	10	2 1	34.34 35.17	2.011 2.552	2 1	8.5	ม ว	9 7	1	42.52	2.120 2.113	4	2.0 1.8
-1	3	1	18.21	4.301 4.872	4	5.4	. 0	16	0	35.11 35.41	2.552 2.535	2	10.9	-1	15	2	42.00 43.24	2.113 2.092	4	1.5
1	3	1	18.72	4.740	4	11.5	1	15	0	35.44	2.533	4	2.4	0	16	2	43.45	2.092 2.083	4	5.6
-1	$\tilde{5}$	1	20.22	4.391	4	1.7	2	0	2	35.47	2.531	2	7.8	2	16	0	43.60	2.076	4	1.6
1	5	1	20.68	4.294	4	5.1	-2	4	2	35.50	2.529	4	2.5	1	15	2	43.71	2.071	4	4.5
0	8	1	21.33	4.165	4	7.8	2	10	1	35.73	2.513	4	6.4	-1	9	3	43.74	2.070	4	6.0
1	9	0	23.25	3.825	4	2.2	2	2	2	35.76	2.511	4	5.2	-2	12	2	43.81	2.066	4	1.7
0	0	2	24.37	3.652	2	4.2	0	12	2	36.21	2.481	4	2.8	-3	1	<b>2</b>	44.42	2.040	4	2.9
2	0	0	24.61	3.617	2	1.6	2	12	0	36.38	2.470	4	1.8	-2	2	3	44.42	2.039	4	3.5
2	<b>2</b>	0	25.01	3.561	4	4.0	-1	11	2	36.53	2.460	4	8.7	1	9	3	44.44	2.039	4	1.7
0	10	1	25.11	3.546	4	15.5	2	4	2	36.60	2.455	4	1.9	3	11	0	44.91	2.018	4	1.3
0	4	2	25.93	3.436	4	18.7	· 0	0	3	36.92	2.435	2	3.0	-2	16	1	45.19	2.006	4	3.5
2	4	0	26.16	3.407	4	5.3	1	11	2	37.07	2.425	4	4.2	2	0	3	45.56	1.991	2	1.3
0	12	0	26.37	3.380	2	32.9	0	2	3	37.19	2.417	4	2.3	2	16	1	45.65	1.987	4	1.3
-1	1	2	27.09	3.291	4	24.8		1	0	37.36	2.407	4	2.3	2	2	3	45.79	1.982	4	1.9
1	11	0	27.14	3.285	4	37.8	0 U	10	1	37.50	2.395	4	6.3	-3	5 10	2	45.82	1.980	4	1.3
-2	0	1	27.10	3.283	2 4	0.4 24 4	: I 2	10	1	37.72	2.380	4	1.7	0	12	ა ი	45.94	1.970	4	1.1
-2	4	1 9	27.52	3.241 3.213	4	04.4 28 5	: 0	3 4	0 3	37.90	2.374	4	0.2 1.5	-1	10	ა 1	40.00	1.970	4	1.0 6.4
1	1	2	27.70 27.70	3.213	4	17.2		4 19	1	38.01	2.308 2.355	4	$1.0 \\ 3.7$	3	19	2	40.15	1.907	4	$\frac{0.4}{2.8}$
-1	3	2	27.15 27.81	3.210	4	14.8	-2	12	1	38.22	2.300 2.324	4	4.7	-2	6	3	46.29	1.962	4	$\frac{2.0}{3.4}$
2	0	1	27.86	3.202	2	6.6	-2	8	2	38.79	2.322	4	2.2	0	20	1	46.47	1.954	4	1.4
2	6	0	27.98	3.189	4	58.7	3	$\tilde{5}$	0	38.96	2.312	4	5.3	0	18	2	47.41	1.918	4	3.1
$\overline{2}$	$\tilde{2}$	1	28.22	3.163	4	19.7	-3	1	1	39.03	2.308	4	1.7	2	18	0	47.54	1.913	4	4.3
1	3	2	28.50	3.132	4	12.3	1	1	3	39.48	2.282	4	3.2	2	6	3	47.61	1.910	4	3.0
-2	4	1	28.58	3.123	4	1.9	-3	3	1	39.55	2.279	4	2.7	2	14	2	47.72	1.906	4	2.5
0	12	1	29.11	3.068	4	5.8	0	14	2	39.71	2.270	4	3.2	-2	8	3	47.86	1.900	4	1.6
-1	5	2	29.20	3.059	4	21.2	-1	13	<b>2</b>	39.74	2.268	4	4.6	3	7	2	48.50	1.877	4	3.4
2	4	1	29.25	3.053	4	4.0	1	17	0	39.78	2.266	4	4.2	-3	9	<b>2</b>	48.97	1.860	4	1.4
-1	11	1	29.66	3.012	4	9.2	3	1	1	39.79	2.265	4	2.0	-2	18	1	49.03	1.858	4	1.3
1	5	2	29.85	2.993	4	9.2	2	8	2	39.81	2.264	4	5.1	-3	13	1	49.04	1.857	4	1.5
1	11	1	29.98	2.980	4	11.6	2	14	0	39.87	2.261	4	3.3	1	13	3	49.42	1.844	4	2.5
0	8	2	30.16	2.963	4	12.4	. 1	3	3	40.00	2.254	4	4.9	2	18	1	49.46	1.843	4	1.5
-2	6	1	30.27	2.953	4	8.4	. 0	18	0	40.01	2.253	2	1.4	0	0	4	49.94	1.826	2	2.4



RSN

CHEMICAL COMPOSITION:	$ (C_7H_{13}N)_2 $ [Si ₂₄ O ₄₈ ]
	$C_7H_{13}N = (\pm)$ -exo-2-aminobicyclo[2.2.1]heptane

REFINED COMPOSITION:  $|C_{17.6}|$  [Si₂₄O₄₈]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 14.018 Å b = 13.612 Å c = 7.418 Å  $\alpha = 90^{\circ}$   $\beta = 102.12^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_1 = 0.099$ 

REFERENCE: B. Marler, A. Grünewald-Lüke and H. Gies,

Microporous and Mesoporous Materials 26 49–59 (1998).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	9.16	9.658	4	100.0	-1	3	2	31.17	2.869	4	0.8	-1	5	2	41.15	2.193	4	0.3
0	0	1	12.20	7.253	2	2.8	-4	0	<b>2</b>	31.95	2.801	2	4.6	-1	3	3	41.61	2.170	4	1.2
2	0	0	12.92	6.853	2	0.4	3	3	1	32.04	2.793	4	2.9	6	2	0	41.71	2.166	4	0.4
0	2	0	13.01	6.806	2	17.4	2	4	1	32.92	2.721	4	0.3	-4	4	2	41.76	2.163	4	3.9
-1	1	1	14.14	6.261	4	47.5	2	2	2	33.01	2.713	4	4.4	3	5	1	41.84	2.159	4	0.1
-2	0	1	15.82	5.603	2	0.6	-5	1	1	33.08	2.708	4	0.4	-5	3	<b>2</b>	41.93	2.154	4	0.2
1	1	1	16.33	5.427	4	1.7	1	3	2	33.33	2.688	4	4.9	4	2	2	42.05	2.149	4	0.5
0	2	1	17.87	4.963	4	90.2	5	1	0	33.34	2.687	4	0.2	-6	0	2	42.09	2.147	2	0.3
2	2	0	18.37	4.829	4	5.3	1	5	0	33.56	2.670	4	0.5	2	0	3	42.17	2.143	2	1.3
2	0	1	19.60	4.529	2	34.6	4	<b>2</b>	1	33.86	2.647	4	8.8	1	5	<b>2</b>	42.87	2.109	4	2.8
3	1	0	20.51	4.331	4	29.7	-4	2	2	34.63	2.591	4	0.9	-4	2	3	43.11	2.098	4	0.7
-2	2	1	20.53	4.326	4	56.0	-1	5	1	35.34	2.540	4	11.0	-3	<b>3</b>	3	43.35	2.087	4	0.5
1	3	0	20.62	4.307	4	40.8	0	4	<b>2</b>	36.20	2.481	4	0.4	6	0	1	43.99	2.058	2	2.5
-3	1	1	21.70	4.095	4	40.3	1	5	1	36.32	2.473	4	0.3	1	3	3	44.15	2.051	4	0.2
-1	3	1	23.31	3.816	4	13.5	-2	4	<b>2</b>	36.70	2.449	4	0.6	-6	<b>2</b>	2	44.24	2.047	4	0.9
2	2	1	23.60	3.770	4	0.2	-2	0	3	36.73	2.447	2	6.7	2	<b>2</b>	3	44.31	2.044	4	1.2
0	0	2	24.55	3.626	2	23.9	-1	1	3	36.97	2.431	4	0.5	2	6	1	44.67	2.028	4	0.3
-1	1	2	24.92	3.573	4	5.5	0	0	3	37.19	2.418	2	0.8	-2	4	3	45.67	1.987	4	1.2
-2	0	2	25.26	3.526	2	19.3	4	4	0	37.24	2.415	4	0.1	0	4	3	46.05	1.971	4	2.8
3	1	1	25.98	3.430	4	13.5	-5	1	2	37.32	2.409	4	4.9	3	1	3	46.52	1.952	4	1.8
4	0	0	26.00	3.426	2	15.1	-4	4	1	37.48	2.400	4	5.1	-5	5	1	46.85	1.939	4	0.5
0	4	0	26.19	3.403	2	16.8	5	1	1	38.03	2.366	4	3.7	7	1	0	46.88	1.938	4	0.4
-4	0	1	26.33	3.385	2	6.0	-5	3	1	38.13	2.360	4	0.2	5	5	0	47.04	1.932	4	0.4
1	1	2	27.52	3.241	4	29.9	5	3	0	38.36	2.346	4	0.5	1	7	0	47.21	1.925	4	0.2
3	3	0	27.71	3.219	4	6.9	3	5	0	38.49	2.339	4	1.4	-6	4	1	47.38	1.919	4	0.5
0	2	2	27.88	3.200	4	3.4	-6	0	1	38.76	2.323	2	5.4	-2	6	2	47.67	1.908	4	0.4
-2	2	2	28.51	3.131	4	15.9	-3	1	3	38.88	2.316	4	1.3	4	6	0	48.10	1.892	4	0.6
-3	1	2	28.79	3.101	4	2.2	-2	2	3	39.12	2.302	4	1.3	4	4	2	48.27	1.885	4	0.5
0	4	1	28.98	3.081	4	10.8	-3	5	1	39.18	2.299	4	1.9	-4	6	1	48.29	1.884	4	1.5
4	2	0	29.18	3.060	4	8.8	6	0	0	39.45	2.284	2	1.8	-7	1	2	48.44	1.879	4	4.8
2	4	0	29.30	3.048	4	11.5	0	2	3	39.56	2.278	4	0.4	-1	7	1	48.56	1.875	4	4.5
-4	2	1	29.47	3.031	4	10.1	4	0	2	39.81	2.264	2	2.1	-5	3	3	49.00	1.859	4	0.2
2	0	2	30.21	2.959	2	1.7	2	4	2	40.40	2.233	4	3.9	-2	0	4	49.21	1.852	2	1.1
-2	4	1	30.74	2.909	4	17.5	-4	0	3	40.92	2.205	2	0.6	-4	4	3	49.23	1.851	4	0.2
4	0	1	31.12	2.874	2	6.2	-6	2	1	41.05	2.198	4	1.7	-1	5	3	49.83	1.830	4	0.8





CHEMICAL COMPOSITION:	$ (C_{10}H_{21}N)_{1.7} $ [Si _{30.4} B _{1.6} O ₆₄ ]
	$(C_{10}H_{21}N)^+ = 1,2,2,6,6,-pentamethylpiperidine$

REFINED COMPOSITION: [Si₃₁O₆₄]

CRYSTAL DATA:	C12/m1 (No.	12) unique axis	$\mathbf{b}$ , cell choice 1
	$a=9.659~{\rm \AA}$	b=20.461 Å	c=9.831 Å
	$\alpha = 90^{\circ}$	$\beta=96.58^\circ$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement,	R = 0.06

REFERENCE: S. Vortmann, B. Marler, H. Gies and P. Daniels, Microporous Materials 4 111–121 (1995).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	<b>2</b>	0	8.64	10.231	2	100.0	-2	0	3	31.39	2.850	2	1.1	2	8	1	41.55	2.173	4	0.4
0	0	1	9.05	9.766	2	91.5	-3	1	2	31.94	2.802	4	0.4	4	4	0	41.58	2.172	4	0.4
1	1	0	10.18	8.688	4	55.0	1	$\overline{7}$	0	32.01	2.796	4	2.0	-1	9	1	41.62	2.170	4	0.2
0	2	1	12.53	7.064	4	3.8	0	6	2	32.01	2.796	4	1.7	3	5	2	41.79	2.161	4	0.4
-1	1	1	12.92	6.854	4	5.2	2	6	0	32.20	2.780	4	1.1	3	7	0	41.87	2.158	4	0.6
1	1	1	14.33	6.180	4	1.0	0	4	3	32.60	2.746	4	1.5	3	1	3	42.04	2.149	4	0.1
1	3	0	15.94	5.559	4	1.6	-2	<b>2</b>	3	32.62	2.745	4	5.0	1	9	1	42.12	2.145	4	0.2
0	4	0	17.34	5.115	2	1.7	2	4	2	32.70	2.738	4	0.4	-3	7	1	42.19	2.142	4	0.2
-1	3	1	17.83	4.975	4	12.0	1	3	3	32.79	2.731	4	1.5	-2	8	2	43.24	2.092	4	1.0
0	0	2	18.17	4.883	2	0.7	-2	6	1	32.91	2.721	4	0.2	1	7	3	43.36	2.087	4	2.7
2	0	0	18.49	4.798	2	0.1	-1	$\overline{7}$	1	33.03	2.712	4	1.2	-2	4	4	43.38	2.086	4	0.8
1	3	1	18.88	4.699	4	34.4	3	3	1	33.17	2.701	4	0.9	4	4	1	43.62	2.075	4	0.1
0	4	1	19.59	4.531	4	7.0	1	$\overline{7}$	1	33.63	2.665	4	0.9	3	7	1	43.65	2.073	4	0.4
-2	0	1	19.66	4.516	2	11.1	2	6	1	34.12	2.628	4	2.4	-3	1	4	44.24	2.047	4	0.3
-1	1	2	19.91	4.459	4	12.7	-3	3	2	34.32	2.613	4	0.6	-1	9	2	44.51	2.035	4	0.5
0	2	2	20.15	4.407	4	8.0	2	0	3	35.04	2.561	2	0.7	-3	7	2	44.58	2.033	4	0.2
2	2	0	20.45	4.344	4	6.1	3	1	2	35.54	2.526	4	1.0	4	2	2	44.85	2.021	4	0.8
-2	2	1	21.51	4.131	4	1.3	3	5	0	35.63	2.520	4	0.4	1	5	4	45.16	2.008	4	0.1
2	0	1	21.55	4.123	2	0.3	-1	5	3	35.64	2.519	4	1.7	-4	2	3	45.18	2.007	4	0.4
2	2	1	23.26	3.824	4	9.1	-2	4	3	36.08	2.490	4	0.2	-4	6	1	46.34	1.959	4	0.3
-1	3	2	23.44	3.796	4	3.1	-2	6	2	36.11	2.488	4	0.5	0	0	5	46.49	1.953	2	0.2
-2	0	<b>2</b>	24.47	3.637	2	0.6	2	2	3	36.16	2.484	4	0.1	-1	1	5	46.59	1.949	4	0.6
-1	5	1	24.97	3.567	4	0.1	0	8	1	36.31	2.474	4	0.1	2	4	4	47.13	1.928	4	0.3
1	3	2	25.06	3.554	4	3.8	-1	7	2	36.49	2.462	4	0.2	-5	1	1	47.43	1.917	4	1.2
0	4	2	25.21	3.532	4	12.5	-1	1	4	37.20	2.417	4	1.2	5	1	0	47.59	1.911	4	0.1
2	4	0	25.45	3.499	4	5.4	1	5	3	37.32	2.409	4	0.8	-2	8	3	47.78	1.903	4	0.2
1	5	1	25.74	3.461	4	12.5	-3	1	3	37.35	2.408	4	0.1	-4	4	3	47.87	1.900	4	0.5
-2	2	2	26.00	3.427	4	5.8	4	0	0	37.49	2.399	2	0.3	-2	6	4	47.93	1.898	4	0.2
0	6	0	26.13	3.410	2	0.2	-4	0	1	37.57	2.394	2	1.3	4	6	1	48.15	1.890	4	1.8
-2	4	1	26.33	3.385	4	0.3	1	7	2	37.60	2.392	4	1.3	0	10	2	48.22	1.887	4	0.1
0	0	3	27.40	3.255	2	0.9	3	5	1	37.66	2.388	4	0.4	-1	3	5	48.35	1.882	4	1.0
2	0	2	27.52	3.242	2	0.9	3	3	2	37.72	2.385	4	0.2	2	10	0	48.36	1.882	4	0.2
0	6	1	27.71	3.220	4	1.2	0	2	4	37.88	2.375	4	0.2	-3	7	3	48.80	1.866	4	0.2
3	1	0	28.24	3.160	4	3.7	0	6	3	38.22	2.355	4	0.8	1	1	5	48.84	1.865	4	0.2
-1	1	3	28.26	3.158	4	2.7	2	6	2	38.31	2.349	4	0.4	-2	10	1	48.87	1.864	4	0.2
-3	1	1	28.69	3.112	4	0.5	4	2	0	38.55	2.335	4	0.1	-2	2	5	49.12	1.855	4	0.5
0	2	3	28.78	3.102	4	1.7	-1	3	4	39.31	2.292	4	0.2	3	9	0	49.17	1.853	4	0.7
-2	4	2	30.15	2.964	4	3.0	-3	3	3	39.44	2.285	4	0.4	-5	3	1	49.17	1.853	4	0.3
1	1	3	30.30	2.950	4	0.3	4	0	1	39.70	2.270	2	0.2	-1	9	3	49.18	1.853	4	0.1
1	5	2	30.63	2.918	4	1.0	0	8	2	39.78	2.266	4	0.1	-5	1	2	49.18	1.852	4	0.1
3	1	1	30.71	2.912	4	2.4	-4	0	2	39.93	2.258	2	0.3	5	3	0	49.33	1.847	4	0.1
3	3	0	30.88	2.896	4	7.5	2	8	0	39.94	2.257	4	0.2	-3	5	4	49.58	1.838	4	0.5
-1	3	3	30.90	2.894	4	0.4	0	4	4	40.96	2.203	4	0.4	1	11	0	49.94	1.826	4	0.8
-3	3	1	31.29	2.858	4	0.2	1	3	4	41.36	2.183	4	0.1							



### CHEMICAL COMPOSITION: [Si₃₂B₄O₇₂]

REFINED COMPOSITION: [Si₃₆O₇₂]

CRYSTAL DATA:  $P12_1/a1$  (No. 14) unique axis **b**, cell choice 3 a = 13.112 Å b = 12.903 Å c = 12.407 Å  $\alpha = 90^{\circ}$   $\beta = 113.50^{\circ}$   $\gamma = 90^{\circ}$ DLS refinement.

REFERENCE: H. Gies and J. Rius,

Z. Kristallogr. **210** 475–480 (1995).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	7.77	11.378	2	0.4	2	2	<b>2</b>	29.06	3.073	4	6.0	0	0	5	39.60	2.276	2	0.3
1	1	0	10.06	8.797	4	29.4	-3	3	1	29.15	3.064	4	0.8	4	1	2	39.72	2.269	4	0.5
0	1	1	10.37	8.534	4	0.6	4	0	0	29.72	3.006	2	1.9	2	0	4	40.11	2.248	2	0.4
-1	1	1	10.77	8.215	4	100.0	-3	3	2	29.93	2.985	4	2.8	-5	3	2	40.29	2.238	4	0.3
-2	0	1	13.64	6.491	2	22.7	-1	3	3	30.04	2.975	4	3.8	1	5	2	40.30	2.238	4	0.4
0	<b>2</b>	0	13.73	6.451	2	25.1	-1	1	4	30.07	2.972	4	0.6	-2	4	4	40.41	2.232	4	0.8
1	1	1	14.41	6.146	4	62.3	3	3	0	30.48	2.932	4	4.0	-3	5	1	40.61	2.221	4	0.3
2	0	0	14.73	6.012	2	0.9	-4	2	1	30.86	2.898	4	4.3	-5	3	1	40.91	2.206	4	0.3
0	0	2	15.58	5.689	2	4.3	-3	1	4	31.23	2.864	4	4.7	4	4	0	41.04	2.199	4	0.5
0	2	1	15.79	5.612	4	0.9	0	0	4	31.45	2.844	2	4.5	3	<b>2</b>	3	41.19	2.191	4	0.3
-1	1	2	15.89	5.576	4	9.0	2	4	0	31.47	2.842	4	5.7	-3	5	2	41.20	2.191	4	0.8
-2	0	2	16.64	5.326	2	6.7	0	4	2	31.89	2.806	4	2.6	-5	3	3	41.28	2.187	4	0.4
0	1	2	17.03	5.205	4	0.4	-2	2	4	32.10	2.788	4	0.4	-4	<b>2</b>	5	41.50	2.176	4	0.4
1	<b>2</b>	1	18.72	4.741	4	0.4	-1	<b>2</b>	4	32.43	2.761	4	0.3	5	1	1	41.97	2.153	4	0.3
<b>2</b>	0	1	19.25	4.610	2	0.8	-2	4	2	32.45	2.759	4	3.1	0	6	0	42.01	2.151	2	1.8
-2	<b>2</b>	1	19.40	4.576	4	0.5	2	0	3	32.55	2.751	2	1.7	0	4	4	42.36	2.133	4	0.7
-1	<b>2</b>	2	19.89	4.464	4	0.8	-3	3	3	32.70	2.738	4	1.3	-6	0	1	42.57	2.124	2	0.5
2	2	0	20.19	4.398	4	13.3	-4	2	3	32.81	2.729	4	4.9	-3	5	3	43.34	2.088	4	0.5
0	2	2	20.82	4.267	4	11.1	2	1	3	33.30	2.690	4	0.3	1	1	5	43.91	2.062	4	2.0
-3	1	1	21.49	4.135	4	1.7	-4	0	4	33.65	2.663	2	0.3	-2	0	6	43.97	2.059	2	0.5
-2	<b>2</b>	2	21.64	4.107	4	2.2	3	3	1	33.72	2.658	4	0.8	-6	2	3	44.14	2.051	4	0.3
1	3	0	21.95	4.050	4	9.2	4	0	1	33.74	2.657	2	5.9	-3	1	6	44.52	2.035	4	0.4
-2	0	3	22.17	4.009	<b>2</b>	13.0	0	<b>2</b>	4	34.46	2.603	4	1.1	-1	6	2	44.61	2.031	4	0.3
-1	3	1	22.29	3.988	4	21.4	1	3	3	34.50	2.600	4	0.6	1	5	3	44.77	2.024	4	0.6
-3	1	2	22.52	3.947	4	8.0	-4	3	2	34.62	2.591	4	0.3	-4	5	2	44.87	2.020	4	0.6
-1	1	3	22.66	3.924	4	21.9	3	<b>2</b>	2	35.00	2.564	4	0.2	-6	2	1	44.94	2.017	4	0.9
3	1	0	23.24	3.828	4	22.4	1	1	4	35.90	2.501	4	0.3	6	0	0	45.25	2.004	2	0.2
0	0	3	23.46	3.793	2	4.5	-5	1	3	36.04	2.492	4	0.6	-1	1	6	45.92	1.976	4	0.5
2	<b>2</b>	1	23.72	3.751	4	0.4	-2	0	5	36.21	2.481	2	1.5	-6	2	4	45.98	1.974	4	0.2
1	3	1	24.30	3.663	4	2.1	0	4	3	36.57	2.457	4	1.8	-1	5	4	46.04	1.971	4	1.2
-1	3	2	25.22	3.531	4	1.3	4	<b>2</b>	1	36.58	2.456	4	0.2	3	1	4	46.46	1.954	4	1.5
2	0	2	25.49	3.495	2	10.7	-5	<b>2</b>	2	37.01	2.429	4	0.4	2	6	1	46.60	1.949	4	0.7
-3	2	2	25.54	3.488	4	0.5	-3	3	4	37.06	2.426	4	0.5	5	3	1	46.65	1.947	4	0.5
0	3	2	25.97	3.431	4	0.4	1	5	1	37.14	2.421	4	2.2	1	6	2	46.83	1.940	4	0.3
-3	1	3	26.03	3.424	4	0.8	-3	1	5	37.51	2.398	4	0.4	-6	0	5	46.97	1.934	2	0.8
-2	2	3	26.17	3.405	4	2.8	-1	5	2	37.77	2.382	4	0.4	5	1	2	47.05	1.931	4	1.6
2	1	2	26.42	3.373	4	0.3	-1	1	5	37.84	2.378	4	0.8	4	2	3	47.61	1.910	4	0.5
-2	3	$\frac{-}{2}$	26.64	3.346	4	0.9	2	4	2	37.96	2.370	4	0.3	-5	3	5	47.63	1.909	4	0.2
0	2	3	27.28	3.270	4	0.7	5	1	0	38.06	2.364	4	0.5	3	5	2	47.99	1.896	4	0.5
-4	0	2	27.20 27.48	3.246	2	4.6	-5	1	4	38.83	2.301 2.319	4	2.7	1	3	5	48 44	1.879	4	0.5
-4	Ő	1	27.10 27.50	3 243	2	0.9	-2	2	5	38.89	2.316	4	$\frac{2}{2}$ 0	4	4	2	48.54	1.875	4	0.8
0	4	0	27.65	3 226	2	12.1	_/	0	5	38.97	2.311	2	0.8	-3	3	6	49.01	1.859	4	2.1
_4	-± 1	2	28.35	3 1/18	2 /	03	+ _1	1	9 9	30.31	2.011 2.288	∠ ∕I	0.0		5 9	5	49.17	1.853	_± ⊿	2.1 0 3
<u>+</u> 1	т 2	$\frac{2}{2}$	20.00 28.70	3 108	- <del>-</del> /	0.5	-4 _1	ч Л	2 1	30 /N	2.200 2.287	-± /	4.0	-0	2 1	2	49.17	1.844	-± /	0.3
1 9	0 0	∠ ∕	20.12	3 009	1 0	1.0	-4 2	+ 0	T K	30.40	2.201 2.201	-± /	4.0 -	-1	L G	⊿ ົ	49.40	1 829	-± /	0.4
-4	U	-1	20.00	0.032	4	1.0	-5	4	0	09.40	2.202	4	0.0	2	U	4	43.10	1.002	-1	0.0



REFINED COMPOSITION: [P₂₈Al₂₈O₁₁₂]

CRYSTAL DATA:  $P\overline{4}n2$  (No. 118) a = 13.620 Å b = 13.620 Å c = 21.649 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.059,  $R_{\rm w} = 0.076$ ; At T = 200K.

REFERENCE: G. W. Noble, P. A. Wright, P. Lightfoot, R. E. Morris, K. J. Hudson, Å. Kvick and H. Graafsma, *Angew. Chem.*, *Int. ed.* **36** 81–83 (1997).

h	k	l	$2\theta$	d	M	$I_{ m rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	7.67	11.528	8	100.0	3	2	<b>2</b>	24.97	3.567	16	0.1	4	0	6	36.27	2.476	8	0.2
0	0	2	8.17	10.825	2	6.3	2	1	5	25.24	3.529	16	1.9	4	4	0	37.35	2.408	4	0.2
1	1	0	9.18	9.631	4	0.6	4	0	0	26.17	3.405	4	4.7	5	2	3	37.69	2.387	16	0.2
1	1	2	12.30	7.195	8	0.8	3	1	4	26.45	3.370	16	0.8	2	2	8	38.15	2.359	8	0.2
2	0	0	13.00	6.810	4	3.7	3	2	3	26.63	3.347	16	0.2	4	4	2	38.30	2.350	8	0.1
1	0	3	13.89	6.377	8	9.2	4	1	1	27.31	3.266	16	1.0	4	2	6	38.69	2.327	16	0.1
2	1	1	15.11	5.863	16	1.9	4	0	2	27.46	3.248	8	0.5	5	0	5	39.07	2.306	8	0.2
<b>2</b>	0	2	15.37	5.764	8	0.6	2	0	6	27.98	3.188	8	1.4	4	3	5	39.07	2.306	16	0.2
2	2	0	18.42	4.815	4	0.2	3	3	2	29.01	3.078	8	0.2	6	0	0	39.71	2.270	4	0.3
1	1	4	18.81	4.718	8	2.8	1	0	7	29.62	3.016	8	0.9	4	4	4	41.03	2.200	8	0.3
<b>2</b>	1	3	19.07	4.655	16	1.3	4	1	3	29.74	3.004	16	2.1	5	2	5	41.34	2.184	16	0.3
3	0	1	19.98	4.443	8	9.5	4	2	2	30.49	2.932	16	0.9	5	1	6	42.09	2.147	16	0.1
<b>2</b>	<b>2</b>	2	20.18	4.400	8	1.1	4	0	4	31.03	2.882	8	2.9	3	0	9	42.53	2.126	8	0.1
3	1	0	20.62	4.307	8	0.4	3	2	5	31.43	2.846	16	1.0	1	1	10	42.81	2.112	8	0.2
<b>2</b>	0	4	20.97	4.237	8	4.0	2	1	7	32.47	2.758	16	0.2	6	0	4	43.22	2.093	8	0.2
3	1	1	21.03	4.224	16	0.5	4	3	1	33.15	2.703	16	0.2	3	3	8	43.75	2.069	8	0.1
1	0	5	21.54	4.126	8	2.1	4	2	4	33.77	2.654	16	0.2	5	0	7	44.31	2.044	8	0.1
2	1	4	21.97	4.046	16	0.5	4	1	5	34.14	2.626	16	1.5	5	4	3	44.40	2.040	16	0.2
<b>2</b>	2	3	22.19	4.005	8	0.2	1	1	8	34.42	2.605	8	0.6	4	2	8	44.80	2.023	16	0.2
3	1	2	22.21	4.002	16	0.2	5	1	2	34.59	2.593	16	0.6	4	4	6	45.28	2.003	8	0.1
1	1	5	22.51	3.949	8	0.2	3	0	7	35.11	2.556	8	0.4	5	1	8	47.85	1.901	16	0.4
3	0	3	23.15	3.843	8	0.2	4	3	3	35.21	2.548	16	0.2	7	1	2	47.97	1.896	16	0.2
3	2	0	23.55	3.778	8	0.2	5	0	3	35.21	2.548	8	1.4	7	0	3	48.45	1.879	8	0.5
3	2	1	23.91	3.721	16	0.5	2	0	8	35.70	2.515	8	0.1							
2	2	4	24.75	3.598	8	0.3	5	2	1	35.74	2.512	16	0.3							



CHEMICAL COMPOSITION:	$\begin{split}  (C_{14}H_{34}N_4)^{2+}_{1.5}(H_2O)_{2.5}  \ [Mg_3Al_{13}P_{16}O_{64}] \\ C_{14}H_{32}N_4 &= 1,4,8,11\text{-tetramethyl-}1,4,8,11\text{-tetraazacyclotetradecane} \end{split}$	
<b>REFINED COMPOSITION:</b>	$ C_{19.44}N_{5.04} $ [Mg _{2.4} Al _{13.6} P ₁₆ O ₆₄ ]	

CRYSTAL DATA: P 4/m nc (No. 128) a = 14.322 Å b = 14.322 Å c = 10.424 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray synchrotron single crystal refinement,  $R_{\rm F} = 0.094$ ,  $wR_2 = 0.313$ 

REFERENCE: V. Patinec, P. A. Wright, P. Lightfoot, R. A. Aitken and P. A. Cox, J. Chem. Soc., Dalton Trans. **22** 3909–3911 (1999).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.73	10.127	4	100.0	3	<b>2</b>	2	28.25	3.159	16	0.1	5	0	3	40.83	2.210	8	0.1
1	0	1	10.50	8.428	8	38.8	2	1	3	29.24	3.054	16	7.7	5	4	1	41.28	2.187	16	0.3
<b>2</b>	0	0	12.36	7.161	4	4.5	4	0	<b>2</b>	30.28	2.951	8	11.5	5	2	3	42.82	2.112	16	0.4
<b>2</b>	1	1	16.24	5.457	16	46.7	5	1	0	31.86	2.809	8	2.5	4	0	4	42.92	2.107	8	0.1
<b>2</b>	2	0	17.51	5.064	4	0.6	4	3	1	32.41	2.762	16	2.4	6	3	1	43.26	2.092	16	1.1
1	1	2	19.15	4.634	8	26.3	5	0	1	32.41	2.762	8	6.1	1	0	5	43.88	2.063	8	0.6
3	1	0	19.60	4.529	8	33.8	3	1	3	32.48	2.757	16	0.2	3	3	4	43.89	2.063	8	1.9
3	0	1	20.46	4.340	8	1.9	4	2	2	32.82	2.729	16	15.9	7	1	0	44.74	2.025	8	0.5
2	0	2	21.08	4.214	8	35.0	5	1	1	33.03	2.712	16	0.1	7	0	1	45.16	2.008	8	1.9
3	1	1	21.39	4.154	16	1.7	3	<b>2</b>	3	34.29	2.615	16	0.9	2	1	5	45.77	1.982	16	0.6
<b>2</b>	1	2	21.99	4.043	16	3.8	0	0	4	34.41	2.606	2	5.9	6	1	3	46.59	1.949	16	1.1
3	<b>2</b>	0	22.38	3.972	8	2.2	5	2	1	34.81	2.577	16	1.2	7	2	1	47.00	1.933	16	0.6
3	<b>2</b>	1	23.97	3.712	16	6.6	1	1	4	35.57	2.524	8	1.4	3	0	5	47.59	1.911	8	0.9
<b>2</b>	<b>2</b>	2	24.51	3.632	8	4.3	5	1	<b>2</b>	36.33	2.473	16	5.8	5	1	4	47.60	1.910	16	2.7
4	0	0	24.87	3.580	4	21.0	4	1	3	36.58	2.457	16	0.1	5	5	2	48.20	1.888	8	3.3
3	1	2	26.06	3.419	16	7.0	2	0	4	36.70	2.449	8	0.2	7	1	2	48.20	1.888	16	1.8
1	0	3	26.39	3.377	8	5.6	<b>2</b>	2	4	38.86	2.317	8	0.8	5	4	3	48.40	1.881	16	0.6
3	3	0	26.40	3.376	4	3.5	6	1	1	39.23	2.297	16	0.1	7	3	0	48.40	1.881	8	0.1
4	1	1	27.06	3.295	16	15.0	4	4	2	39.57	2.277	8	3.9	6	4	2	49.09	1.856	16	0.2
4	2	0	27.86	3.202	8	2.8	6	2	0	39.81	2.265	8	1.0							



CHEMICAL COMPOSITION:	$ \begin{array}{l}  ((CH_2)_4(C_7H_{13}N)_2)_3(H_2O)_{22.5}  \ [Mg_{5.4}Al_{30.6}P_{36}O_{144}] \\ ((CH_2)_4(C_7H_{13}N)_2)^+ = \ diquinuclidinium \ template \end{array} $
REFINED COMPOSITION:	$ (C_{22}H_{50}N_2)_3 $ [Al ₃₆ P ₃₆ O ₁₄₄ ]
CRYSTAL DATA:	$ \begin{array}{l} R\overline{3} \mbox{ (No. 148) hexagonal setting} \\ a = 12.726 \mbox{ \AA } b = 12.726 \mbox{ \AA } c = 30.939 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 120^{\circ} \\ \mbox{ X-ray single crystal refinement at } 200 \mbox{ K. } R_{\rm F} = 0.0757 \end{array} $

REFERENCE: G. W. Noble, P. A. Wright and Å. Kvick, J. Chem. Soc., Dalton Trans. 4485–4490 (1997).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	8.52	10.382	6	5.4	1	2	8	31.57	2.834	6	7.0	2	3	8	42.73	2.116	6	0.5
0	0	3	8.57	10.313	2	1.2	3	-2	8	31.57	2.834	6	4.0	0	3	12	42.85	2.110	6	2.3
0	1	<b>2</b>	9.85	8.976	6	9.7	4	0	1	32.63	2.744	6	21.2	3	0	12	42.85	2.110	6	1.9
1	1	0	13.92	6.363	6	22.8	3	1	5	32.67	2.741	6	1.7	6	-3	3	43.56	2.078	6	0.4
1	0	4	13.99	6.331	6	12.4	4	-1	5	32.67	2.741	6	4.6	3	3	3	43.56	2.078	6	0.4
0	2	1	16.34	5.425	6	100.0	0	1	11	32.86	2.725	6	3.0	5	0	5	43.59	2.076	6	1.2
<b>2</b>	-1	3	16.37	5.415	6	2.2	0	4	2	33.02	2.713	6	2.8	4	-1	11	43.74	2.070	6	0.1
1	1	3	16.37	5.415	6	2.4	2	2	6	33.08	2.708	6	0.1	2	1	13	43.81	2.066	6	1.3
0	1	5	16.43	5.396	6	31.9	4	0	4	34.56	2.596	6	13.3	3	-1	13	43.81	2.066	6	0.3
<b>2</b>	0	2	17.08	5.191	6	3.9	0	0	12	34.80	2.578	2	5.7	0	0	15	43.89	2.063	2	6.8
0	0	6	17.20	5.156	2	5.8	5	-2	1	35.63	2.520	6	1.6	2	0	14	44.15	2.051	6	0.7
0	2	4	19.78	4.488	6	11.5	0	4	5	35.67	2.517	6	4.4	6	-4	4	45.08	2.011	6	0.1
2	1	1	21.52	4.128	6	75.3	4	-3	7	35.71	2.514	6	0.3	2	4	4	45.08	2.011	6	0.3
3	-1	1	21.52	4.128	6	35.7	1	3	7	35.71	2.514	6	1.0	2	2	12	45.27	2.003	6	0.4
<b>2</b>	0	5	21.59	4.115	6	12.1	0	3	9	35.77	2.510	6	0.2	6	-1	1	45.94	1.975	6	1.6
1	0	7	21.66	4.102	6	47.6	2	0	11	35.84	2.505	6	0.5	5	1	1	45.94	1.975	6	2.0
3	-2	2	22.10	4.022	6	4.5	3	-1	10	36.16	2.484	6	0.1	4	2	5	45.98	1.974	6	0.4
<b>2</b>	-1	6	22.19	4.006	6	6.2	1	4	0	37.39	2.405	6	3.2	6	-2	5	45.98	1.974	6	0.2
0	3	0	24.23	3.674	6	44.5	4	1	0	37.39	2.405	6	1.4	0	5	7	46.01	1.973	6	1.2
<b>2</b>	1	4	24.27	3.668	6	8.0	3	2	4	37.42	2.403	6	0.2	5	-1	9	46.06	1.971	6	0.7
3	-1	4	24.27	3.668	6	5.2	5	-2	4	37.42	2.403	6	0.5	4	1	9	46.06	1.971	6	0.2
0	1	8	24.39	3.649	6	33.6	4	-1	8	37.50	2.398	6	0.3	1	4	9	46.06	1.971	6	0.1
3	0	3	25.74	3.461	6	0.8	2	3	5	38.46	2.341	6	0.4	0	4	11	46.12	1.968	6	2.1
3	-2	5	25.78	3.456	6	2.1	5	-3	5	38.46	2.341	6	1.4	1	1	15	46.27	1.962	6	0.6
1	2	5	25.78	3.456	6	17.3	4	0	7	38.50	2.338	6	4.1	2	-1	15	46.27	1.962	6	0.2
0	2	7	25.84	3.448	6	13.4	3	-2	11	38.62	2.331	6	0.7	6	-3	6	46.28	1.962	6	0.3
0	0	9	25.92	3.438	2	1.5	1	2	11	38.62	2.331	6	0.9	5	-2	10	46.38	1.958	6	0.2
2	2	0	28.05	3.181	6	13.4	1	0	13	38.71	2.326	6	0.1	3	2	10	46.38	1.958	6	0.4
2	0	8	28.19	3.166	6	6.3	0	4	8	40.19	2.244	6	2.6	1	2	14	46.52	1.952	6	0.8
4	-3	1	29.36	3.042	6	0.3	3	2	7	41.13	2.195	6	0.2	3	-2	14	46.52	1.952	6	0.9
1	3	1	29.36	3.042	6	3.0	0	2	13	41.32	2.185	6	0.3	6	-1	4	47.41	1.918	6	0.4
4	-2	3	29.38	3.040	6	0.2	5	0	2	41.38	2.182	6	2.8	5	1	4	47.41	1.918	6	0.9
3	-1	7	29.46	3.031	6	12.1	1	4	6	41.43	2.180	6	0.5	5	0	8	47.48	1.915	6	1.2
<b>2</b>	1	7	29.46	3.031	6	11.4	4	1	6	41.43	2.180	6	0.2	1	0	16	47.75	1.905	6	0.4
<b>2</b>	-1	9	29.53	3.024	6	0.3	5	-4	6	41.43	2.180	6	0.5	1	5	5	48.27	1.885	6	1.6
1	1	9	29.53	3.024	6	1.4	5	-1	6	41.43	2.180	6	0.3	6	-5	5	48.27	1.885	6	0.3
3	1	2	29.79	2.999	6	0.1	0	1	14	41.68	2.167	6	0.5	2	4	7	48.31	1.884	6	0.2
4	-1	2	29.79	2.999	6	2.6	3	3	0	42.63	2.121	6	2.0	1	3	13	48.48	1.878	6	0.2
4	-3	4	31.47	2.843	6	1.4	0	5	4	42.65	2.120	6	0.2	0	6	0	49.63	1.837	6	0.3
1	3	4	31.47	2.843	6	3.8	5	-3	8	42.73	2.116	6	0.1	6	-2	8	49.72	1.834	6	0.1



CHEMICAL COMPOSITION:	$ (C_{18}H_{42}N_6)_{1.96}(H_2O)_7  [Mg_{4.8}Al_{19.2}P_{24}O_{96}]$
	$C_{18}H_{42}N_6 = 1, 4, 7, 10, 13, 16 \text{-hexamethyl-} 1, 4, 7, 10, 13, 16 \text{-hexaazacyclooctadecane} = 1, 4, 7, 10, 13, 16 -hexaaza$

REFINED COMPOSITION: [Mg_{4.8}Al_{19.2}P₂₄O₉₆]

CRYSTAL DATA: P 4/n (No. 85) origin at centre  $\overline{1}$ a = 18.7732 Å b = 18.7732 Å c = 9.4537 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray synchrotron single crystal refinement,  $R_{\rm p} = 0.0539$ ,  $wR_{\rm wp} = 0.1422$ 

REFERENCE: P. A. Wright, M. J. Maple, A. M. Z. Slawin, V. Patinec, R. A. Aitken, S. Welsh and P. A. Cox, J. Chem. Soc., Dalton Trans. 1243–1248 (2000).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	6.66	13.275	4	11.9	3	3	<b>2</b>	27.61	3.230	8	1.0	3	6	2	37.34	2.408	8	0.2
0	0	1	9.35	9.454	<b>2</b>	38.2	3	5	0	27.71	3.220	4	1.8	8	0	0	38.36	2.347	4	0.6
<b>2</b>	0	0	9.42	9.387	4	100.0	5	3	0	27.71	3.220	4	1.8	1	0	4	38.39	2.345	8	0.7
1	0	1	10.48	8.444	8	25.6	1	0	3	28.73	3.108	8	0.3	7	0	2	38.60	2.333	8	0.7
1	1	1	11.49	7.701	8	0.7	1	1	3	29.12	3.066	8	0.9	1	2	4	39.61	2.275	8	0.2
<b>2</b>	0	1	13.29	6.661	8	5.0	3	5	1	29.30	3.048	8	1.9	8	1	1	39.87	2.261	8	0.3
<b>2</b>	<b>2</b>	0	13.34	6.637	4	2.6	5	3	1	29.30	3.048	8	1.5	1	8	1	39.87	2.261	8	0.2
1	3	0	14.92	5.937	4	5.8	2	0	3	29.91	2.987	8	2.8	6	0	3	40.63	2.220	8	0.3
3	1	0	14.92	5.937	4	4.5	6	0	1	30.08	2.970	8	2.8	2	8	1	40.77	2.213	8	0.2
<b>2</b>	2	1	16.32	5.432	8	27.8	2	6	0	30.11	2.968	4	0.9	8	2	1	40.77	2.213	8	0.2
3	0	1	16.99	5.218	8	17.1	6	<b>2</b>	0	30.11	2.968	4	1.3	6	6	0	40.78	2.212	4	0.3
1	3	1	17.64	5.028	8	0.2	2	1	3	30.29	2.950	8	0.4	1	6	3	40.93	2.205	8	0.2
0	0	<b>2</b>	18.77	4.727	2	2.1	1	<b>2</b>	3	30.29	2.950	8	0.9	6	2	3	41.81	2.161	8	0.2
4	0	0	18.91	4.693	4	2.2	5	0	<b>2</b>	30.40	2.940	8	2.8	2	6	3	41.81	2.161	8	0.3
1	0	2	19.36	4.584	8	2.0	4	3	2	30.40	2.940	8	0.9	6	6	1	41.94	2.154	8	0.3
<b>2</b>	3	1	19.46	4.561	8	2.3	3	4	2	30.40	2.940	8	0.8	6	5	2	42.18	2.143	8	0.2
3	2	1	19.46	4.561	8	2.7	6	1	1	30.47	2.934	8	0.6	5	6	2	42.18	2.143	8	0.3
1	1	2	19.94	4.453	8	1.3	1	6	1	30.47	2.934	8	1.2	3	8	1	42.23	2.140	8	0.2
3	3	0	20.07	4.425	4	8.2	2	2	3	31.42	2.847	8	3.3	8	3	1	42.23	2.140	8	0.4
2	0	2	21.04	4.222	8	3.2	2	6	1	31.59	2.832	8	2.8	3	3	4	43.41	2.085	8	0.2
4	0	1	21.13	4.204	8	2.8	6	2	1	31.59	2.832	8	3.3	2	4	4	43.96	2.059	8	0.2
4	2	0	21.16	4.198	4	0.6	3	0	3	31.79	2.815	8	0.8	4	2	4	43.96	2.059	8	0.3
2	4	0	21.16	4.198	4	4.7	5	2	2	31.90	2.806	8	0.3	2	8	2	44.15	2.051	8	0.2
1	2	2	21.57	4.119	8	3.1	2	5	2	31.90	2.806	8	0.9	4	8	1	44.20	2.049	8	0.2
1	4	1	21.66	4.102	8	1.5	4	5	1	31.96	2.800	8	0.4	5	5	3	44.63	2.030	8	0.2
4	1	1	21.66	4.102	8	0.4	5	4	1	31.96	2.800	8	0.9	7	1	3	44.63	2.030	8	0.2
3	3	1	22.18	4.008	8	4.0	1	3	3	32.16	2.783	8	1.1	1	7	3	44.63	2.030	8	0.2
2	2	2	23.10	3.850	8	0.6	3	1	3	32.16	2.783	8	1.0	3	7	3	46.79	1.942	8	0.2
2	4	1	23.18	3.837	8	2.7	4	4	2	32.98	2.716	8	0.2	6	5	3	47.58	1.911	8	0.2
4	2	1	23.18	3.837	8	0.4	6	3	1	33.39	2.683	8	1.1	5	6	3	47.58	1.911	8	0.2
3	0	2	23.59	3.772	8	7.9	3	6	1	33.39	2.683	8	0.8	3	5	4	47.74	1.905	8	0.2
3	1	2	24.07	3.698	8	0.5	3	5	2	33.68	2.661	8	0.9	1	0	5	48.38	1.881	8	0.3
1	5	0	24.17	3.682	4	0.4	5	3	2	33.68	2.661	8	0.9	10	0	0	48.49	1.877	4	1.6
5	1	0	24.17	3.682	4	0.3	5	5	0	33.76	2.655	4	0.5	6	8	0	48.49	1.877	4	0.2
2	3	2	25.45	3.500	8	1.8	4	0	3	34.27	2.616	8	0.4	1	6	4	48.51	1.876	8	0.4
3	2	2	25.45	3.500	8	2.5	6	0	2	34.37	2.609	8	0.2	1	1	5	48.64	1.872	8	0.2
3	4	1	25.53	3.490	8	0.3	4	6	0	34.45	2.603	4	0.3	6	7	2	48.69	1.870	8	0.2
4	3	1	25.53	3.490	8	0.6	1	6	2	34.71	2.584	8	0.2	7	6	2	48.69	1.870	8	0.2
5	0	1	25.53	3.490	8	1.8	6	1	2	34.71	2.584	8	0.4	2	0	5	49.15	1.854	8	0.2
5	1	1	25.97	3.431	8	0.4	3	3	3	34.95	2.567	8	0.8	2	8	3	49.38	1.845	8	0.3
1	5	1	25.97	3.431	8	0.6	5	5	1	35.11	2.556	8	0.3	8	6	1	49.50	1.841	8	0.2
4	0	2	26.77	3.330	8	0.4	7	2	1	36.10	2.488	8	0.2	6	8	1	49.50	1.841	8	0.4
4	4	0	26.86	3.319	4	0.3	3	7	0	36.45	2.465	4	0.3	10	0	1	49.50	1.841	8	0.4
2	5	1	27.26	3.271	8	2.2	5	0	3	37.25	2.414	8	0.3	10	2	0	49.51	1.841	4	0.2
5	2	1	27.26	3.271	8	2.0	6	3	2	37.34	2.408	8	0.3	2	10	0	49.51	1.841	4	0.2



CHEMICAL COMPOSITION:					ION:	$\begin{aligned} & (H_3N(CH_2)_9NH_3)_{16}^{2+}  \ [Al_{32}Co_{32}P_{64}O_{256}] \\ &H_2N(CH_2)_9NH_2 = 1,9 \ diaminononane \end{aligned}$														
	RE	FIN	NED C	OMPOS	SITI	ON:	$ C_{32}N_{16} $	;  [ <i>A</i>	Al ₃₂ (	$\mathrm{Co}_{32}\mathrm{P}_{64}$	$_{4}O_{256}]$									
			CF	RYSTAI	J DA	ATA:	P 4/n n a = 19. $\alpha = 90^{\circ}$ X-ray s	c (I 065 ingl	No. 1 4 Å e cry	126) or b = 1 $\beta = 9$ ystal re	igin at 9.0654 90° efineme	cen Å ent,	$tre \overline{1} \\ c = \\ \gamma = \\ R_{\rm F} =$	27.594 Å 90° = 0.098, 1	Å R _w =	= 0.2	26			
				REFEI	REN	CE:	X. Bu, Science	P. I 27	Feng 8 20	and G 80–208	. D. St 35 (199	tuck; 97).	у,							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	5.63	15.686	8	100.0	3	0	7	26.61	3.350	8	4.9	1	0	11	36.11	2.487	8	0.2
0	0	2	6.41	13.797	2	81.3	5	2	3	26.99	3.304	16	0.1	6	4	4	36.39	2.469	16	0.1
1	1	0	6.56	13.481	4	3.8	5	1	4	27.13	3.287	16	2.9	7	3	2	36.48	2.463	16	0.2
1	1	2	9.17	9.642	8	14.7	4	1	6	27.35	3.261	16	0.2	6	1	7	36.63	2.453	16	0.5
2	0	0	9.28	9.533	4	15.9	5	3	2	28.04	3.182	16	0.5	2	1	11	37.37	2.407	16	0.1
1	1	び 1	10.68	8.284 8.146	8 16	0.4	0	0	07	28.08	3.178	4	2.1	5 E	0	9	37.04	2.389	8	0.4
2 0	1	1	10.00	6.808	10	10.0	3 4	2 3	5	20.24 28.45	3.100 3.137	16	$\frac{2.1}{0.7}$	5	45	ן ז	38.14	2.370	16	0.3 0.7
$\frac{1}{2}$	$\frac{1}{2}$	0	12.00 13 13	6.741	4	21.0	4 5	0	5	28.45 28.45	3.137 3.137	8	1.2	8	1	1	38.14	$\frac{2.359}{2.356}$	16	0.7
2	1	3	14.16	6.253	16	0.1	4	2	6	28.55	3.126	16	0.3	5	5	6	38.71	2.326	8	0.5
3	0	1	14.30	6.193	8	0.9	6	0	2	28.83	3.097	8	0.3	5	2	9	38.86	2.318	16	0.1
1	1	4	14.42	6.141	8	2.1	4	4	4	29.50	3.028	8	0.1	8	2	0	38.95	2.312	8	0.1
<b>2</b>	<b>2</b>	2	14.63	6.056	8	1.7	1	0	9	29.51	3.027	8	1.1	6	3	$\overline{7}$	39.07	2.305	16	1.0
2	0	4	15.86	5.589	8	0.6	6	2	0	29.63	3.015	8	6.6	8	1	3	39.34	2.290	16	0.1
3	1	2	16.04	5.525	16	3.9	6	1	3	30.12	2.967	16	0.3	6	1	9	41.19	2.192	16	0.3
1	0	5	16.72	5.301	8	0.3	5	4	1	30.19	2.960	16	1.3	3	1	12	42.05	2.149	16	0.1
3	0	3	16.96	5.229	8	0.6	5	3	4	30.25	2.955	16	1.3	8	4	0	42.40	2.132	8	0.2
3	2	1	17.07	5.193	16	1.6	6	2	2	30.35	2.945	16 16	0.8	7	1	8	42.56	2.124	16	0.3
2 1	2	4	18.40	4.821	0	0.9	5 6	1	4	30.82	2.901	10	1.5	0	0	12	42.13	2.110 2.110	0	0.1
4	1	5	10.02	4.700	4 16	4.2	0	1	4	30.98	2.000 2.885	0 16	1.0	5	0 3	10	42.01	2.110 2 100	0 16	0.3 0.2
$\frac{2}{0}$	0	6	19.10 19.30	4.000 4.599	2	1.0	5	4	3	31.00 31.58	2.883	16	1.0 0.2	5	5	7	43.61	2.103 2.075	16	0.2 0.4
4	1	1	19.46	4.560	$16^{-16}$	2.0	6	3	1	31.65	2.827	16	0.3	2	1	13	43.96	2.060	16	$0.1 \\ 0.5$
3	1	4	19.55	4.540	16	4.6	5	3	5	31.81	2.813	16	0.2	6	2	10	44.51	2.035	16	0.3
4	0	2	19.71	4.505	8	2.5	0	0	10	32.45	2.759	2	0.9	8	1	7	44.69	2.028	16	0.1
1	1	6	20.40	4.353	8	4.7	4	3	7	32.67	2.741	16	0.5	7	6	3	44.93	2.018	16	0.3
4	2	0	20.84	4.263	8	3.6	5	0	7	32.67	2.741	8	2.5	9	1	4	45.02	2.014	16	0.2
3	0	5	21.32	4.167	8	3.0	6	1	5	32.86	2.725	16	1.0	3	0	13	45.03	2.013	8	0.1
4	1	3	21.51	4.131	10	1.8	7	1	10	33.05	2.710	8	0.1	7	5	0 11	45.43	1.997	10 10	0.2
4	0	47	22.68	3.921	8	0.4	1	15	10	33.14	2.703	8	0.3	6 5	15	11	40.30 47.12	1.959	10	0.1
1 2	2	5	23.04	3.800	16	0.5	5	1	0	33.23 33.23	2.090 2.696	4	0.3	5	7	10	47.12	1.920 1.926	4	0.2 0.4
2	2	6	23.42	3.799	8	0.4	5	3	6	33.63	2.665	16	1.3	6	4	10	47.63	1.909	16	0.1
$\overline{5}$	0	1	23.55	3.777	8	1.4	6	4	Õ	33.90	2.644	8	0.4	10	0	0	47.70	1.907	4	0.6
3	3	4	23.63	3.765	8	0.1	5	2	7	34.04	2.634	16	0.4	10	1	1	48.07	1.893	16	0.4
5	1	0	23.80	3.739	8	1.7	5	4	5	34.22	2.620	16	0.6	9	3	5	48.19	1.888	16	0.1
5	1	1	24.02	3.705	16	0.1	7	0	3	34.34	2.612	8	0.9	3	1	14	48.60	1.873	16	0.3
3	1	6	24.34	3.657	16	7.1	7	2	1	34.40	2.607	16	0.4	10	2	0	48.71	1.870	8	0.1
4	2	4	24.55	3.627	16	0.2	4	3	8	35.08	2.558	16	0.1	10	2	1	48.82	1.865	16	0.1
5 0	1	2	24.67	3.609	16	0.5	2	2	10	35.14 25 52	2.554	8	0.7	10	1	3	49.03	1.858	16	0.3
2	1	( 5	24.88	3.578 3 544	10 16	1.2	6 7	ა ი	5 9	35.53 35.64	2.327 2.510	10 16	0.3	( F	( 0	4 19	49.11 40.19	1.855	ð	0.9
4 5	U T	ง จ	25.12	0.044 3 500	8	0.0 1.9	1	⊿ 5	ა 1	35.04 35.75	$\frac{2.019}{2.511}$	8	1.0	3 7	0 २	10 10	49.12 40.14	1.857	0 16	0.1 0.1
$\frac{5}{5}$	$\frac{1}{2}$	1	25.26 25.36	3.512	16	4.2	5	1	4	35.75	2.511 2.511	16	0.9	7	0	11	49.39	1.845	8	0.3
3	2	6	25.67	3.470	$16^{-5}$	0.1	3	1	10	35.79	2.509	$16^{-5}$	0.4	7	6	7	49.79	1.831	16	0.3



CHEMICAL COMPOSITION:	$ (H_3N(CH_2)_7NH_3)^{2+}_{12} $ [Ga ₂₄ Co ₂₄ P ₄₈ O ₁₉₂ ]
	$H_2N(CH_2)_7NH_2 = 1,7$ diaminoheptane

REFINED COMPOSITION:  $|C_{16}N_{16}O_{12}|$  [Ga₂₄Co₂₄P₄₈O₁₉₂]

CRYSTAL DATA:  $P\overline{3}1c$  (No. 163) a = 17.8356 Å b = 17.8356 Å c = 27.1816 Å  $\beta=90^\circ$  $\gamma = 120^\circ$  $\alpha = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm F}=0.070,\,R_{\rm w}=0.201$ 

REFERENCE: X. Bu, P. Feng and G. D. Stucky, Science 278 2080–2085 (1997).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	1	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	5.72	15.446	6	32.2	3	2	0	25.13	3.544	12	0.4		1	0	10	33.47	2.677	12	0.4
0	0	2	6.50	13.591	2	99.2	5	-2	1	25.35	3.514	12	0.8	:	3	1	8	33.67	2.662	12	0.3
1	0	1	6.58	13.429	12	100.0	3	2	1	25.35	3.514	12	1.0		5	1	3	33.79	2.653	12	0.2
1	0	2	8.67	10.203	12	1.4	2	0	$\overline{7}$	25.68	3.469	12	4.7	:	3	2	$\overline{7}$	34.26	2.617	12	0.4
1	1	0	9.92	8.918	6	21.7	3	2	2	25.98	3.429	12	0.6		1	1	10	34.49	2.600	6	0.3
<b>2</b>	0	0	11.46	7.723	6	7.7	3	0	6	26.20	3.401	12	2.4		6	0	0	34.85	2.574	6	0.6
1	1	<b>2</b>	11.87	7.456	6	6.2	4	1	0	26.44	3.371	12	1.5		6	-2	5	34.89	2.572	12	0.9
<b>2</b>	-1	<b>2</b>	11.87	7.456	6	6.3	3	1	5	26.49	3.365	12	0.9		5	1	4	34.93	2.568	12	0.4
<b>2</b>	0	1	11.91	7.429	12	4.3	4	-1	5	26.49	3.365	12	0.4		6	-1	4	34.93	2.568	12	0.7
0	0	4	13.03	6.795	2	1.1	4	1	1	26.65	3.345	12	0.3		6	0	1	35.01	2.563	12	1.0
2	0	2	13.19	6.715	12	7.0	4	1	2	27.26	3.272	12	0.5		5	-1	7	35.26	2.545	12	0.2
1	0	4	14.24	6.220	12	0.9	2	1	7	27.59	3.233	12	1.7		6	0	2	35.49	2.529	12	0.2
<b>2</b>	0	3	15.07	5.878	12	0.8	3	-1	$\overline{7}$	27.59	3.233	12	0.9	,	7	-3	1	35.51	2.528	12	0.2
2	1	0	15.18	5.838	12	4.7	4	-2	6	28.08	3.178	6	2.7		6	0	3	36.28	2.476	12	1.0
3	-1	1	15.52	5.708	12	5.1	2	2	6	28.08	3.178	6	1.0		5	2	0	36.32	2.473	12	1.0
2	1	1	15.52	5.708	12	1.7	1	1	8	28.10	3.175	6	0.4	:	3	1	9	36.40	2.468	12	0.4
1	1	4	16.40	5.405	6	0.4	4	1	3	28.25	3.159	12	1.2		5	-2	8	36.64	2.452	12	0.2
2	-1	4	16.40	5.405	6	1.1	5	-2	4	28.41	3.142	12	0.6		1	0	11	36.84	2.440	12	0.4
1	0	5	17.29	5.128	12	0.6	3	2	4	28.41	3.142	12	0.3		7	-2	2	36.94	2.433	12	0.4
3	0	1	17.53	5.059	12	0.8	4	-1	6	28.68	3.113	12	0.7		5	0	7	37.19	2.418	12	3.0
3	0	2	18.43	4.815	12	1.1	5	0	0	28.90	3.089	6	6.5		6	0	4	37.35	2.407	12	0.8
0	0	6	19.60	4.530	2	0.8	5	0	1	29.09	3.069	12	0.9		6	1	0	38.21	2.356	12	0.2
3	0	3	19.83	4.476	12	1.6	4	1	4	29.58	3.020	12	0.6	(	6	-2	7	38.59	2.333	12	0.4
2	2	0	19.91	4.459	6	2.0	5	-1	4	29.58	3.020	12	0.3		5	-2	9	39.19	2.299	12	0.4
2	0	5	19.97	4.445	12	3.2	5	0	2	29.66	3.012	12	1.0	:	3	2	9	39.19	2.299	12	0.2
1	0	6	20.43	4.347	12	2.9	3	3	0	30.06	2.973	6	2.2	(	6	0	6	40.29	2.238	12	0.7
3	1	0	20.73	4.284	12	5.1	5	-2	5	30.10	2.969	12	1.3	:	8	-3	3	42.15	2.144	12	0.4
3	1	1	20.99	4.232	12	1.4	3	2	5	30.10	2.969	12	0.5	:	8	-3	4	43.10	2.099	12	0.4
4	-1	1	20.99	4.232	12	0.9	1	0	9	30.15	2.964	12	0.5		6	1	6	43.29	2.090	12	0.2
3	0	4	21.65	4.104	12	2.2	4	2	0	30.63	2.919	12	0.3		1	0	13	43.69	2.072	12	1.0
3	1	2	21.75	4.086	12	1.0	3	3	2	30.79	2.904	6	0.5		8	-2	4	44.34	2.043	12	0.3
4	-1	2	21.75	4.086	12	0.7	6	-2	1	30.81	2.902	12	0.7	4	4	-2	12	44.88	2.019	6	0.3
2	-1	6	22.01	4.039	6	0.4	4	-1	7	31.08	2.877	12	3.6		2	0	13	44.91	2.018	12	0.5
1	1	6	22.01	4.039	6	2.3	3	1	7	31.08	2.877	12	1.8	4	4	4	6	45.34	2.000	6	0.3
2	1	5	22.35	3.979	12	1.6	4	1	5	31.22	2.865	12	0.5	,	7	1	3	45.45	1.996	12	0.4
2	0	6	22.76	3.908	12	0.3	2	0	9	31.81	2.813	12	0.8		6	3	0	46.67	1.946	12	0.7
4	-1	<b>3</b>	22.96	3.873	12	1.0	3	2	6	32.07	2.791	12	0.2		0	0	14	46.79	1.942	2	0.4
4	0	1	23.27	3.823	12	1.0	5	-2	6	32.07	2.791	12	0.3	,	7	0	7	47.39	1.918	12	1.1
1	0	7	23.62	3.766	12	1.0	6	-2	3	32.22	2.778	12	1.2		5	4	4	47.90	1.899	12	0.3
2	2	4	23.87	3.728	6	1.8	6	-1	1	32.44	2.760	12	2.0		2	-1	14	47.95	1.897	6	0.2
4	-2	4	23.87	3.728	6	0.8	0	0	10	32.95	2.718	2	0.8	,	7	2	1	48.35	1.883	12	0.2
4	0	2	23.96	3.714	12	0.3	5	-1	6	33.13	2.704	12	0.3		6	2	7	48.54	1.876	12	0.3
3	1	4	24.56	3.624	12	0.3	5	0	5	33.36	2.686	12	1.8		6	0	10	48.72	1.869	12	0.9
3	-1	6	24.88	3.579	12	0.2	6	-2	4	33.41	2.682	12	0.3	9	9	-4	5	49.01	1.859	12	0.2
4	0	3	25.07	3.552	12	0.2	4	2	4	33.41	2.682	12	0.3		6	-1	11	49.39	1.845	12	0.3



CHEMICAL COMPOSITION:	$ (H_3N(CH_2)_3O((CH_2)_2O)_2(CH_2)_3NH_3)^{2+}_{18}  [Ga_{36}Zn_{36}P_{72}O_{288}]$
	$H_2N(CH_2)_3O((CH_2)_2O)_2(CH_2)_3NH_2 = 4,7,10$ -trioxa-1,13-tridecanediamine

REFINED COMPOSITION:  $|C_{30}N_{24}|$  [Ga₃₆Zn₃₆P₇₂O₂₈₈]

CRYSTAL DATA:	$R\overline{3}$ (No. 148) h	exagonal setting	
	a = 18.0804  Å	b = 18.0804  Å	c = 41.9511  Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray single cry	vstal refinement,	$R_{\rm F} = 0.045, R_{\rm w} = 0.140$

REFERENCE: X. Bu, P. Feng and G. D. Stucky, Science **278** 2080–2085 (1997).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	6.02	14.670	6	100.0	3	0	9	25.62	3.477	6	1.1	1	0	16	34.69	2.586	6	0.7
0	0	3	6.32	13.984	2	76.3	2	0	11	25.99	3.429	6	3.3	4	2	8	34.81	2.577	6	0.5
0	1	2	7.04	12.548	6	32.8	3	-1	10	26.03	3.422	6	0.8	6	-2	8	34.81	2.577	6	1.1
1	1	0	9.78	9.040	6	14.3	2	1	10	26.03	3.422	6	1.4	6	0	3	34.98	2.565	6	0.4
0	2	1	11.50	7.696	6	1.8	1	4	0	26.08	3.417	6	1.4	0	6	3	34.98	2.565	6	1.7
2	-1	3	11.66	7.592	6	5.0	4	1	0	26.08	3.417	6	0.8	7	-4	2	35.12	2.555	6	0.3
1	1	3	11.66	7.592	6	4.7	5	-2	4	26.22	3.398	6	0.2	0	5	10	35.78	2.510	6	1.7
0	1	5	11.97	7.395	6	0.4	3	1	8	26.65	3.345	6	0.9	5	2	0	35.81	2.507	6	0.2
<b>2</b>	0	2	12.07	7.335	6	10.4	1	4	3	26.86	3.319	6	0.6	2	5	0	35.81	2.507	6	0.8
0	0	6	12.66	6.992	2	0.9	5	-3	5	27.00	3.302	6	0.4	7	-5	3	36.40	2.468	6	0.3
3	-1	1	15.12	5.860	6	4.4	1	1	12	27.35	3.261	6	0.3	3	1	14	36.43	2.466	6	0.3
2	1	1	15.12	5.860	6	3.5	4	-2	9	27.49	3.245	6	2.8	6	0	6	36.76	2.445	6	1.0
1	2	2	15.56	5.696	6	0.6	2	2	9	27.49	3.245	6	0.9	5	0	11	37.15	2.420	6	1.7
3	-2	2	15.56	5.696	6	0.8	3	-2	11	27.83	3.206	6	0.4	3	2	13	37.46	2.401	6	0.3
2	-1	6	16.02	5.531	6	0.8	1	2	11	27.83	3.206	6	0.3	5	-2	13	37.46	2.401	6	0.5
1	1	6	16.02	5.531	6	0.7	0	5	1	28.58	3.123	6	7.7	7	-6	1	37.73	2.384	6	0.3
0	1	8	17.84	4.972	6	2.6	5	0	2	28.82	3.097	6	0.6	1	6	1	37.73	2.384	6	0.3
3	0	3	18.14	4.890	6	2.9	1	4	6	29.09	3.070	6	1.2	4	-2	15	37.83	2.378	6	0.3
0	2	7	18.65	4.759	6	0.7	5	-4	6	29.09	3.070	6	0.3	6	0	9	39.58	2.277	6	0.4
0	0	9	19.04	4.661	2	0.7	5	-1	6	29.09	3.070	6	0.3	0	6	9	39.58	2.277	6	0.4
2	2	0	19.64	4.520	6	3.1	4	-3	10	29.61	3.017	6	3.8	1	0	19	41.29	2.186	6	0.9
2	0	8	20.38	4.357	6	3.4	1	3	10	29.61	3.017	6	0.5	8	-3	5	41.79	2.161	6	0.4
4	-3	1	20.56	4.320	6	0.5	3	3	0	29.64	3.013	6	1.9	0	2	19	42.54	2.125	6	0.6
1	3	1	20.56	4.320	6	4.3	0	2	13	29.95	2.984	6	0.7	8	-6	5	43.03	2.102	6	0.3
4	-1	2	20.89	4.253	6	3.1	5	-3	8	30.16	2.964	6	1.6	8	-5	7	43.17	2.096	6	0.3
2	1	7	21.10	4.211	6	1.7	2	3	8	30.16	2.964	6	0.6	0	1	20	43.53	2.079	6	0.3
3	0	6	21.24	4.183	6	0.3	6	-4	1	30.28	2.952	6	0.9	1	6	10	43.61	2.075	6	0.4
0	3	6	21.24	4.183	6	2.8	3	3	3	30.34	2.946	6	0.3	4	-2	18	43.70	2.071	6	0.3
2	-1	9	21.45	4.143	6	0.3	0	1	14	30.37	2.943	6	0.7	5	3	8	44.01	2.057	6	0.3
1	1	9	21.45	4.143	6	3.3	4	-1	11	31.21	2.866	6	0.5	1	7	3	44.14	2.052	6	0.3
1	0	10	21.93	4.052	6	2.4	3	1	11	31.21	2.866	6	1.8	2	3	17	44.54	2.034	6	0.3
1	2	8	22.65	3.925	6	0.8	6	-1	1	31.89	2.806	6	1.0	4	4	9	44.55	2.034	6	0.5
4	0	1	22.82	3.898	6	0.2	2	0	14	31.98	2.799	6	0.4	0	0	21	45.40	1.998	2	0.4
3	1	5	23.06	3.857	6	0.4	0	0	15	32.00	2.797	2	0.7	7	1	6	45.62	1.988	6	0.5
4	-1	5	23.06	3.857	6	0.5	6	-2	5	32.07	2.791	6	1.1	7	0	10	45.98	1.974	6	0.4
0	4	2	23.11	3.848	6	1.5	4	2	5	32.07	2.791	6	0.2	3	6	0	46.01	1.973	6	0.5
2	2	6	23.43	3.796	6	2.2	6	-5	2	32.11	2.787	6	0.3	0	7	11	47.10	1.929	6	0.6
4	-2	6	23.43	3.796	6	1.1	1	5	2	32.11	2.787	6	0.3	2	7	1	47.58	1.911	6	0.4
0	2	10	24.07	3.698	6	1.7	0	5	7	32.25	2.776	6	1.0	6	0	15	47.66	1.908	6	0.5
0	4	5	25.10	3.547	6	0.7	5	-1	9	32.49	2.756	6	0.8	0	6	15	47.66	1.908	6	0.6
5	-3	2	25.15	3.541	6	0.8	5	0	8	33.32	2.689	6	0.7	5	4	7	47.84	1.901	6	0.2
2	3	2	25.15	3.541	6	1.7	1	5	5	33.61	2.666	6	0.9	1	5	17	49.12	1.855	6	0.3
4	-3	7	25.33	3.517	6	0.4	6	-5	5	33.61	2.666	6	0.6	0	2	22	49.18	1.853	6	0.3
1	3	7	25.33	3.517	6	0.6	0	6	0	34.36	2.610	6	0.6	8	1	1	49.80	1.831	6	0.3
0	3	9	25.62	3.477	6	1.4	4	-3	13	34.63	2.590	6	0.3	1	8	2	49.95	1.826	6	0.2



#### CHEMICAL COMPOSITION: [Si₁₄O₂₈]

REFINED COMPOSITION: [Si₁₄O₂₈]

CRYSTAL DATA:  $P2_1$  (No. 4) unique axis **b**  a = 11.1527 Å b = 5.002 Å c = 13.667 Å  $\alpha = 90^{\circ}$   $\beta = 100.633^{\circ}$   $\gamma = 90^{\circ}$ Electron diffraction, and X-ray powder,  $R_{\rm w} = 0.0971$ ,  $R_{\rm p} = 0.0887$ 

REFERENCE: P. Wagner, O. Terasaki, S. Ritsch, J. G. Nery, S. I. Zones, M. E. Davis and K. Hiraga, J. Phys. Chem. B 103 8245–8250 (1999).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	1	6.58	13.432	2	99.6	3	1	1	32.01	2.796	4	1.5	-4	1	4	42.57	2.124	4	0.1
1	0	0	8.07	10.961	<b>2</b>	100.0	0	1	4	32.10	2.788	4	1.0	2	2	2	42.93	2.107	4	0.2
-1	0	1	9.43	9.383	<b>2</b>	40.0	-4	0	1	32.11	2.788	2	0.4	5	0	1	43.01	2.103	2	0.1
1	0	1	11.32	7.815	2	21.8	-3	0	4	32.72	2.737	2	1.1	-2	2	3	43.20	2.094	4	0.4
0	0	2	13.18	6.716	2	0.3	-1	0	5	32.83	2.728	2	1.3	-1	1	6	43.67	2.073	4	1.5
-1	0	<b>2</b>	14.14	6.265	2	0.8	2	1	3	33.30	2.690	4	0.1	-3	2	1	43.67	2.073	4	0.1
2	0	0	16.17	5.481	2	1.7	0	0	5	33.35	2.686	2	0.2	3	1	4	43.75	2.069	4	0.2
-2	0	1	16.30	5.438	2	2.7	-2	1	4	33.76	2.655	4	0.3	3	2	0	43.87	2.064	4	1.1
1	0	2	16.70	5.307	2	2.8	2	0	4	33.78	2.654	2	0.2	2	1	5	44.07	2.055	4	0.2
2	0	1	18.58	4.776	2	2.7	-3	1	3	33.80	2.652	4	2.1	0	1	6	44.33	2.043	4	0.2
-2	0	2	18.92	4.691	2	5.4	-2	0	5	34.36	2.610	2	0.3	-5	1	1	44.48	2.037	4	0.5
0	1	1	18.93	4.688	4	1.5	1	1	4	34.38	2.608	4	0.5	-3	2	2	44.56	2.033	4	0.5
1	1	0	19.51	4.551	4	5.8	3	0	3	34.42	2.605	2	0.9	-2	1	6	44.64	2.030	4	0.6
0	0	3	19.83	4.477	2	5.9	4	0	1	34.59	2.593	2	0.4	-5	1	2	44.88	2.020	4	0.2
-1	0	3	19.99	4.442	2	0.2	-4	0	3	35.10	2.557	2	0.2	3	2	1	45.14	2.009	4	0.2
-1	1	1	20.12	4.414	4	36.9	1	0	5	35.85	2.505	2	0.3	5	1	0	45.16	2.008	4	0.6
1	1	1	21.09	4.213	4	0.2	0	2	0	35.91	2.501	2	8.7	0	2	4	45.20	2.006	4	0.7
0	1	2	22.16	4.012	4	2.2	0	2	1	36.54	2.459	4	1.2	5	0	2	45.85	1.979	2	0.9
-1	1	2	22.75	3.909	4	24.5	1	2	0	36.86	2.438	4	0.8	2	2	3	46.11	1.968	4	0.2
2	0	2	22.76	3.908	2	6.0	-4	1	1	36.91	2.435	4	1.5	-5	1	3	46.32	1.960	4	0.3
-2	0	3	23.22	3.831	2	0.8	-1	2	1	37.20	2.417	4	0.3	-4	1	5	46.44	1.955	4	0.8
-3	0	1	24.03	3.703	2	3.2	4	1	0	37.42	2.403	4	0.2	-2	2	4	46.46	1.954	4	0.6
2	1	0	24.09	3.695	4	4.2	-3	1	4	37.46	2.401	4	1.8	-3	2	3	46.49	1.953	4	1.2
-2	1	1	24.18	3.681	4	17.4	-1	1	5	37.55	2.395	4	2.0	1	1	6	46.56	1.950	4	0.3
3	0	0	24.36	3.654	2	10.7	-4	1	2	37.66	2.389	4	2.1	2	0	6	46.57	1.950	2	1.4
1	1	<b>2</b>	24.45	3.640	4	0.2	-3	0	5	37.72	2.385	2	0.2	-3	1	6	47.16	1.927	4	0.4
-3	0	<b>2</b>	25.51	3.491	2	0.6	1	<b>2</b>	1	37.77	2.382	4	0.3	-2	0	7	47.21	1.925	2	0.1
2	1	1	25.79	3.454	4	1.1	2	1	4	38.40	2.344	4	0.6	-4	0	6	47.46	1.916	2	0.1
-2	1	2	26.04	3.422	4	1.6	-1	2	2	38.77	2.323	4	0.1	-5	1	4	48.75	1.868	4	0.3
-1	0	4	26.28	3.391	2	2.2	-2	1	5	38.92	2.314	4	1.2	-4	2	1	48.93	1.862	4	0.1
3	0	1	26.43	3.372	2	3.1	3	1	3	38.98	2.311	4	0.2	-6	0	1	49.07	1.857	2	0.1
0	0	4	26.54	3.358	2	10.0	4	1	1	39.13	2.302	4	0.5	3	1	5	49.15	1.854	4	0.3
0	1	3	26.72	3.336	4	2.6	-1	0	6	39.57	2.277	2	0.2	-6	0	2	49.21	1.851	2	0.1
-1	1	3	26.84	3.321	4	3.2	-4	1	3	39.59	2.277	4	0.1	4	2	0	49.33	1.847	4	0.3
2	0	3	27.96	3.191	2	11.5	2	2	0	39.61	2.275	4	0.2	-3	2	4	49.36	1.846	4	0.4
-2	0	4	28.49	3.132	2	1.2	3	0	4	39.66	2.272	2	0.1	-3	0	7	49.40	1.845	2	0.7
-3	0	3	28.54	3.128	2	0.5	-2	2	1	39.67	2.272	4	0.2	-1	2	5	49.44	1.844	4	0.3
1	1	3	29.03	3.076	4	0.8	1	1	5	40.27	2.240	4	0.5	-4	2	2	49.52	1.841	4	0.5
1	0	4	29.22	3.057	2	1.9	0	0	6	40.28	2.239	2	0.5	5	1	2	49.53	1.840	4	0.2
-2	1	3	29.37	3.041	4	0.4	-5	0	2	40.88	2.208	2	0.1	5	0	3	49.56	1.839	2	1.8
-3	1	1	30.02	2.976	4	1.3	-2	2	2	40.89	2.207	4	0.2	0	2	5	49.81	1.831	4	0.1
3	1	0	30.29	2.950	4	0.7	5	0	0	41.18	2.192	2	0.2	6	0	0	49.92	1.827	2	0.1
-3	1	2	31.24	2.863	4	1.3	0	2	3	41.35	2.183	4	0.5							
-1	1	4	31.88	2.807	4	0.2	-3	1	5	41.97	2.152	4	0.1							



### CHEMICAL COMPOSITION: [Si₃₂O₆₄]

REFINED COMPOSITION: [Si₃₂O₆₄]

CRYSTAL DATA:  $P12_1/m1$  (No. 11) unique axis **b**  a = 11.4853 Å b = 21.9458 Å c = 7.3881 Å  $\alpha = 90.0^{\circ}$   $\beta = 94.702^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.0892$ ,  $R_{\rm wp} = 0.1058$ 

REFERENCE: P. Wagner, S. I. Zones, M. E. Davis and R. C. Medrud, Angew. Chem., Int. ed. **38** 1269–1272 (1999).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	7.72	11.447	2	50.8	3	3	0	26.34	3.383	4	0.8	4	3	1	36.73	2.447	4	0.4
0	2	0	8.06	10.973	2	100.0	1	1	2	26.34	3.383	4	3.0	-1	1	3	37.05	2.426	4	1.0
1	1	0	8.71	10.149	4	55.9	-3	2	1	26.68	3.341	4	0.7	3	$\overline{7}$	0	37.11	2.422	4	0.4
1	2	0	11.17	7.921	4	5.6	0	3	2	27.11	3.289	4	5.5	0	2	3	37.55	2.395	4	0.8
0	0	1	12.02	7.363	2	4.5	0	6	1	27.22	3.276	4	0.8	0	7	2	37.68	2.387	4	0.3
0	1	1	12.68	6.981	4	7.7	1	2	2	27.28	3.269	4	0.7	-1	2	3	37.75	2.383	4	0.5
-1	0	1	13.76	6.437	2	6.6	-1	3	2	27.67	3.224	4	0.3	-1	7	2	38.10	2.362	4	0.2
0	<b>2</b>	1	14.49	6.114	4	1.4	-2	0	2	27.71	3.219	2	3.7	-4	1	2	38.45	2.341	4	0.3
1	1	1	15.37	5.764	4	1.8	-2	5	1	27.78	3.211	4	0.6	-3	$\overline{7}$	1	38.51	2.337	4	0.3
-1	2	1	15.96	5.552	4	0.5	-2	1	2	28.02	3.185	4	0.3	2	8	1	38.81	2.320	4	0.2
<b>2</b>	1	0	16.00	5.538	4	0.4	-3	3	1	28.22	3.163	4	0.4	2	6	2	38.93	2.314	4	0.4
0	4	0	16.15	5.486	2	0.3	3	2	1	28.40	3.142	4	0.4	-2	2	3	39.61	2.275	4	0.3
0	3	1	17.09	5.190	4	1.3	3	4	0	28.49	3.133	4	3.0	3	$\overline{7}$	1	39.77	2.266	4	0.5
1	4	0	17.93	4.947	4	2.8	1	3	2	28.79	3.101	4	1.0	-4	3	2	40.23	2.242	4	0.2
-1	3	1	18.36	4.833	4	0.7	2	5	1	28.90	3.089	4	2.3	-4	6	1	41.12	2.195	4	0.8
1	3	1	19.18	4.627	4	17.4	-2	2	2	28.91	3.089	4	0.2	0	10	0	41.13	2.195	2	0.4
-2	1	1	19.27	4.605	4	10.0	2	6	0	28.97	3.082	4	0.7	5	3	0	41.32	2.185	4	0.3
2	3	0	19.69	4.508	4	6.3	0	4	2	29.21	3.057	4	0.3	-3	8	1	41.80	2.161	4	0.2
0	4	1	20.18	4.399	4	0.4	1	7	0	29.54	3.024	4	0.2	2	2	3	42.04	2.149	4	0.4
-2	2	1	20.52	4.328	4	7.1	-1	4	2	29.73	3.005	4	1.9	-2	4	3	42.20	2.141	4	0.2
-1	4	1	21.28	4.176	4	1.8	2	0	2	29.91	2.987	2	2.0	3	8	1	42.98	2.104	4	1.9
1	5	0	21.68	4.098	4	5.7	1	4	2	30.78	2.905	4	0.9	0	10	1	43.01	2.103	4	0.7
2	2	1	21.98	4.043	4	2.3	-2	6	1	30.95	2.889	4	0.2	2	3	3	43.09	2.099	4	0.2
2	4	0	22.45	3.961	4	0.2	0	7	1	31.00	2.885	4	1.0	3	9	0	44.07	2.055	4	0.3
-2	3	1	22.45	3.960	4	1.0	3	5	0	31.06	2.880	4	1.8	5	3	1	44.15	2.051	4	0.6
3	0	0	23.31	3.816	<b>2</b>	1.7	4	0	0	31.26	2.862	2	0.3	2	4	3	44.52	2.035	4	0.2
0	5	1	23.60	3.770	4	1.5	-1	7	1	31.75	2.819	4	0.3	-5	0	2	44.88	2.020	2	0.4
3	1	0	23.67	3.759	4	0.3	2	6	1	31.97	2.799	4	1.5	4	7	1	45.35	2.000	4	0.4
2	3	1	23.80	3.738	4	7.7	-1	5	2	32.20	2.780	4	0.4	-3	4	3	45.38	1.998	4	0.4
0	0	2	24.17	3.682	<b>2</b>	0.2	-2	4	2	32.24	2.776	4	0.3	-5	5	1	45.48	1.994	4	0.3
0	6	0	24.33	3.658	2	1.0	4	2	0	32.33	2.769	4	1.1	1	9	2	45.68	1.986	4	0.4
0	1	2	24.52	3.631	4	3.1	0	8	0	32.64	2.743	2	1.0	1	6	3	45.75	1.983	4	0.2
-1	5	1	24.55	3.626	4	0.5	-3	5	1	32.68	2.740	4	0.9	3	9	1	46.40	1.957	4	1.0
3	2	0	24.70	3.604	4	2.3	4	3	0	33.63	2.665	4	0.4	-4	1	3	46.93	1.936	4	0.2
-1	0	2	24.79	3.592	2	2.8	-4	2	1	33.66	2.662	4	1.8	3	3	3	47.31	1.921	4	0.6
-2	4	1	24.92	3.574	4	4.9	3	5	1	34.13	2.627	4	0.2	-5	6	1	47.62	1.909	4	0.7
-1	1	2	25.12	3.545	4	0.6	4	0	1	34.54	2.596	2	0.6	1	7	3	48.26	1.886	4	0.2
1	5	1	25.18	3.537	4	5.3	-3	3	2	34.68	2.586	4	0.5	4	8	1	48.26	1.886	4	0.8
0	2	2	25.52	3.490	4	0.6	0	8	1	34.90	2.571	4	2.3	2	6	3	48.42	1.880	4	0.5
1	6	0	25.57	3.484	4	0.5	-1	6	2	35.01	2.563	4	0.4	-3	6	3	49.23	1.851	4	0.5
2	5	0	25.58	3.483	4	8.9	3	0	2	35.23	2.547	2	1.3	-1	0	4	49.50	1.841	2	0.2
-3	1	1	25.72	3.463	4	3.5	4	2	1	35.53	2.527	4	0.9	-2	11	1	49.62	1.837	4	0.5
1	0	2	26.02	3.424	2	0.4	3	2	2	36.20	2.481	4	0.3	-1	1	4	49.69	1.835	4	0.2
-1	2	2	26.10	3.413	4	1.2	-3	4	2	36.38	2.469	4	0.3	-3	9	2	49.86	1.829	4	0.6
<b>2</b>	4	1	26.14	3.408	4	1.0	0	0	3	36.61	2.454	2	0.4	-6	3	1	49.97	1.825	4	0.5



CHEMICAL COMPOSITION:	$ (C_{10}H_{17}N)_4 $ [Si ₆₄ O ₁₂₈ ]
	$C_{10}H_{17}N = 1$ -aminoadamantane

REFINED COMPOSITION:  $|C_{43.84}|$  [Si₆₄O₁₂₈]

CRYSTAL DATA:  $I 4_1/a \, md$  (No. 141) origin at centre (2/m)a = 10.2387 Å b = 10.2387 Å c = 34.3829 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.225$ ,  $R_{\rm F} = 0.100$ 

REFERENCE: L. B. McCusker,

J. Appl. Cryst. **21** 305–310 (1988).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	9.01	9.813	8	75.0	0	0	12	31.22	2.865	2	3.6	2	0	14	40.75	2.214	8	0.2
0	0	4	10.29	8.596	2	15.8	2	0	10	31.34	2.854	8	2.8	0	0	16	42.05	2.149	2	0.5
1	0	3	11.59	7.636	8	7.5	3	<b>2</b>	1	31.61	2.830	16	5.3	3	1	12	42.11	2.146	16	0.6
1	1	2	13.27	6.672	8	5.3	3	1	6	31.74	2.819	16	5.9	4	2	6	42.52	2.126	16	3.3
1	0	5	15.52	5.709	8	3.7	3	0	7	31.93	2.803	8	4.0	4	0	10	44.11	2.053	8	1.3
2	0	0	17.32	5.119	4	1.2	2	<b>2</b>	8	32.33	2.769	8	0.5	2	1	15	44.18	2.050	16	0.2
2	0	2	18.08	4.906	8	1.9	3	2	3	32.48	2.756	16	8.8	5	0	1	44.31	2.044	8	0.6
2	1	1	19.56	4.539	16	99.1	3	2	5	34.16	2.625	16	11.6	4	3	1	44.31	2.044	16	0.6
1	1	6	19.76	4.493	8	100.0	3	1	8	34.69	2.586	16	6.0	4	2	8	44.85	2.021	16	0.8
1	0	7	20.05	4.429	8	1.4	2	1	11	34.75	2.582	16	3.8	5	0	3	44.97	2.016	8	1.0
2	0	4	20.19	4.398	8	35.8	1	0	13	35.04	2.561	8	1.0	4	3	3	44.97	2.016	16	6.9
0	0	8	20.67	4.298	2	10.2	4	0	0	35.06	2.560	4	5.4	5	1	2	45.48	1.994	16	2.7
2	1	3	20.89	4.252	16	8.1	3	0	9	35.26	2.545	8	0.4	1	0	17	45.73	1.984	8	3.4
2	0	6	23.30	3.818	8	1.2	4	0	2	35.46	2.532	8	0.5	2	0	16	45.79	1.981	8	2.0
2	1	5	23.34	3.811	16	12.1	2	0	12	35.92	2.500	8	8.9	3	3	10	45.94	1.975	8	1.4
2	2	0	24.59	3.620	4	5.2	4	1	1	36.27	2.477	16	0.3	4	3	5	46.26	1.963	16	1.2
1	0	9	24.88	3.579	8	2.8	3	2	7	36.55	2.458	16	0.3	5	0	5	46.26	1.963	8	0.7
3	0	1	26.24	3.396	8	20.2	4	1	3	37.04	2.427	16	0.3	3	1	14	46.40	1.957	16	2.5
2	1	7	26.61	3.349	16	0.2	3	3	2	37.64	2.390	8	1.5	4	1	11	46.72	1.944	16	1.3
2	2	4	26.72	3.336	8	46.7	4	0	6	38.52	2.337	8	0.9	4	2	10	47.72	1.906	16	0.4
2	0	8	27.09	3.292	8	25.1	1	1	14	38.72	2.326	8	0.1	3	0	15	47.80	1.903	8	0.9
3	0	3	27.26	3.271	8	5.9	2	1	13	39.34	2.290	16	1.0	5	2	1	47.92	1.898	16	1.4
3	1	2	28.04	3.182	16	1.3	4	2	0	39.35	2.289	8	2.5	5	1	6	48.01	1.895	16	6.7
1	1	10	28.74	3.106	8	1.2	3	2	9	39.54	2.279	16	0.7	4	3	7	48.14	1.890	16	1.1
3	0	5	29.21	3.057	8	10.4	4	2	2	39.72	2.269	16	1.2	1	1	18	49.34	1.847	8	2.2
3	1	4	29.48	3.030	16	2.2	2	2	12	40.14	2.247	8	3.0	5	2	5	49.75	1.833	16	0.5
1	0	11	29.89	2.990	8	15.3	3	3	6	40.56	2.224	8	0.8							
2	1	9	30.47	2.933	16	0.6	4	1	7	40.71	2.216	16	5.3							



CHEMICAL COMPOSITION:  $|Na_6(H_2O)_8|$  [Si₆Al₆O₂₄]

REFINED COMPOSITION:  $|Na_6(H_2O)_8|$  [Si₆Al₆O₂₄]

CRYSTAL DATA:  $P\overline{4}3n$  (No. 218) a = 8.848 Å b = 8.848 Å c = 8.848 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.091$ ,  $R_{\rm F} = 0.047$ 

REFERENCE: J. Felsche, S. Luger and Ch. Baerlocher, Zeolites 6 367–372 (1986).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	ļ	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	14.16	6.256	12	61.8	3	-	1	0	31.99	2.798	24	94.6	4	1	1	43.39	2.085	24	19.6
<b>2</b>	0	0	20.07	4.424	6	15.1	2	-	2	2	35.13	2.554	8	75.7	4	<b>2</b>	0	45.86	1.978	24	4.9
<b>2</b>	1	0	22.47	3.957	24	3.6	3	-	2	1	38.05	2.365	48	13.9	4	<b>2</b>	1	47.06	1.931	48	0.1
<b>2</b>	1	1	24.65	3.612	24	100.0	4	(	)	0	40.79	2.212	6	2.7	3	3	2	48.24	1.886	24	7.5
2	2	0	28.53	3.128	12	19.6	3	:	3	0	43.39	2.085	12	15.8							


СН	ΕM	IC.	AL CC	OMPOS	SITI	ON:	Ca ₈ (H Synthet	$_{2}O)$ tic 1	8	[Si ₄ Al ₈ terial	O ₂₄ ]								
R	EF	INI	ED CC	MPOS	SITI	ON:	$ Ca_8(H$	2O)	8	$[Si_4Al_8$	$O_{24}]$								
			CRY	YSTAL	, DA	TA:	$I\overline{4}3m$ ( a = 8.8 $\alpha = 90$ X-ray s	No. 25 °	21 Å le c	$b = \beta = \beta$ erystal	8.825 90° refiner	Å nent	c = 8.3 $\gamma = 90$ $R_{\rm w} = 0$	825 Å )° .012					
			ł	REFEF	REN	CE:	K. Sahl Z. Kris	l, tali	logr	× 152	13–21	(198)	0).						
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M
1 2 2 2	$egin{array}{c} 1 \\ 0 \\ 1 \\ 2 \end{array}$	${0 \\ 0 \\ 1 \\ 0 }$	14.19 20.12 24.71 28.61	6.240 4.412 3.603 3.120	$12 \\ 6 \\ 24 \\ 12$	$0.1 \\ 3.3 \\ 82.5 \\ 7.2$	$     \begin{array}{c}       3 \\       2 \\       3 \\       4     \end{array} $	$     \begin{array}{c}       1 \\       2 \\       2 \\       0     \end{array} $	${0 \\ 2 \\ 1 \\ 0 }$	32.07 35.23 38.16 40.90	2.791 2.548 2.359 2.206	$\begin{array}{c} 24\\ 8\\ 48\\ 6\end{array}$	$100.0 \\ 27.7 \\ 24.3 \\ 14.3$	3 $4$ $4$ $3$	${3 \\ 1 \\ 2 \\ 3 }$	${0 \\ 1 \\ 0 \\ 2}$	43.51 43.51 45.99 48.38	2.080 2.080 1.973 1.881	12 24 24 24

 $I_{\rm rel}$ 18.324.7

5.2



CHEMICAL COMPOSITION:	$ Na_8Cl_2 $ [Si ₈ Al ₂ Be ₂ O ₂₄ ]
	Ilimaussaq, South Greenland

 $\label{eq:refined_composition: Na_8Cl_2} \ [Si_8Al_2Be_2O_{24}]$ 

CRYSTAL DATA:  $I\overline{4}$  (No. 82) a = 8.640 Å b = 8.640 Å c = 8.873 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.030$ 

REFERENCE: I. Hassan and H. D. Grundy,

Canadian Mineralogist **29** 385–390 (1991).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	14.31	6.190	8	66.0	1	3	0	32.78	2.732	4	0.3	4	1	1	44.42	2.039	8	11.2
1	1	0	14.50	6.109	4	9.6	2	2	<b>2</b>	35.68	2.516	8	33.8	1	4	1	44.42	2.039	8	12.5
0	0	2	20.01	4.437	2	12.1	1	2	3	38.32	2.349	8	5.6	3	3	0	44.49	2.036	4	14.0
<b>2</b>	0	0	20.56	4.320	4	3.2	2	1	3	38.32	2.349	8	13.7	2	0	4	45.99	1.973	8	1.8
1	1	2	24.80	3.590	8	59.5	1	3	<b>2</b>	38.70	2.326	8	5.9	4	0	<b>2</b>	46.78	1.942	8	8.3
<b>2</b>	1	1	25.14	3.543	8	86.2	3	1	<b>2</b>	38.70	2.326	8	5.2	2	4	0	47.03	1.932	4	1.3
1	<b>2</b>	1	25.14	3.543	8	100.0	3	2	1	38.93	2.313	8	5.4	4	2	0	47.03	1.932	4	1.3
<b>2</b>	0	2	28.85	3.095	8	1.2	2	3	1	38.93	2.313	8	11.4	3	2	3	48.92	1.862	8	7.1
<b>2</b>	<b>2</b>	0	29.24	3.055	4	3.1	0	0	4	40.67	2.218	2	1.0	2	3	3	48.92	1.862	8	1.5
1	0	3	31.98	2.798	8	8.2	4	0	0	41.82	2.160	4	1.7	3	3	<b>2</b>	49.23	1.851	8	1.2
3	0	1	32.69	2.739	8	8.9	1	1	4	43.40	2.085	8	16.7							
3	1	0	32.78	2.732	4	5.9	3	0	3	43.88	2.063	8	22.6							



#### CHEMICAL COMPOSITION: [Si₁₆O₃₂]

## REFINED COMPOSITION: [Si₁₆O₃₂]

CRYSTAL DATA:  $P\overline{1}$  (No. 2)

a = 11.4114 Å b = 11.5268 Å c = 7.3770 Å  $\alpha = 94.661^{\circ}$  $\beta=96.206^\circ$  $\gamma = 104.892^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p}=0.0995,\,R_{\rm wp}=0.1188$ 

REFERENCE: P. Wagner, S. I. Zones, M. E. Davis and R. C. Medrud, Angew. Chem., Int. ed. 38 1269-1272 (1999).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	1	0	7.99	11.068	2	98.4	-1	1	2	26.19	3.403	2	1.6	3	2	1	36.97	2.431	2	0.2
1	0	0	8.09	10.929	2	100.0	1	-1	2	26.52	3.361	2	1.9	0	0	3	37.01	2.429	2	0.6
1	-1	0	9.73	9.091	2	22.8	0	1	2	26.61	3.349	2	2.4	-1	-1	3	37.29	2.412	2	1.6
0	0	1	12.15	7.286	2	8.4	-2	-2	1	26.80	3.327	2	2.8	1	-4	2	38.27	2.352	2	0.2
1	1	0	12.82	6.905	<b>2</b>	2.0	1	0	2	26.81	3.325	2	1.3	-2	0	3	38.49	2.339	2	0.2
-1	0	1	13.67	6.476	2	6.3	1	3	0	27.51	3.242	2	0.3	2	2	2	38.61	2.332	2	0.2
0	-1	1	13.77	6.430	2	6.5	-2	0	2	27.55	3.238	2	4.4	-3	-3	1	39.17	2.300	2	0.5
0	1	1	15.30	5.791	<b>2</b>	0.5	-3	2	1	27.60	3.231	2	0.2	-4	2	2	39.36	2.289	2	0.2
-1	1	1	15.45	5.737	2	1.6	0	-2	2	27.75	3.215	2	4.1	-1	-2	3	39.53	2.280	2	0.3
1	0	1	15.49	5.719	2	0.2	2	-3	1	27.85	3.203	2	0.9	-2	-4	1	40.38	2.234	2	0.2
1	-1	1	15.72	5.636	2	1.1	0	3	1	28.33	3.150	2	0.4	-1	-4	2	40.63	2.220	2	0.2
1	-2	0	15.89	5.577	2	0.5	-3	-1	1	28.61	3.120	2	0.4	0	5	0	40.76	2.214	2	0.2
0	2	0	16.02	5.534	2	0.2	-2	-1	2	29.18	3.060	2	0.4	-5	2	1	40.88	2.207	2	0.2
<b>2</b>	-1	0	16.05	5.523	2	0.3	1	1	2	29.44	3.034	2	1.8	5	0	0	41.30	2.186	2	0.3
<b>2</b>	0	0	16.22	5.464	2	0.2	3	-3	0	29.48	3.030	2	3.9	-4	4	1	41.40	2.181	2	0.3
-2	0	1	18.95	4.683	2	1.6	-1	2	2	29.91	2.988	2	1.9	-5	0	1	41.51	2.175	2	0.3
0	-2	1	19.00	4.670	2	1.3	2	2	1	30.32	2.948	2	3.2	3	-5	0	41.67	2.167	2	0.4
1	1	1	19.03	4.663	2	7.6	2	-1	2	30.44	2.937	2	1.6	-2	2	3	41.85	2.159	2	0.3
-2	1	1	19.39	4.578	2	9.3	0	2	2	30.88	2.896	2	0.3	4	-4	1	41.85	2.158	2	0.5
2	-2	0	19.53	4.545	<b>2</b>	2.5	1	-4	0	31.14	2.872	2	0.3	5	-3	0	42.02	2.150	2	0.4
1	-2	1	19.60	4.530	2	14.2	4	-1	0	31.55	2.835	2	0.4	2	-2	3	42.52	2.126	2	0.2
1	2	0	19.83	4.477	2	4.2	3	-3	1	32.20	2.780	2	0.6	3	3	1	43.01	2.103	2	2.5
2	1	0	19.96	4.449	2	6.8	0	4	0	32.35	2.767	2	1.2	3	-5	1	43.17	2.095	2	0.4
-1	2	1	20.50	4.333	2	0.3	4	-2	0	32.42	2.761	2	0.4	0	5	1	44.09	2.054	2	0.6
0	2	1	21.23	4.184	2	0.2	4	0	0	32.78	2.732	2	0.9	-3	2	3	44.14	2.052	2	0.4
-1	-2	1	21.72	4.091	2	0.9	-2	-2	2	32.85	2.727	2	0.5	-5	1	2	44.63	2.030	2	0.3
-2	-1	1	21.74	4.089	2	2.8	3	2	0	32.86	2.726	2	0.2	1	-5	2	44.79	2.024	2	0.4
-2	2	1	22.87	3.888	2	6.7	-2	-3	1	33.19	2.699	2	0.3	2	-3	3	44.84	2.021	2	0.4
2	-2	1	23.25	3.825	2	4.5	0	-4	1	33.31	2.690	2	0.7	5	0	1	44.86	2.020	2	0.3
1	-3	0	23.29	3.820	2	2.3	-4	0	1	33.45	2.679	2	2.0	-2	3	3	45.82	1.980	2	0.2
3	-1	0	23.57	3.774	2	2.4	-4	2	1	33.79	2.652	2	0.2	-4	-3	1	46.07	1.970	2	0.5
0	3	0	24.12	3.689	2	0.4	2	-4	1	33.89	2.645	2	1.2	-4	1	3	46.48	1.954	2	0.4
0	0	2	24.43	3.643	2	0.2	-1	4	1	34.50	2.600	2	0.6	3	-2	3	46.70	1.945	2	0.2
3	0	0	24.43	3.643	2	0.9	-2	4	1	34.98	2.565	2	0.2	-5	4	1	46.72	1.944	2	0.7
-1	0	2	24.70	3.604	2	4.0	2	-3	2	35.01	2.563	2	0.7	4	-5	1	47.00	1.933	2	0.7
1	2	1	24.82	3.587	2	4.5	3	-4	0	35.07	2.559	2	0.4	0	3	3	47.07	1.930	2	0.2
0	-1	2	24.85	3.583	2	3.4	4	-1	1	35.20	2.549	2	0.4	-3	3	3	47.55	1.912	2	0.2
2	1	1	25.01	3.560	2	2.9	-1	3	2	35.22	2.548	2	1.5	-4	2	3	47.89	1.899	2	0.3
2	-3	0	25.24	3.528	2	3.2	4	-3	0	35.24	2.546	2	0.3	-5	-2	1	48.40	1.881	2	0.3
3	-2	0	25.41	3.505	2	2.1	-2	3	2	35.82	2.507	2	0.2	2	-6	1	48.41	1.880	2	0.3
-3	1	1	25.47	3.497	2	2.1	3	-1	2	35.93	2.499	2	0.4	3	-3	3	48.46	1.879	2	0.3
1	-3	1	25.55	3.486	2	1.9	0	4	1	36.00	2.494	2	0.9	2	2	3	49.10	1.855	2	0.2
0	-3	1	25.80	3.453	2	2.2	4	0	1	36.64	2.453	2	0.8	-4	-3	2	49.25	1.850	2	0.4
2	2	0	25.80	3.453	2	6.8	-1	0	3	36.82	2.441	2	0.3	-1	-1	4	49.74	1.833	2	0.6
-3	0	1	25.84	3.448	2	2.4	-4	3	1	36.84	2.439	2	0.2	3	4	1	49.90	1.828	2	0.3



СН	EM	IIC	AL CC	OMPOS	SITI	ON:	Na _{1.28} C Iceland	a _{4.1}	₈ M	g _{0.18} (H	$[_{2}O)_{34.}$	1 [S	i _{25.7} Al	10.3O ₇₂ ]						
R	EF	INI	ED CO	MPOS	SITI	ON:	Na _{1.76} C	$a_4(1)$	H ₂ (	$O)_{29.4}$	$[Si_{25.68}]$	$Al_{10}$	$_{0.32}O_{72}]$							
			CRY	YSTAL	DA	TA:	C12/m1	L (N	Jo.	12) un	ique a	xis k	o. cell o	choice 1						
			0-0-				a - 13.6	4 Å		h - 1	8 24 Å		$c = 1^{\circ}$	1 97 Å						
							$\alpha = 10.0$ $\alpha = 00^{\circ}$	1 1 1		<i>B</i> —	198 0°		$\alpha = 0$	n°						
							$\alpha = 90$	1		$\rho =$	120.0		$\gamma = 9$	100						
							X-ray sir	igle	e cr	ystal re	efineme	ent,	R = 0.	123						
			Ι	REFEF	REN	CE:	E. Galli,	t	D	000 <b>7</b> 0	0/1 (1	1071	)							
							Acta Crį	jsı.	D.	21 000	-841 (1	1971	).							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
-1	1	1	9.46	9.349	4	0.6	6 1	3	2	29.93	2.985	4	14.6	-6	2	3	40.91	2.206	4	1.6
0	2	0	9.70	9.120	2	100.0	) 0	0	3	30.19	2.960	2	5.5	3	1	2	41.27	2.187	4	1.1
0	0	1	9.96	8.881	2	24.7	7 0	6	1	31.09	2.876	4	2.3	-5	5	3	41.60	2.171	4	0.5
-2	0	1	12.98	6.819	2	4.2	2 0	2	3	31.78	2.816	4	4.4	-5	5	2	41.71	2.165	4	1.4
0	2	1	13.92	6.363	4	4.0	) -3	5	1	31.89	2.806	4	6.0	0	2	4	41.88	2.157	4	2.7
-2	2	1	16.23	5.461	4	2.5	5 -3	1	4	32.15	2.784	4	1.2	0	6	3	42.63	2.121	4	5.7
-2	0	2	16.28	5.444	2	5.3	3 -2	6	1	32.24	2.777	4	26.1	-2	0	5	42.66	2.119	2	1.7
2	0	0	16.49	5.374	2	4.8	3 3	1	1	32.57	2.749	4	2.3	-2	8	2	43.01	2.103	4	4.1
-1	3	1	16.70	5.308	4	7.7	( -2	0	4	32.82	2.729	2	1.6	2	8	0	43.10	2.099	4	0.6
1	び 1	0	10.75	5.292	4	3.1	L -4	0	4	32.90	2.(22	2	19.0	-3 1	37	5	43.24	2.092	4	0.6
-1	1	2	10.90	5.229	4	2.6	) 4 7 4	0	1	33.34	2.687	2	2.2	-1	(	ა ი	43.53	2.079	4	1.4
-2	2	2	18.98	4.074	4	39.7	-4	4	1	34.40	2.602	4	1.8	1	(	2	43.04	2.074	4	0.5
2	2	0	19.17	4.630	4	41.4		2	2	34.62	2.591	4	9.6	-2	2	5	43.85	2.064	4	4.3
0	4	0	19.47	4.500	2	2.4 E 0	4 4	2	0	34.80	2.578	4	3.3	-1	Э Е	4	43.90	2.003	4	2.0
0 2	1	2	20.00	4.440	2 4	0.0 	5 - J J - J	9 9	ა 4	04.07 25.10	2.075	4	9.9 5 1	-0	5	4	44.05	2.057	4	1.0
-0 9	1	2	20.08	4.294	4	20.0	) - ə ) 9	3 5	4	55.10 25.11	2.000	4	0.1 0.0	1	9 9	3 5	44.00	2.050	4	2.9 6.2
-3	1	1	20.81	4.208	4	12.2 61.0	2 3	Э 7	0	33.11 25 45	2.000	4	8.2	-0	ა ი	о 9	44.18	2.050	4	0.5
-1	3	2	21.88 21.01	4.001 4.057	4	01.9 25 9		( 9	1	35.45 25.40	2.532	4	2.4	2	2	3 1	44.20	2.049	4	1.1
1	4	1	21.91	4.037	4	55.8 60.4	5 J	о С	1	33.49 25 90	2.329	4	2.1	-0 6	3 4	1	44.50	2.042	4	2.0
1	ა ი	1	22.00	4.059	4	145		5	2	00.00 05.00	2.308	4	4.9	-0	4	3 4	44.04	2.034 2.021	4	2.2 1 E
0	2 4	1	22.21	3.992 2 701	4	14.0	) -1	3	ა ე	00.00 96 10	2.000	4	0.0	-2	0	4	44.02	2.031	4	1.0
-2	4	1 2	23.47	5.791 2 744	4	2.4 19.2		4	ა ⊿	26.16	2.400 2.477	4	4.0	5	0	2	44.08	2.028	4	$1.9 \\ 7.7$
-2	0	1	23.70	3 600	2	12.0	) -1	2	4 2	36.20	2.411	4	0.0 3 1		6	0	44.71	2.027 2.013	4	0.4
2	1	2	24.00 25.02	3.099	2 1	15.4		1	4	36 41	2.409	4	2.1	4	0	1	45.05	2.013 2.013	4 9	0.4
-0 2	3	ა 1	25.02	3.500	4	1.0	) -0 2 1	1	4	36.44	2.407	4	ა.ა ენ	-0	4	1	45.04	2.013 1.007	2 1	1.2 9.4
-0 9	4	2	25.02 25.48	3.009	4	1.0	) 5	3	2	36 52	2.400 2.461	4	2.0 4.2	4	4	1	45.43	1.997	4	2.4 0.7
2	1	0	25.40	3.450 3.477	1	6.2	2 -0 2 -5	1	1	36 79	2.401	1	9.2	-6	л 2	5	45.60	1.000	1	0.1
1	5	0	25.02 25.79	3 454	1	2.4	 1	6	3	38.13	2.440	1	3.0	-0 -6	1	2	45.88	1.000 1 078	1	$\frac{0.5}{2.1}$
2	2	1	26.00	3 497	1	2.4	£ -2	7	2	38.28	2.300 2 351	1	0.5 9 1	-0	8	3	46.64	1.977	1	0.5
-4	õ	2	20.00 26.13	3.410	2	22.4	$\frac{1}{1}$	6	1	38.33	2.301 2.349	4	1.8	-2	1	$\frac{3}{4}$	40.04 47.12	1 929	4	0.9
-1	1	3	20.10 26.30	3 389	4	11.3	£	7	1	38.35	2.345 2.347	4	2.1	-1	4	5	47.12	1.525 1.922	4	11
-1	1	2	26.00 26.47	3.368	4	87	7 -2	4	4	38.44	2.341 2.342	4	0.7	-2	9	2	47.88	1.922	4	0.9
_1	0	3	20.41	3 197	2	16.4	1 2	1	- - 2	38 73	2.342	1	0.1	-1	a	1	47.00	1.500	1	1.8
	2	2	27.50	3 10/	1	25.1	£ 2	1	0	38.00	2.525 2 315	1	3.6	-4	8	2	48.00	1.895	1	2.6
-4	1	2	27.94	3 181	4	20.1	7 -5	3	4	30.00	2.310 2 304	4	0.8	-4	5	$\frac{2}{2}$	48.00	1.835	4	2.0
_1	0	1	20.00 28.16	3 160	2	14.6		3	3	30 11	2.304	1	0.0 2 3	-5	7	3	48.54	1.000 1.875	1	1.5
-3	3	3	28.10	3 116	<u>_</u> 	14.0 0 2	, <u> </u>	0	3	39.65	$\frac{2.505}{2.273}$	л 9	2.5 3.8	-0 _1	0	6	48 64	1.879	ч 2	1.0 0.6
3	3	0 D	28.04	3 087	т Л	9.J 2.7	, -0 7 _1	0	5	40.07	2.215	2	1 /	-4 _5	5	5	48 70	1.870	<u>_</u> 1	3.6
0	6	n	29.32	3 040	л 2		3 _3	7	1	40.25	2.200 2.241	<u>4</u>	1.4	-5	1	6	48 95	1 861	- - -	0.6
-1	5	2	29.00	3 033	<u>-</u> 4	24 A	-3 1 -3	5	4	40.45	2.230	4	24	-5	5	0	49.20	1.852	4	1.3
1	5	1	29.40 29.54	3.000	т 4	24.4	3 Ι Δ	0	1	40.62	2.200 2.221	2	10	-4	8	1	49 23	1.851	4	0.8
-4	2	3	29.04 29.60	3.024	т 4	10.1	2 0	0	4	40.62	2.221 2.220	2	2.0		3	4	49.31	1 848	4	1.4
-1	3	3	29.78	3,000	4	10.2	3	1	5	40.79	2.212	4	1.7	-3	9	2	49.48	1.842	4	0.8
-4	2	1	29.85	2.993	4	5.1	- 3	5	1	40.80	2212	4	1.3	5	1	1	49.65	1.836	1	1.8



 $\label{eq:chemical composition: CHEMICAL COMPOSITION: CHEMICAL COMPOSITION: CHEMICAL COMPOSITION: CHEMICAL COMPOSITION: Chemical Comparison of the compari$ 

REFINED COMPOSITION:  $|Ca_8(H_2O)_{55.52}|$  [Si₅₆Al₁₆O₁₄₄]

CRYSTAL DATA: Fmmm (No. 69) a = 13.599 Å b = 18.222 Å c = 17.863 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.082$ 

REFERENCE: E. Galli and A. Alberti,

Bull. Soc. Fr. Minéral. Crystallogr. 98 11–18 (1975).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	ŀ	ļ	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	9.51	9.304	8	2.7	(	)	6	<b>2</b>	31.10	2.875	4	3.0	5	1	5	42.04	2.149	8	1.3
0	2	0	9.71	9.111	2	100.0	(	)	<b>2</b>	6	31.62	2.830	4	2.5	0	6	6	42.52	2.126	4	3.0
0	0	2	9.90	8.932	2	36.2	:	3	5	1	31.90	2.805	8	1.6	2	0	8	42.62	2.121	4	0.8
<b>2</b>	0	0	13.02	6.799	2	0.2	:	3	1	5	32.28	2.773	8	3.8	2	8	2	43.09	2.099	8	2.3
0	2	2	13.88	6.378	4	1.5	، ۲	2	6	0	32.28	2.773	4	18.2	3	3	7	43.33	2.088	8	0.8
<b>2</b>	2	0	16.27	5.449	4	6.3	4	Ł	0	4	33.12	2.705	4	13.5	1	7	5	43.53	2.079	8	1.1
<b>2</b>	0	2	16.38	5.410	4	14.7	Ę	5	1	1	33.69	2.660	8	0.6	2	2	8	43.82	2.066	8	3.3
1	3	1	16.74	5.297	8	7.1	، ۲	2	6	2	33.85	2.648	8	0.1	1	5	7	43.82	2.066	8	5.6
1	1	3	16.97	5.225	8	3.4	، ۲	2	<b>2</b>	6	34.32	2.613	8	6.6	5	5	3	44.25	2.047	8	1.8
<b>2</b>	2	2	19.08	4.652	8	80.2	4	Ł	4	2	34.41	2.606	8	3.2	5	3	5	44.44	2.039	8	11.4
0	4	0	19.49	4.556	2	2.8	4	Ł	<b>2</b>	4	34.59	2.593	8	2.3	6	4	0	44.65	2.029	4	0.7
0	0	4	19.88	4.466	2	3.2	÷	3	5	3	35.00	2.564	8	13.8	2	6	6	44.66	2.029	8	0.7
3	1	1	20.80	4.271	8	35.5	÷	3	3	5	35.23	2.547	8	4.5	0	8	4	44.66	2.029	4	2.0
1	3	3	21.90	4.058	8	90.3	-		7	1	35.47	2.531	8	1.3	6	0	4	44.84	2.021	4	0.7
0	4	2	21.90	4.058	4	31.4	(	)	6	4	35.75	2.511	4	3.0	4	6	4	44.87	2.020	8	0.3
0	2	4	22.17	4.010	4	12.7	-	-	5	5	35.81	2.507	8	0.4	4	4	6	45.11	2.010	8	1.1
2	4	0	23.51	3.785	4	1.5	(	)	4	6	36.04	2.492	4	4.2	0	4	8	45.22	2.005	4	0.4
2	0	4	23.84	3.733	4	21.8	-		1	7	36.15	2.485	8	2.7	6	4	2	45.86	1.979	8	1.1
3	3	1	25.01	3.560	8	0.6	Ę	5	3	1	36.55	2.459	8	0.1	6	2	4	46.00	1.973	8	1.4
3	1	3	25.17	3.538	8	0.6	ţ	ò	1	3	36.66	2.451	8	6.1	1	1	9	46.51	1.953	8	0.8
2	4	2	25.56	3.485	8	7.6	4	2	6	4	38.20	2.356	8	3.5	2	8	4	46.72	1.944	8	0.1
2	2	4	25.79	3.454	8	1.5	-	-	7	3	38.31	2.349	8	3.1	3	5	7	47.92	1.898	8	0.7
1	5	1	25.79	3.454	8	0.2	4	2	4	6	38.47	2.340	8	0.5	1	9	3	47.93	1.898	8	1.7
4	0	0	26.21	3.400	2	16.0	4	Ł	4	4	38.71	2.326	8	1.3	4	8	0	48.08	1.892	4	3.1
1	1	5	26.25	3.395	8	15.0	-	-	3	7	38.85	2.318	8	2.3	5	7	1	48.68	1.870	8	1.7
0	4	4	27.98	3.189	4	3.0	(	5	0	0	39.77	2.266	2	3.7	1	3	9	48.73	1.869	8	0.1
4	2	0	28.01	3.185	4	21.9	4	Ł	6	0	39.80	2.265	4	0.1	4	0	8	48.79	1.866	4	0.2
4	0	2	28.08	3.177	4	24.1	4	Ł	0	6	40.26	2.240	4	2.1	5	5	5	48.95	1.861	8	2.8
3	3	3	28.79	3.101	8	11.1	÷	3	7	1	40.27	2.240	8	0.6	5	1	7	49.21	1.851	8	2.5
0	6	0	29.41	3.037	2	5.2	(	)	0	8	40.39	2.233	2	2.0	4	8	2	49.22	1.851	8	0.8
1	5	3	29.48	3.030	8	45.7	:	3	5	5	40.58	2.223	8	2.4	6	4	4	49.33	1.847	8	0.2
1	3	5	29.75	3.003	8	22.7	:	3	1	7	40.88	2.207	8	2.8	7	3	1	49.52	1.841	8	0.5
4	2	2	29.78	3.000	8	11.7	(	5	2	0	41.04	2.199	4	1.8	3	9	1	49.57	1.839	8	0.4
0	0	6	30.01	2.977	2	3.4	4	Ł	6	2	41.11	2.195	8	0.3	7	1	3	49.61	1.837	8	0.3
2	4	4	30.97	2.887	8	0.1	(	)	2	8	41.64	2.169	4	1.6	4	2	8	49.88	1.828	8	0.4



CH	ΕN	IIC	AL CO	OMPOS	ITI(	ON:	Na _{10.9} K Capo Pu	2.1N 11a,	Лg ₀ Sar	_{.3} Ca _{1.7} dinia,	(H ₂ O). Italy	51.6	[Si _{55.6} ]	Al _{16.4} O	144	]			
R	EF	IN	ED CC	MPOS	ITIC	)N:	Na _{9.812} I	K _{1.9}	12N	[g _{0.032} (	$Ca_{1.52}($	$H_2O$	$)_{58.56}$	$[Si_{55.58}]$	$Al_1$	6.42	O ₁₄₄ ]		
			CRY	YSTAL	DAT	ГА:	$Amma (a = 13.6)$ $\alpha = 90^{\circ}$ X-ray sin	No. 43 L ngle	63 Å cry	b) cab b = 1 $\beta = 9$ $\beta$ ystal re	setting 8.200 90° efineme	Å ent,	$c = 17$ $\gamma = 90$ $R_{\rm w} = 0$	7.842 Å 0° ).067	L				
			]	REFER	ENC	CE:	E. Galli <i>Bull. So</i>	and c. F	l A. <i>r. 1</i>	Alber <i>Minéra</i>	ti, <i>l. Crys</i>	talla	ogr. <b>98</b>	331–34	40 (	(197	75).		
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M
0	1	1	6.94	12.741	4	3.1	4	2	2	29.71	3.007	8	16.5	3	1	7	40.89	2.207	8
1	1	1	9.50	9.312	8	5.0	3	2	4	29.72	3.006	8	0.4	6	2	0	40.91	2.206	4
0	2	0	9.72	9.100	2	100.0	1	3	5	29.78	3.000	8	25.0	0	8	2	40.94	2.204	4
0	0	2	9.91	8.921	2	48.5	0	0	6	30.05	2.974	2	4.2	3	4	6	41.35	2.184	8
1	0	2	11.85	7.466	4	0.5	4	1	3	30.61	2.920	8	0.2	4	2	6	41.49	2.176	8
2	0	0	12.98	6.821	2	5.6	2	4	4	30.98	2.886	8	0.5	5	5	1	41.68	2.167	8
2	1	1	14.73	6.014	8	0.4	0	6	2	31.14	2.872	4	0.8	0	2	8	41.70	2.166	4
0	3	1	15.43	5.744	4	1.0	0	2	6	31.65	2.827	4	2.8	5	1	5	41.98	2.152	8
2	2	0	16.24	5.458 5.410	4	0.4	1 9	6 E	2	31.84	2.810	8	0.8	6	2	2	42.20	2.142	8
2 1	2	2 1	10.50 16.75	5 204	4	2.2 4.7	່ <u>ຈ</u>	1 1	5	31.09	2.000 2.775	0	2.7 1.7	0	0	Q Q	42.07	2.123 2.120	4
1	1	2 1	16.08	5 223	8	4.7	ა ე	6	0	32.20	2.113 2 772	4	1.7 15.7		7	5	42.05	2.120 2.101	4
1 9	2	ა ე	10.98	0.220 4.656	8	9.0 41.0	2 1	4	0	32.30	2.112 2 720	4	10.7	0	8	2	43.04	2.101 2.008	4 8
0	2 1	0	19.00 10.51	4.050	2	41.0	4	4	4	32.02	2.729	4	10.2	2	3	2 7	43.12	2.098	8
0	4	4	19.01	4.000	2	2.6	4 5	1	4 1	33.00	2.109	8	10.7	1	7	5	43.34	2.000 2.077	8
2	3	1	20.21	4.304	8	0.2	2	6	2	33.87	2.000 2.647	8	1.0	5	4	4	43.68	2.011 2.072	8
3	1	1	20.74	4.283	8	26.5	2	2	6	34.34	2.611	8	7.3	$\frac{3}{2}$	2	8	43.85	2.065	8
Ő	3	3	20.92	4.247	4	0.6	4	4	2	34.36	2.610	8	1.0	1	5	7	43.87	2.064	8
1	0	4	20.95	4.240	4	0.2	4	2	4	34.54	2.597	8	3.5	4	7	1	44.09	2.054	8
1	3	3	21.92	4.055	8	69.6	0	7	1	34.87	2.573	4	0.6	5	5	3	44.19	2.050	8
0	4	2	21.93	4.053	4	17.0	3	5	3	34.99	2.564	8	11.0	5	3	5	44.38	2.041	8
3	0	2	21.94	4.052	4	0.2	3	3	5	35.23	2.548	8	2.8	6	4	0	44.54	2.034	4
0	2	4	22.19	4.005	4	8.7	1	$\overline{7}$	1	35.51	2.528	8	0.6	2	6	6	44.69	2.028	8
1	4	2	22.89	3.885	8	0.4	0	1	7	35.56	2.524	4	0.2	0	8	4	44.72	2.027	4
1	2	4	23.14	3.843	8	0.3	0	6	4	35.80	2.508	4	4.1	6	0	4	44.73	2.026	4
2	4	0	23.50	3.785	4	0.2	0	4	6	36.08	2.489	4	3.7	4	6	4	44.85	2.021	8
2	0	4	23.83	3.733	4	28.1	1	1	7	36.19	2.482	8	0.4	4	4	6	45.09	2.011	8
2	3	3	24.69	3.605	8	0.5	4	5	1	36.45	2.465	8	0.3	0	9	1	45.12	2.009	4
3	3	1	24.97	3.565	8	1.8	5	3	1	36.45	2.465	8	0.6	0	4	8	45.28	2.003	4
0	1	5	25.44	3.502	4	0.4	5	1	3	36.57	2.457	8	5.3	3	8	2	45.74	1.984	8
2	4	2	25.56	3.485	8	16.5	1	4	6	36.70	2.449	8	0.3	6	4	2	45.75	1.983	8
2	2	4	25.79	3.454	8	0.3	4	1	5	36.78	2.443	8	0.4	1	4	8	45.79	1.981	8
4	0	0	26.13	3.411	2	18.5	2	5	5	37.68	2.387	8	0.2	0	2	4	45.89	1.977	8
1	1	5	26.27	3.392	8	13.2	2	6	4	38.23	2.354	8	2.2	1	9	3	47.98	1.896	8
4	1	1	27.00	3.295	8	19.0	1	1	3 6	38.33	2.347	8	1.0	2	1	9	48.05	1.893	8
4 1	2 0	บ จ	27.94 98.01	3.194 3.196	4± 1	10.9	л	4 1	0 1	38 60 30.00	∠. <b>J</b> JO J 200	0	0.0	4 ਵ	0 7	1	40.07 18 61	1.090	4 Q
4 0	1	∠ ∧	20.01 28.01	3.100	-± 1	19.7	4 ਵ	4 0	4 1	38.68	4.040 9.292	0	0.0	9 5	1 5	1 5	40.04	1.072	o Q
2 2	4 0	4 1	20.01 28.02	0.100 2 194	-± 1	ວ.9 	0 1	2 2	4 7	38 80	2.020 9.216	4 8	0.4	9 5	1	7	40.90	1.002	o Q
ა ე	5	4 1	20.02	3.164 3.161	4 8	0.2	1	0 0	0	30.69	2.510 2.974	0 9	0.2 9.7	0 /	1 8	1 9	49.17 40.91	1.000	8
2	1	5	28.25	3 115	8	1.0 0.0	1	6	n	39.77	2.214 2.267	<u>2</u> <u>1</u>	0.5	4 6	⊿	<u>2</u> 1	49.21	1 851	8
3	3	3	28.00	3 104	8	15.1	4 /	0	6	40.23	2.201 2.241		1.5	7	3	т 1	49.38	1.846	8
0	6	0	29.70	3 033	2	3.1	4	7	1	40.25	$\frac{2}{2}, \frac{2}{3}$	8	0.3	7	1	3	49.30	1 843	8
1	5	3	29.51	3.027	8	56.1	0	0	8	40.44	2.230	2	2.2	3	9	1	49,60	1.838	8
3	4	$\tilde{2}$	29.52	3.026	8	0.8	3	$\tilde{5}$	$\tilde{5}$	40.58	2.223	8	1.5	4	$\tilde{2}$	8	49.87	1.829	8

 $I_{\rm rel}$ 1.40.90.30.60.20.31.12.10.23.60.40.21.31.60.70.22.02.30.30.87.81.60.71.20.20.71.40.30.20.30.70.30.31.00.21.61.14.51.10.20.6 0.30.90.2



 $\begin{array}{c} -2 \\ 1 \\ -1 \\ 1 \\ 2 \\ 0 \\ -2 \\ -1 \\ 3 \\ -1 \\ 2 \\ 0 \\ 2 \\ -2 \\ -1 \\ -3 \\ 2 \\ -3 \\ -3 \end{array}$ 

CH	[EN	1IC	CAL CO	OMPOS	SITI	ON:	$ (C_{13}H_{24}) $ $C_{13}H_{24}N$	4N)4 VF =	$_{4.1}F$ = N	_{3.3} (OH ( <i>,N,N-</i> t	) _{0.8} (H ₂ trimeth	2O)1 nyl-1	.6   [Si ₆₄ -adama	O ₁₂₈ ] Intamm	noni	iun	1 fluori	de	
F	REF	'IN	ED CO	OMPOS	ITIC	ON:	$ C_{52}N_4F$	2.84	[S	$i_{64}O_{128}$	3]								
			CR	YSTAL	DA	ΓA:	$P1 2_1/n$ a = 12.9 $\alpha = 90.0$ X-ray si	1 (1 9594 )° ngle	No. Å e cry	14) un b = 2 $\beta = 1$ ystal re	ique a 21.7919 101.855 efineme	xis k ) Å 5° ent, 1	b, cell c c = 13 $\gamma = 90$ $R_{\rm F_{obs}} =$	hoice 2 3.5980 4 0.0° = 0.0811	Å Å	$vR_{ m F}$	$_{72} = 0.1$	1657	
				REFER	ENG	CE:	М. А. С	lamł	olor	, MJ.	Diaz-	Caba	anas, J.	Perez-	Pa	rier	nte, S.	J. Teat	t,
W. Clegg, I. J. Shannon, P. Lightfor Angew. Chem., Int. Ed. <b>37</b> 2122–2															Vrig	tht	and R	. E. Mo	orris.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																		
L	REFERENCE:       M. A. Camblor, MJ. Diaz-Cabanas, J. Perez-Pariente, S. J. Teat, W. Clegg, I. J. Shannon, P. Lightfoot, P. A. Wright and R. E. Morr Angew. Chem., Int. Ed. <b>37</b> 2122–2126 (1998).         k       l       2θ       d       M       I       20       20       A       II       30       22.92       3.879       4       12.3       1       3       4       31.66       2.826       4         M       1       1       1       23       28       2805       4       11.4       12.3023       1       3       4       31.66       2.826       4															M			
n	$\kappa$	ι	20	a	M	$I_{\rm rel}$	n	$\kappa$	ι	20	a	M	$I_{\rm rel}$	n	$\kappa$	ι	20	a	M
1	1	0	8.07	10.962	4	11.0	) 1	1	3	22.92	3.879	4	12.3	1	3	4	31.66	2.826	4
0	2	0	8.11	10.896	2	100.0	) 2	4	1	23.38	3.805	4	15.4	-3	2	4	31.70	2.823	4
-1	0	1	8.59	10.298	2	25.2	2 3	1	1	23.71	3.753	4	6.4	0	6	3	31.84	2.810	4
-1	1	1	9.50	9.311	4	70.5	5 -2	4	2	23.78	3.742	4	11.2	-1	7	2	31.91	2.805	4
0	2	1	10.49	8.431	4	17.5	) -3	3	1	24.08	3.695	4	3.7	2	7	0	32.03	2.795	4
1	0	1	10.58	8.363	2	44.6	) 2	3	2	24.56	3.624	4	19.4	-4	2	3	32.21	2.779	4
1	2	0	10.70	8.265	4	7.1	l -1	5	2	24.64	3.614	4	2.8	-3	6	1	32.29	2.772	4
0	0	2	13.31	0.054	2	2.0	) 2	5	1	24.79	3.592	4	0.1	4	4	0	32.68	2.740	4
0	3	1	13.89	0.370	4	1.4	± -2	5 C	1	24.91	3.574	4	19.5	2	0	4	32.87	2.725	2
2	1	0	13.90	0.341 6.080		11.0	) 1 3 9	0 9	0	20.01	0.492 9.474	4	1.9	-0 9	3 5	49	აა.04 ვე იე	2.111 2.607	4
4	1	0	14.00	0.009 5.670	4	16.5			2	25.05	0.474 9.440	4	2.0	-0	0	ა 1	00.44 99 50	2.097	4
2	2 1	2 1	15.00 17.17	5 165	4	10.7	) Q	4	ა ვ	25.90	3.440	4	4.2	1	0	1	33.65	2.009	4
2	0	2	17.17 17.99	5.100 5.140	4 9	0.4 1.5	2 -0 7 9	5	1	20.28	3 371	4	0.0 0.0	1	2	5	33.05	2.003 2.630	4
0	4	1	17.22 17.50	5.149 5.042	4	17 /	′ <u>∠</u> 1 _1	1	1	20.44 26.58	3 353	4	2.2	-1	5	1	34 51	$\frac{2.039}{2.500}$	4
_2	1	2	17.00 17.70	5.042 5.011	4	7 5	+ -1 5 3		1	26.58	3 340	4	1.4 14.7	-4	8	1	34.63	2.535	4
1	4	õ	17.70 17.72	5.011 5.006	4	12.5	3 9	4	2	26.05 26.88	3.317	4	9.5	-3	4	4	34 84	2.550 2.575	4
0	3	2	18.08	4.907	4	12.0	, <u>2</u> 1 2	1	3	20.00 27 10	3 290	4	3.2	2	3	4	35.18	2.570 2.551	4
1	2	$\frac{1}{2}$	18.20	4.874	4	7 2	2 0	1	4	27.11	3.289	4	8.0	-4	4	3	35.31	2.542	4
-1	3	$\overline{2}$	18.37	4.829	4	4.5	3 3	1	2	27.53	3.240	4	3.5	-5	2	ĭ	35.61	2.521	4
-1	4	1	18.42	4.816	4	2.2	2 -2	0	4	27.60	3.232	2	5.3	$\tilde{5}$	1	0	35.63	2.520	4
2 3 0 18.57 4.777 4 38.5 2 2 3 28.03 3.183 4 2.9 1 5 4 35.80 2.508												2.508	4						
-2	3	1	18.74	4.735	4	14.1		2	4	28.04	3.182	4	7.3	3	7	0	35.82	2.507	4

 $I_{\rm rel}$ 

3.2

2.63.1

3.6

4.94.11.72.04.93.01.62.82.11.5

4	1	17.59	5.042	4	17.4	-1	1	4	26.58	3.353	4	1.4	-4	5	1	34.51	2.599	4	3.0
1	2	17.70	5.011	4	7.5	3	4	0	26.69	3.340	4	14.7	1	8	1	34.63	2.590	4	3.2
4	0	17.72	5.006	4	12.3	2	4	2	26.88	3.317	4	9.5	-3	4	4	34.84	2.575	4	1.3
3	2	18.08	4.907	4	12.1	2	1	3	27.10	3.290	4	3.2	2	3	4	35.18	2.551	4	1.2
2	2	18.20	4.874	4	7.2	0	1	4	27.11	3.289	4	8.0	-4	4	3	35.31	2.542	4	2.4
3	2	18.37	4.829	4	4.3	3	1	2	27.53	3.240	4	3.5	-5	2	1	35.61	2.521	4	1.7
4	1	18.42	4.816	4	2.2	-2	0	4	27.60	3.232	2	5.3	5	1	0	35.63	2.520	4	1.9
3	0	18.57	4.777	4	38.5	2	2	3	28.03	3.183	4	2.9	1	5	4	35.80	2.508	4	2.4
3	1	18.74	4.735	4	14.1	0	2	4	28.04	3.182	4	7.3	3	7	0	35.82	2.507	4	2.4
2	2	19.06	4.656	4	12.4	4	0	0	28.14	3.171	2	1.5	-2	8	1	35.97	2.497	4	1.3
4	1	19.45	4.565	4	9.3	-1	6	2	28.18	3.166	4	3.5	-5	2	2	36.16	2.484	4	1.8
0	3	19.80	4.484	2	36.3	2	6	0	28.32	3.152	4	2.0	3	4	3	36.19	2.482	4	2.3
1	3	20.22	4.392	4	35.5	3	2	2	28.44	3.138	4	3.4	-3	1	5	36.23	2.479	4	3.8
3	2	20.37	4.359	4	12.3	-3	3	3	28.76	3.104	4	4.3	2	6	3	36.62	2.454	4	1.6
3	1	20.70	4.290	4	23.3	-2	2	4	28.81	3.099	4	2.8	2	4	4	36.88	2.437	4	1.2
4	2	21.08	4.215	4	2.4	-1	3	4	29.04	3.075	4	1.5	3	7	1	37.30	2.411	4	1.3
3	2	21.15	4.201	4	2.3	1	1	4	29.41	3.037	4	3.6	4	6	0	37.66	2.389	4	3.1
4	2	21.33	4.166	4	4.8	3	5	0	29.43	3.035	4	2.0	4	7	0	40.61	2.221	4	1.2
1	0	21.41	4.150	4	2.4	0	7	1	29.47	3.031	4	1.9	-5	4	3	40.69	2.217	4	1.7
2	3	21.43	4.147	4	2.7	2	3	3	29.52	3.026	4	2.1	3	4	4	41.29	2.186	4	1.2
4	0	21.50	4.132	4	27.0	1	7	0	29.54	3.023	4	7.3	-5	6	2	43.34	2.088	4	2.9
2	3	21.63	4.109	4	1.2	2	5	2	29.60	3.017	4	3.1	4	8	0	43.81	2.066	4	2.6
1	2	21.64	4.107	4	2.3	1	2	4	30.27	2.952	4	4.0	1	3	6	44.67	2.028	4	1.4
4	1	21.65	4.105	4	33.0	-3	5	2	30.52	2.929	4	1.7	4	7	2	44.83	2.022	4	2.1
5	1	22.15	4.014	4	5.2	4	1	1	30.57	2.924	4	1.9	-5	6	3	44.91	2.018	4	1.6
2	1	22.26	3.993	4	13.9	4	3	0	30.77	2.906	4	2.4	1	4	6	46.08	1.970	4	1.3
1	3	22.35	3.978	4	2.6	-3	4	3	30.79	2.904	4	7.8	-1	0	7	46.84	1.939	2	1.5
0	3	22.55	3.942	2	14.7	-3	1	4	30.87	2.897	4	2.4	-5	7	3	47.50	1.914	4	1.6
2	0	22.56	3.941	4	8.1	-4	1	3	31.40	2.849	4	2.0	4	8	2	47.81	1.902	4	1.4
2	2	22.78	3.904	4	1.5	4	2	1	31.41	2.848	4	2.8	-4	4	6	47.97	1.897	4	1.2
1	2	22.85	3.891	4	18.1	0	4	4	31.51	2.839	4	4.1	-4	5	6	49.68	1.835	4	1.3



REFINED COMPOSITION:  $|Na_{4.23}K_{0.167}Mg_{0.167}Ca_{3.74}|$  [Al_{12.32}Si_{67.68}O₁₆₀]

CRYSTAL DATA: Cmcm (No. 63) a = 9.747 Å b = 23.880 Å c = 20.068 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.071,  $R_{\rm w} = 0.068$ 

REFERENCE: E. Galli, S. Quartieri, G. Vezzalini, A. Alberti and M. Franzini, American Mineralogist 82 423–429 (1997).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	2	0	7.40	11.940	2	82.9	3	1	1	28.07	3.179	8	0.7	3	5	5	40.40	2.232	8	1.3
0	2	1	8.62	10.261	4	100.0	1	1	6	28.46	3.136	8	0.2	<b>2</b>	0	8	40.44	2.230	4	1.3
0	0	<b>2</b>	8.81	10.034	2	63.4	2	6	0	28.96	3.083	4	2.2	3	$\overline{7}$	3	40.65	2.219	8	0.5
1	1	0	9.80	9.024	4	64.1	1	$\overline{7}$	2	29.13	3.066	8	0.4	0	2	9	41.18	2.192	4	0.4
1	1	1	10.75	8.230	8	5.3	3	1	2	29.13	3.065	8	1.8	1	5	8	41.71	2.165	8	0.2
0	2	<b>2</b>	11.52	7.682	4	2.4	2	6	1	29.31	3.047	8	3.3	1	9	5	41.85	2.158	8	1.1
1	1	2	13.19	6.710	8	3.4	2	4	4	29.61	3.017	8	0.5	2	10	0	42.14	2.144	4	0.1
1	3	0	14.37	6.165	4	23.7	3	3	0	29.70	3.008	4	24.3	3	1	$\overline{7}$	42.21	2.141	8	0.3
0	4	0	14.84	5.970	2	8.8	0	8	0	29.93	2.985	2	0.3	2	10	1	42.39	2.132	8	0.2
1	3	1	15.03	5.893	8	0.3	3	3	1	30.04	2.975	8	0.2	3	7	4	42.43	2.130	8	0.2
0	2	3	15.18	5.836	4	15.2	0	8	1	30.27	2.953	4	0.4	1	11	0	42.67	2.119	4	0.4
0	4	1	15.49	5.722	4	2.3	2	6	2	30.33	2.947	8	1.1	2	6	$\overline{7}$	43.09	2.099	8	0.3
1	1	3	16.50	5.374	8	1.8	1	3	6	30.40	2.940	8	0.4	2	10	2	43.14	2.097	8	0.9
1	3	<b>2</b>	16.88	5.253	8	0.4	1	5	5	30.50	2.931	8	15.4	<b>2</b>	4	8	43.30	2.089	8	0.4
0	4	2	17.28	5.131	4	12.4	1	$\overline{7}$	3	30.82	2.901	8	0.5	0	8	$\overline{7}$	43.78	2.068	4	0.5
0	0	4	17.68	5.017	2	7.3	3	1	3	30.82	2.901	8	0.3	4	4	4	44.01	2.058	8	0.2
<b>2</b>	0	0	18.20	4.873	2	14.4	3	3	2	31.04	2.881	8	2.1	3	9	0	44.06	2.055	4	0.2
0	2	4	19.19	4.625	4	0.5	0	8	2	31.26	2.861	4	1.4	4	2	5	44.13	2.052	8	0.1
<b>2</b>	2	0	19.67	4.512	4	2.8	2	6	3	31.97	2.800	8	2.6	2	10	3	44.36	2.042	8	0.2
0	4	3	19.93	4.454	4	0.3	0	2	$\overline{7}$	32.11	2.788	4	0.9	3	7	5	44.64	2.030	8	0.7
<b>2</b>	2	1	20.17	4.402	8	0.2	1	$\overline{7}$	4	33.06	2.710	8	0.6	0	0	10	45.18	2.007	2	6.2
1	1	4	20.25	4.385	8	0.8	3	5	1	33.66	2.663	8	2.0	0	12	0	45.58	1.990	2	0.4
<b>2</b>	0	2	20.26	4.384	4	4.8	3	3	4	34.77	2.580	8	0.2	4	6	3	45.71	1.985	8	1.4
1	5	0	20.71	4.289	4	0.1	1	9	0	35.05	2.560	4	0.2	0	12	1	45.82	1.980	4	0.4
1	5	1	21.18	4.194	8	5.3	2	8	0	35.26	2.545	4	3.1	0	2	10	45.85	1.979	4	0.2
<b>2</b>	2	2	21.59	4.115	8	0.2	3	1	5	35.75	2.511	8	1.3	1	7	8	45.86	1.979	8	5.5
0	6	0	22.34	3.980	2	2.9	0	0	8	35.80	2.509	2	1.2	3	9	3	46.21	1.964	8	5.5
1	5	2	22.55	3.944	8	0.1	2	4	6	35.87	2.504	8	0.7	1	1	10	46.35	1.959	8	0.2
1	3	4	22.85	3.891	8	0.3	3	5	3	36.03	2.493	8	1.7	<b>5</b>	1	0	46.75	1.943	4	1.7
0	4	4	23.16	3.841	4	0.2	2	8	2	36.41	2.467	8	1.0	<b>5</b>	1	1	46.98	1.934	8	0.2
0	2	5	23.38	3.804	4	71.6	2	6	5	36.76	2.445	8	7.8	0	8	8	47.33	1.920	4	1.6
<b>2</b>	4	0	23.56	3.775	4	60.7	4	0	0	36.89	2.437	2	2.5	1	3	10	47.65	1.908	8	0.3
<b>2</b>	2	3	23.79	3.741	8	8.9	2	2	7	37.15	2.420	8	3.2	5	1	2	47.67	1.908	8	0.4
0	6	2	24.05	3.700	4	1.5	1	1	8	37.20	2.417	8	0.2	0	12	3	47.68	1.907	4	0.1
1	1	5	24.27	3.667	8	4.2	3	3	5	37.36	2.407	8	0.3	2	8	$\overline{7}$	47.78	1.903	8	0.3
1	5	3	24.66	3.610	8	22.4	1	9	3	37.62	2.391	8	0.8	0	4	10	47.82	1.902	4	0.5
<b>2</b>	4	2	25.20	3.533	8	8.4	0	10	0	37.67	2.388	2	1.9	2	10	5	48.11	1.891	8	0.2
<b>2</b>	0	4	25.48	3.496	4	0.1	4	2	0	37.67	2.388	4	0.8	4	8	0	48.21	1.888	4	0.2
0	6	3	26.05	3.420	4	8.9	1	5	7	37.74	2.383	8	0.6	4	8	1	48.43	1.879	8	0.2
0	0	6	26.65	3.345	2	2.1	2	8	3	37.81	2.379	8	0.6	5	3	2	48.95	1.861	8	0.5
0	4	5	26.76	3.331	4	3.6	0	6	7	38.71	2.326	4	1.8	2	0	10	49.09	1.856	4	0.2
<b>2</b>	4	3	27.12	3.288	8	1.2	0	10	2	38.76	2.323	4	0.4	4	6	5	49.38	1.845	8	0.8
0	2	6	27.70	3.221	4	0.2	2	4	7	39.47	2.283	8	0.2	<b>2</b>	12	0	49.47	1.842	4	0.2
1	7	0	27.70	3.220	4	2.6	4	4	0	39.96	2.256	4	3.7	0	10	7	49.69	1.835	4	0.2
3	1	0	27.71	3.219	4	0.7	3	3	6	40.32	2.237	8	0.4	3	9	5	49.85	1.829	8	2.1



 $\mathbf{2}$ 0

0  $\mathbf{2}$ 4

4 02

4

 $\mathbf{2}$ 4

41  $\mathbf{2}$ 

1 4

3

 $\mathbf{2}$ 

 $\mathbf{2}$ 1

> 3  $\mathbf{2}$

30.28

30.30

30.48

30.56

30.61

31.08

31.26

31.32

32.05

4

0

0

4

2

2.952

2.950

2.933

2.925

2.920

2.878

2.861

2.856

2.793

39.9

21.2

6.0

4.5

22.3

1.5

36.8

54.1

3.2

4

4

4

4

4

8

8

8

8

 $\mathbf{2}$ 

60 0

4 4  $\mathbf{2}$ 

0

1

1 1 6

 $\mathbf{2}$ 

53  $\mathbf{2}$ 

3 5 $\mathbf{2}$ 

4 4

6

0

53

0

6

41.24

41.39

41.39

41.51

41.53

42.13

42.55

42.56

42.61

2.189

2.181

2.181

2.175

2.174

2.145

2.125

2.124

2.122

8

 $\mathbf{2}$ 

8

 $\mathbf{2}$ 

4

8

8

8

8

5.4

7.6

0.8

21.9

1.5

0.3

0.2

6.8

9.6

3 54

71 0

550

0

1

51 5

1

0 4

7

70

55

1

6

49.12

49.23

49.30

49.36

49.37

49.48

49.55

49.92

M

4

4

4

4

4

4

8

4

8

8

8

8

8

8

8

8

8

8

4

8

8

8

8

8

8

8

8

8

8

8

8

8

8

4

4

4

4

8

8

4

1.855

1.851

1.848

1.846

1.846

1.842

1.840

1.827

 $I_{\rm rel}$ 

11.0

1.4

1.4

2.2

2.68.8

3.6

0.2

0.3

0.3

0.8

0.3

2.3

4.2

0.1

7.1

6.4

1.3

1.5

5.6

2.2

2.2

2.3

4.66.2

0.1

1.7

6.4

2.6

2.5

0.2

1.7

1.2

0.5

1.2

0.2

0.4

0.1

0.1

СН	EM	IIC	AL CO	OMPOS	SITI	ON:	$ Na_4Ca$ Death	a _{7.5} Val	Sr _{0.} ley,	$_{5}(\mathrm{H}_{2}\mathrm{O})$ Califo	) ₂₄   [Si ornia, U	₂₀ Al J.S.A	₂₀ O ₈₀ ] A.					
R	ΕF	INI	ED CC	OMPOS	SITI	ON:	Na ₄ C	a _{11.2}	$_{2}\mathrm{Sr}_{0}$	$_{0.8}(\mathrm{H}_{2}\mathrm{C}$	$D)_{24} $ [S	$bi_{20}A$	l ₂₀ O ₈₀ ]					
			CRY	YSTAL	, DA	TA:	$Pncn$ $a = 13$ $\alpha = 90$ Neutro	(No 3.088 )° on s	. 52 8 Å	2) <b>bca</b> $b = \beta$ le cryst	setting 13.052 90° tal refin	g 2 Å neme	c = 13 $\gamma = 9$ ent, $R_{\mathrm{F}^2}$	$3.229 \\ 0^{\circ} = 0.0^{4}$	Å 48			
			]	REFEI	REN	CE:	J. J. P Zeolite	lutl s <b>5</b>	n, J 74-	. V. Sr -80 (19	mith ar 985).	nd Å	. Kvick,					
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d
1	1	0	9.57	9.242	4	3.0	2	2	4	33.31	2.689	8	0.6	2	0	6	43.30	2.089
0	0	2	13.39	6.615	2	76.6	4	2	2	33.50	2.675	8	100.0	0	2	6	43.31	2.089
2	0	0	13.53	6.544	2	4.3	2	4	2	33.55	2.671	8	13.2	6	0	2	43.69	2.072
0	2	0	13.57	6.526	2	1.1	3	1	4	34.72	2.583	8	20.2	6	2	0	43.76	2.069
1	0	2	15.01	5.903	4	45.0	1	3	4	34.75	2.581	8	33.0	0	6	2	43.81	2.066
1	1	2	16.48	5.379	8	52.2	4	1	3	34.83	2.576	8	0.1	2	6	0	43.86	2.064
2	0	2	19.08	4.652	4	69.8	5	1	0	34.96	2.566	4	6.9	1	2	6	43.89	2.063
2	2	0	19.21	4.621	4	97.9	4	3	1	34.98	2.565	8	0.1	5	0	4	44.12	2.053
2	1	2	20.26	4.382	8	11.1	1	5	0	35.05	2.560	4	0.8	4	3	4	44.15	2.051
1	2	2	20.28	4.378	8	28.8	3	3	3	35.55	2.525	8	0.1	3	4	4	44.17	2.050
2	2	1	20.36	4.362	8	0.8	5	1	1	35.63	2.520	8	0.1	6	1	2	44.27	2.046
0	1	3	21.27	4.178	4	0.2	1	5	1	35.72	2.513	8	0.1	1	6	2	44.38	2.041
3	1	0	21.48	4.138	4	2.1	3	2	4	36.78	2.444	8	1.0	5	1	4	44.69	2.028
0	3	1	21.50	4.133	4	0.6	2	3	4	36.79	2.443	8	0.5	1	5	4	44.77	2.024
1	3	0	21.52	4.129	4	39.5	4	3	2	36.96	2.432	8	0.2	5	3	3	45.36	1.999
1	1	3	22.34	3.980	8	0.9	3	4	2	36.99	2.430	8	16.4	2	2	6	45.59	1.990
3	1	1	22.51	3.949	8	1.8	5	1	2	37.59	2.393	8	1.2	6	2	2	45.96	1.974
1	3	1	22.56	3.941	8	0.8	1	5	2	37.68	2.387	8	3.4	2	6	2	46.06	1.971
2	2	2	23.48	3.788	8	0.4	4	0	4	38.71	2.326	4	3.7	3	0	6	46.13	1.968
ა ე	1	2	24.44	3.042	4	0.1	0	4	4	38.11	2.323	4	0.2	Э 9	2	4	40.37	1.958
3 1	1	2	20.39	3.508	8	04.4 74.9	4	4	0	38.98	2.310	4	0.3	2	Э 4	4 0	40.44 46 EE	1.955
1 9	ა ე	2	25.43 25.46	3.502	8	(4.3	4	1	4	39.35	2.290	8	3.0 0.4	Э 4	4	2	40.55	1.951
ა ე	2	1	25.40	3.490	0	0.1	5	49	4	39.40	2.201	0	0.4 3.0	4 2	1	2 6	40.00	1.950
0	0	1	20.49	3 307	2	0.7	ປ ເ	2 5	2	30.50	2.280	8	0.2	1	2	6	40.08	1.940
4	0	4	20.90 27.25	3.307	2	37	2	3 2	2 1	40.00	2.270 2.254	8	38.5	1	6	1	40.70	1.945
4 0	4	n	27.20 27.33	3.212 3.263	2	1.3	ม 2	4	3	40 11	2.204 2.248	8	0.2		4	1 1	48.03	1.920
1	т П	4	27.00 27.82	3.200	4	32.9	5	3	0	40.21	2.243	4	0.2 07	т З	2	6	48.31	1.884
3	2	2	28.06	3.180	8	2.5	3	5	Ő	40.26	2.240	4	67	2	3	6	48.32	1.883
$\frac{3}{2}$	3	$\frac{1}{2}$	28.08	3.178	8	34.9	5	1	3	40.67	2.218	8	0.1	- 6	3	$\frac{3}{2}$	48.68	1.870
1	1	4	28.67	3.114	8	4.3	0	0	6	40.93	2.205	$\tilde{2}$	3.5	$\tilde{3}$	6	2	48.76	1.868
3	3	0	28.98	3.081	4	8.5	4	2	4	41.20	2.191	8	23.8	5	3	4	49.07	1.856



CHEMICAL COMPOSITION:  $|(C_2H_5)_2NH|$  [Si₂₄O₄₈] (C₂H₅)₂NH = diethylamine

REFINED COMPOSITION: |C_{5.1}| [Si₂₄O₄₈]

CRYSTAL DATA:  $Cmc2_1$  (No. 36) a = 13.859 Å b = 17.420 Å c = 5.038 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_w = 0.056$ 

REFERENCE: B. Marler,

Zeolites 7 393–397 (1987).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	8.15	10.845	4	100.0	5	1	0	32.71	2.737	4	2.7	2	4	<b>2</b>	43.51	2.080	8	0.2
0	2	0	10.16	8.710	2	19.1	4	2	1	33.02	2.713	8	2.7	3	3	2	43.80	2.067	8	3.9
<b>2</b>	0	0	12.77	6.929	2	22.3	4	4	0	33.04	2.711	4	0.7	6	2	1	44.38	2.041	8	0.5
<b>2</b>	2	0	16.35	5.423	4	7.3	2	6	0	33.46	2.678	4	0.3	6	4	0	44.39	2.041	4	0.5
1	3	0	16.55	5.356	4	4.6	0	0	2	35.64	2.519	2	13.8	4	0	2	44.47	2.037	4	0.5
1	1	1	19.43	4.569	8	9.0	0	6	1	35.69	2.516	4	3.5	4	6	1	44.51	2.036	8	2.2
3	1	0	19.88	4.465	4	0.3	5	3	0	35.90	2.501	4	0.2	1	5	2	44.88	2.020	8	2.1
0	<b>2</b>	1	20.36	4.361	4	69.6	1	1	2	36.62	2.454	8	2.1	3	7	1	45.13	2.009	8	1.1
0	4	0	20.39	4.355	2	15.6	3	5	1	36.91	2.435	8	9.6	0	8	1	45.37	1.999	4	3.1
<b>2</b>	<b>2</b>	1	24.11	3.691	8	8.7	0	2	2	37.15	2.420	4	0.4	5	5	1	45.53	1.992	8	0.4
<b>2</b>	4	0	24.14	3.687	4	11.5	5	1	1	37.39	2.405	8	2.9	4	2	2	45.73	1.984	8	0.4
1	3	1	24.25	3.670	8	49.5	4	4	1	37.67	2.388	8	1.9	7	1	0	46.14	1.967	4	0.1
3	3	0	24.62	3.615	4	50.0	2	0	2	38.01	2.367	4	0.7	2	8	1	47.33	1.920	8	0.7
4	0	0	25.71	3.465	2	33.5	2	6	1	38.06	2.365	8	7.2	1	9	0	47.43	1.917	4	0.3
1	5	0	26.38	3.379	4	2.6	2	2	2	39.44	2.285	8	0.4	0	6	2	47.80	1.903	4	3.7
3	1	1	26.68	3.342	8	6.1	1	3	2	39.53	2.279	8	0.3	7	3	0	48.58	1.874	4	8.6
0	4	1	27.06	3.295	4	6.6	5	3	1	40.25	2.240	8	1.5	3	5	2	48.77	1.867	8	0.8
4	<b>2</b>	0	27.71	3.219	4	1.4	6	2	0	40.40	2.233	4	0.5	5	1	2	49.15	1.854	8	0.3
<b>2</b>	4	1	30.03	2.975	8	2.7	4	6	0	40.54	2.225	4	0.2	5	7	0	49.20	1.852	4	0.3
3	3	1	30.43	2.937	8	3.2	1	7	1	40.97	2.203	8	0.1	4	4	2	49.38	1.845	8	0.8
0	6	0	30.80	2.903	2	2.6	3	1	2	41.14	2.194	8	0.2	4	8	0	49.43	1.844	4	1.4
1	5	1	31.89	2.806	8	0.9	3	7	0	41.20	2.191	4	0.4	2	6	2	49.69	1.835	8	0.2
3	5	0	32.18	2.782	4	1.5	5	5	0	41.64	2.169	4	0.4	7	1	1	49.76	1.832	8	1.8



CHEMICAL COMPOSITION:  $|K_{11.2}Ca_{89.6}Sr_{16.64}Ba_{4.8}Cu_{46.4}(H_2O)_{217}(OH)_{135.04}|$  [Fe_{1.44}Al_{189.6}Si_{192.96}O₇₆₈] Bellberg volcano, near Mayen, Eifel, Germany

REFINED COMPOSITION:  $|K_{12}Ca_{76}Sr_{12}Ba_{12}Cu_{48}Cl_{0.896}O_{327.448}(OH)_{128}|$  [Si₁₉₂Al₁₉₂O₇₆₈]

CRYSTAL DATA:  $Fm\overline{3}m$  (No. 225) a = 31.62 Å b = 31.62 Å c = 31.62 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Single Crystal X-ray Refinement.  $R_{\rm p} = 0.065$ ,  $R_{\rm wp} = 0.156$ 

REFERENCE: H. Effenberger, G. Giester, W. Krause and H.-J. Bernhardt, American Mineralogist 83 607–617 (1998).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$		ì	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	1	4.84	18.256	8	100.0	10	0	0	28.22	3.162	6	0.5	1	3	3	1	38.07	2.363	48	0.1
<b>2</b>	0	0	5.59	15.810	6	14.5	8	6	2	28.79	3.101	48	0.4	1	2	6	0	38.18	2.357	24	0.2
<b>2</b>	<b>2</b>	0	7.91	11.179	12	1.4	9	5	1	29.21	3.057	48	0.2	1	0	8	4	38.18	2.357	48	0.1
3	1	1	9.28	9.534	24	0.5	7	7	3	29.21	3.057	24	0.2	1	1	7	5	39.81	2.264	48	0.5
<b>2</b>	<b>2</b>	2	9.69	9.128	8	5.4	10	2	<b>2</b>	29.35	3.043	24	0.8	1	4	0	0	39.91	2.259	6	0.2
3	3	1	12.20	7.254	24	0.8	6	6	6	29.35	3.043	8	0.9	1	0 3	10	0	40.34	2.236	12	0.5
4	<b>2</b>	2	13.72	6.454	24	0.4	9	5	3	30.31	2.949	48	0.3	1	3	5	3	40.65	2.219	48	0.2
<b>5</b>	1	1	14.56	6.085	24	0.4	10	4	0	30.45	2.936	24	1.3	1	4	2	<b>2</b>	40.76	2.214	24	0.3
4	4	0	15.85	5.590	12	0.6	8	6	4	30.45	2.936	48	0.8	1	0 3	10	2	40.76	2.214	24	0.1
<b>5</b>	3	1	16.59	5.345	48	0.3	10	4	2	30.98	2.886	48	1.6		9	9	7	41.48	2.177	24	0.2
6	0	0	16.82	5.270	6	0.2	11	1	1	31.37	2.851	24	0.1	1	1	9	3	41.48	2.177	48	0.1
6	<b>2</b>	<b>2</b>	18.61	4.767	24	0.8	7	7	5	31.37	2.851	24	0.1	1	1	$\overline{7}$	7	42.30	2.137	24	0.1
<b>5</b>	5	1	20.05	4.428	24	1.0	8	8	0	32.02	2.795	12	0.9	1	3	5	5	42.30	2.137	24	0.3
$\overline{7}$	1	1	20.05	4.428	24	0.9	11	3	1	32.41	2.763	48	0.8	1	1	9	5	43.10	2.099	48	0.5
6	4	0	20.25	4.385	24	0.5	9	5	5	32.41	2.763	24	1.1	1	5	1	1	43.10	2.099	24	0.3
<b>5</b>	5	3	21.59	4.117	24	0.6	9	7	1	32.41	2.763	48	0.6	1	0	8	8	43.20	2.094	24	0.2
$\overline{7}$	3	1	21.59	4.117	48	0.3	10	6	0	33.04	2.711	24	0.8	1	4	4	4	43.20	2.094	24	0.1
$\overline{7}$	3	3	23.02	3.863	24	1.4	11	3	3	33.41	2.682	24	0.1	1	0 3	10	6	43.99	2.058	24	0.2
6	4	4	23.20	3.834	24	0.8	10	6	2	33.53	2.672	48	0.3		9	9	9	44.67	2.028	8	0.4
8	<b>2</b>	0	23.20	3.834	24	1.2	8	8	4	34.02	2.635	24	0.3	1	3	7	5	44.67	2.028	48	0.2
6	6	0	23.88	3.726	12	0.7	11	5	1	34.39	2.608	48	0.4	1	1 3	11	1	44.67	2.028	24	0.2
6	6	2	24.54	3.627	24	0.4	7	7	7	34.39	2.608	8	1.2	1	6	0	0	45.92	1.976	6	0.2
7	5	3	25.67	3.471	48	2.1	12	2	0	34.51	2.599	24	0.2	1	5	5	3	46.20	1.965	48	0.2
8	4	2	25.82	3.450	48	0.7	10	6	4	34.98	2.565	48	1.4	1	4	8	0	46.30	1.961	24	0.2
6	6	4	26.44	3.371	24	0.5	12	4	<b>2</b>	36.39	2.469	48	0.5	1	3	9	5	47.69	1.907	48	0.1
8	4	4	27.64	3.227	24	1.7	8	8	6	36.39	2.469	24	0.7	1	4	8	4	47.79	1.903	48	0.2
9	3	3	28.08	3.178	24	0.5	10	8	0	36.39	2.469	24	0.2	1	2	12	0	48.88	1.863	12	0.5
7	5	5	28.08	3.178	24	0.5	10	6	6	37.29	2.411	24	0.2	1	3	11	3	49.87	1.829	48	0.1
8	6	0	28.22	3.162	24	0.5	11	$\overline{7}$	3	38.07	2.363	48	0.1								



## CHEMICAL COMPOSITION: [Si₁₇O₃₄]

#### REFINED COMPOSITION: [Si₁₇O₃₄]

CRYSTAL DATA:  $P\overline{4}$  (No. 81) a = 13.045 Å b = 13.045 Å c = 5.034 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{wp} = 0.125$ ,  $R_{p} = 0.102$ 

REFERENCE: C. C. Freyhardt, R. F. Lobo, S. Khodabandeh, J. E. Lewis, Jr.,
M. Tsapatsis, M. Yoshikawa, M. A. Camblor, M. Pan, M. M. Helmkamp,
S. I. Zones and M. E. Davis, J. Am. Chem. Soc. 118 7299–7310 (1996).

h	k	l	$2\theta$	d	M	$I_{ m rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	6.78	13.045	4	100.0	3	<b>2</b>	1	30.42	2.938	8	0.2	1	3	<b>2</b>	42.05	2.149	8	0.5
1	1	0	9.59	9.224	4	21.2	4	2	0	30.65	2.917	4	0.6	1	6	0	42.13	2.145	4	0.3
<b>2</b>	0	0	13.58	6.523	4	1.3	4	0	1	32.72	2.737	8	3.5	6	1	0	42.13	2.145	4	0.2
1	2	0	15.19	5.834	4	1.7	4	1	1	33.45	2.679	8	0.7	2	3	<b>2</b>	43.81	2.066	8	0.4
<b>2</b>	1	0	15.19	5.834	4	0.2	1	4	1	33.45	2.679	8	0.4	3	2	2	43.81	2.066	8	0.4
0	0	1	17.62	5.034	2	0.1	3	3	1	34.17	2.624	8	0.6	2	6	0	43.89	2.063	4	0.6
1	0	1	18.90	4.696	8	1.7	4	3	0	34.37	2.609	4	0.4	5	3	1	44.31	2.044	8	0.2
<b>2</b>	2	0	19.24	4.612	4	0.2	1	5	0	35.07	2.558	4	0.2	3	5	1	44.31	2.044	8	0.4
1	1	1	20.09	4.419	8	20.7	4	2	1	35.57	2.524	8	1.4	5	4	0	44.47	2.037	4	0.5
3	0	0	20.42	4.348	4	3.4	2	4	1	35.57	2.524	8	0.9	6	0	1	45.44	1.996	8	0.2
3	1	0	21.54	4.125	4	18.6	0	0	<b>2</b>	35.67	2.517	2	3.9	4	0	2	45.52	1.993	8	0.1
<b>2</b>	0	1	22.31	3.985	8	13.8	1	0	2	36.35	2.471	8	0.3	1	6	1	46.00	1.973	8	0.2
2	1	1	23.34	3.811	8	8.2	1	1	2	37.02	2.428	8	0.8	6	1	1	46.00	1.973	8	0.8
1	2	1	23.34	3.811	8	3.8	2	5	0	37.11	2.422	4	0.6	1	4	2	46.08	1.970	8	0.2
2	3	0	24.60	3.618	4	10.8	2	0	<b>2</b>	38.33	2.348	8	0.4	4	1	2	46.08	1.970	8	0.3
3	2	0	24.60	3.618	4	3.4	3	4	1	38.88	2.316	8	0.6	3	3	2	46.63	1.948	8	1.3
2	2	1	26.20	3.401	8	9.4	4	3	1	38.88	2.316	8	1.7	6	3	0	46.71	1.945	4	0.4
3	0	1	27.10	3.291	8	0.9	5	0	1	38.88	2.316	8	0.2	2	6	1	47.65	1.909	8	0.4
3	1	1	27.96	3.191	8	0.4	5	1	1	39.51	2.281	8	0.5	6	2	1	47.65	1.909	8	1.2
1	3	1	27.96	3.191	8	1.9	1	5	1	39.51	2.281	8	1.2	2	4	2	47.72	1.906	8	1.2
1	4	0	28.20	3.164	4	3.9	5	3	0	40.31	2.237	4	0.9	5	4	1	48.18	1.888	8	0.2
4	1	0	28.20	3.164	4	7.5	2	2	2	40.84	2.209	8	0.2	4	5	1	48.18	1.888	8	0.5
3	3	0	29.04	3.075	4	1.0	5	<b>2</b>	1	41.36	2.183	8	0.4	7	0	0	48.87	1.864	4	0.2
2	3	1	30.42	2.938	8	0.8	6	0	0	41.53	2.174	4	0.1	1	$\overline{7}$	0	49.40	1.845	4	1.2



#### CHEMICAL COMPOSITION: $|(H_2O)_{42}|$ [Al₁₈P₁₈O₇₂]

REFINED COMPOSITION:  $|(H_2O)_{42}|$  [Al₁₈P₁₈O₇₂]

CRYSTAL DATA:  $P6_3$  (No. 173) a = 18.9752 Å b = 18.9752 Å c = 8.1044 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.108$ ,  $R_{wp} = 0.141$ ,  $R_{F} = 0.086$ 

REFERENCE: L. B. McCusker, Ch. Baerlocher, E. Jahn and M. Bülow, Zeolites 11 308–313 (1991).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	5.38	16.433	6	100.0	4	2	1	30.83	2.900	12	1.3	2	3	3	41.10	2.196	12	0.1
1	1	0	9.32	9.488	6	0.7	2	4	1	30.83	2.900	12	0.3	2	6	1	41.15	2.194	12	0.3
<b>2</b>	0	0	10.77	8.217	6	11.9	4	0	2	31.00	2.885	12	1.5	6	2	1	41.15	2.194	12	0.2
1	2	0	14.26	6.211	6	0.4	5	1	1	32.28	2.773	12	0.3	1	4	3	41.87	2.158	12	0.2
<b>2</b>	1	0	14.26	6.211	6	0.5	1	5	1	32.28	2.773	12	0.3	4	1	3	41.87	2.158	12	0.2
1	1	1	14.37	6.162	12	4.2	3	2	2	32.44	2.760	12	0.7	7	1	1	43.03	2.102	12	0.1
<b>2</b>	0	1	15.36	5.770	12	0.2	2	3	2	32.44	2.760	12	0.5	3	3	3	44.09	2.054	12	0.2
3	0	0	16.18	5.478	6	1.1	6	0	0	32.70	2.739	6	4.6	4	4	2	44.25	2.047	12	0.2
1	2	1	17.99	4.930	12	0.4	1	4	2	33.36	2.685	12	0.3	4	2	3	44.45	2.038	12	0.2
<b>2</b>	1	1	17.99	4.930	12	0.3	4	1	2	33.36	2.685	12	0.2	2	4	3	44.45	2.038	12	0.2
<b>2</b>	<b>2</b>	0	18.70	4.744	6	5.2	1	0	3	33.62	2.666	12	0.1	5	4	1	44.49	2.037	12	0.1
3	0	1	19.56	4.538	12	0.6	5	2	0	34.07	2.631	6	1.3	4	5	1	44.49	2.037	12	0.1
4	0	0	21.63	4.108	6	1.2	1	1	3	34.52	2.598	12	0.2	7	0	2	44.61	2.031	12	0.4
<b>2</b>	<b>2</b>	1	21.71	4.094	12	7.4	2	0	3	34.96	2.566	12	0.1	0	0	4	44.73	2.026	2	0.7
0	0	2	21.93	4.052	2	8.7	3	4	1	35.01	2.563	12	0.1	1	0	4	45.08	2.011	12	0.4
1	3	1	22.38	3.973	12	1.5	5	0	2	35.16	2.553	12	0.2	3	6	1	45.20	2.006	12	0.1
3	1	1	22.38	3.973	12	3.1	1	6	0	35.83	2.506	6	0.2	5	1	3	45.52	1.993	12	0.1
1	0	2	22.60	3.934	12	10.4	6	1	0	35.83	2.506	6	0.1	2	6	2	45.67	1.986	12	0.1
<b>2</b>	3	0	23.60	3.770	6	2.0	2	5	1	35.88	2.503	12	0.7	2	0	4	46.14	1.967	12	0.1
3	2	0	23.60	3.770	6	4.5	5	2	1	35.88	2.503	12	0.2	7	2	1	46.61	1.949	12	0.3
1	1	2	23.88	3.727	12	0.2	3	3	2	36.02	2.493	12	0.6	2	$\overline{7}$	1	46.61	1.949	12	0.3
4	0	1	24.29	3.664	12	0.2	1	2	3	36.26	2.477	12	0.1	2	1	4	47.18	1.926	12	0.2
<b>2</b>	0	2	24.49	3.634	12	1.5	4	2	2	36.45	2.465	12	0.2	7	1	<b>2</b>	47.41	1.917	12	0.3
1	4	0	24.83	3.586	6	2.2	3	0	3	37.11	2.423	12	0.1	1	$\overline{7}$	2	47.41	1.917	12	0.4
3	2	1	26.07	3.418	12	0.5	1	5	2	37.70	2.386	12	0.2	4	3	3	47.60	1.910	12	0.1
<b>2</b>	3	1	26.07	3.418	12	0.4	5	1	2	37.70	2.386	12	0.3	3	0	4	47.87	1.900	12	0.1
<b>2</b>	1	2	26.26	3.394	12	0.2	2	2	3	38.34	2.348	12	1.8	2	5	3	48.28	1.885	12	0.1
<b>5</b>	0	0	27.13	3.287	6	0.2	1	3	3	38.75	2.324	12	0.4	8	1	1	48.65	1.871	12	0.6
1	4	1	27.19	3.279	12	6.6	3	1	3	38.75	2.324	12	0.2	1	8	1	48.65	1.871	12	0.4
4	1	1	27.19	3.279	12	3.7	6	2	0	39.54	2.279	6	0.5	2	2	4	48.88	1.863	12	0.5
3	0	2	27.38	3.258	12	1.1	4	4	1	39.59	2.276	12	0.1	1	3	4	49.21	1.851	12	0.4
3	3	0	28.22	3.163	6	2.4	6	0	2	39.72	2.269	12	0.3	3	1	4	49.21	1.851	12	0.3
<b>2</b>	2	2	28.98	3.081	12	4.9	4	0	3	39.94	2.257	12	0.1	3	$\overline{7}$	0	49.29	1.849	6	0.2
<b>5</b>	0	1	29.32	3.046	12	0.3	3	5	1	39.98	2.255	12	0.1	5	5	1	49.32	1.848	12	0.4
3	1	2	29.50	3.028	12	1.0	7	0	1	39.98	2.255	12	0.1	4	6	1	49.65	1.836	12	0.8
1	3	2	29.50	3.028	12	1.0	4	3	2	40.11	2.248	12	0.2	6	4	1	49.65	1.836	12	0.6
5	1	0	30.28	2.951	6	1.9	5	2	2	40.89	2.207	12	0.2	8	0	<b>2</b>	49.76	1.832	12	0.2
1	5	0	30.28	2.951	6	2.8	2	5	2	40.89	2.207	12	0.2							
3	3	1	30.34	2.946	12	0.7	3	2	3	41.10	2.196	12	0.3							



### CHEMICAL COMPOSITION: $|Rb_{44}K_4(H_2O)_{48}|$ [Si₉₆Zn₂₄O₂₄₀]

REFINED COMPOSITION:  $|Rb_{44}K_4(H_2O)_{14}|$  [Si₉₆Zn₂₄O₂₄₀]

CRYSTAL DATA:  $P4_{1}2_{1}2$  (No. 92)

 $\begin{array}{ll} a = 9.8837 \text{ Å} & b = 9.8837 \text{ Å} & c = 73.6505 \text{ Å} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray Rietveld refinement, } R_{\text{exp}} = 0.099, R_{\text{wp}} = 0.147, R_{\text{F}} = 0.069 \end{array}$ 

REFERENCE: L. B. McCusker, R. W. Grosse-Kunstleve, Ch. Baerlocher, M. Yoshikawa, and M. E. Davis, *Microporous Materials* 6 295–309 (1996).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	4	4.80	18.413	2	21.0	1	1	21	28.47	3.135	8	3.7	3	3	0	38.65	2.330	4	11.5
1	0	2	9.26	9.546	8	2.7	3	1	0	28.56	3.126	8	37.8	2	1	27	38.79	2.321	16	3.0
0	0	8	9.61	9.206	2	6.8	3	1	1	28.58	3.123	16	3.1	3	2	17	38.88	2.316	16	3.8
1	0	3	9.65	9.169	8	3.3	3	1	2	28.66	3.114	16	55.2	1	1	30	38.88	2.316	8	2.8
1	0	4	10.16	8.708	8	34.5	3	0	8	28.78	3.102	8	64.5	2	2	24	39.06	2.306	8	17.5
1	0	5	10.78	8.207	8	5.0	3	1	4	28.98	3.081	16	89.8	4	0	12	39.31	2.292	8	4.6
1	0	7	12.29	7.204	8	4.9	0	0	24	29.10	3.069	2	96.8	3	3	6	39.37	2.289	8	6.4
1	1	0	12.67	6.989	4	14.0	3	1	5	29.21	3.057	16	6.4	3	1	22	39.44	2.285	16	3.3
1	1	2	12.89	6.866	8	24.5	3	0	9	29.22	3.056	8	3.9	3	2	18	39.57	2.277	16	2.4
1	0	8	13.14	6.737	8	14.3	2	2	12	29.41	3.037	8	29.8	2	1	28	39.88	2.260	16	6.2
0	0	12	14.43	6.138	2	22.1	1	1	22	29.59	3.019	8	46.0	3	2	19	40.29	2.238	16	2.9
1	1	6	14.58	6.073	8	20.2	2	1	18	29.75	3.003	16	10.1	3	1	23	40.32	2.237	16	2.7
1	1	8	15.92	5.567	8	7.6	3	1	8	30.20	2.960	16	3.6	4	1	13	40.88	2.208	16	3.0
1	1	10	17.49	5.070	8	23.5	2	0	20	30.27	2.953	8	53.3	4	2	2	40.91	2.206	16	3.2
2	0	0	17.95	4.942	4	5.6	1	1	23	30.71	2.911	8	3.7	2	1	29	40.98	2.202	16	4.2
2	0	4	18.59	4.773	8	29.3	3	1	10	31.08	2.877	16	5.6	3	2	20	41.05	2.199	16	4.7
1	1	12	19.25	4.612	8	9.4	2	0	21	31.27	2.860	8	3.9	3	1	24	41.23	2.190	16	7.3
2	1	1	20.12	4.412	16	4.7	3	1	11	31.59	2.832	16	2.7	3	3	12	41.46	2.178	8	6.3
1	0	15	20.19	4.397	8	2.4	3	1	12	32.14	2.785	16	18.2	4	0	16	41.48	2.177	8	7.4
2	1	2	20.23	4.389	16	5.1	3	1	13	32.72	2.737	16	2.3	4	2	8	42.04	2.149	16	5.9
2	0	8	20.40	4.354	8	42.0	3	0	15	32.73	2.736	8	2.6	<b>2</b>	1	30	42.10	2.146	16	4.1
2	1	3	20.41	4.350	16	2.8	1	0	26	32.89	2.723	8	2.5	3	1	26	43.10	2.099	16	14.5
2	1	4	20.67	4.298	16	26.6	3	2	4	33.04	2.711	16	7.8	2	0	32	43.37	2.086	8	5.7
2	1	5	20.98	4.234	16	6.9	3	1	14	33.34	2.687	16	21.4	4	2	12	43.52	2.079	16	4.2
1	1	14	21.14	4.203	8	2.5	3	0	16	33.45	2.679	8	49.4	3	3	16	43.54	2.079	8	3.7
1	0	16	21.29	4.173	8	2.3	2	1	22	33.58	2.669	16	5.0	4	0	20	44.14	2.052	8	3.2
2	1	7	21.81	4.075	16	5.9	2	2	18	33.73	2.657	8	17.7	4	2	14	44.46	2.038	16	2.5
1	0	17	22.41	3.968	8	5.8	3	2	7	33.79	2.653	16	3.6	3	3	18	44.77	2.024	8	3.9
<b>2</b>	1	9	22.87	3.889	16	2.3	3	2	8	34.13	2.627	16	8.8	3	1	28	45.05	2.013	16	15.1
<b>2</b>	0	12	23.11	3.849	8	23.2	3	1	16	34.69	2.586	16	4.2	4	3	2	45.98	1.974	16	2.7
1	1	16	23.14	3.844	8	6.1	2	2	20	35.41	2.535	8	5.9	3	3	20	46.10	1.969	8	4.2
1	0	18	23.53	3.781	8	3.1	2	1	24	35.61	2.521	16	3.8	4	1	22	46.60	1.949	16	2.8
2	1	12	24.82	3.587	16	4.3	3	2	12	35.88	2.503	16	4.1	4	2	18	46.71	1.945	16	2.7
2	2	0	25.49	3.494	4	74.9	3	1	18	36.16	2.484	16	14.7	5	1	2	46.94	1.936	16	5.6
2	2	1	25.52	3.490	8	3.9	4	0	0	36.36	2.471	4	4.5	5	0	8	47.02	1.933	8	3.4
2	0	15	25.57	3.483	8	3.7	3	1	19	36.94	2.433	16	2.4	4	3	8	47.02	1.933	16	2.4
2	2	2	25.61	3.479	8	50.8	3	2	14	36.98	2.431	16	5.0	5	1	4	47.14	1.928	16	3.9
1	0	20	25.82	3.451	8	17.3	2	2	22	37.19	2.417	8	6.6	5	1	6	47.49	1.915	16	3.1
2	1	14	26.33	3.384	16	66.3	3	0	21	37.45	2.401	8	4.4	4	3	10	47.63	1.909	16	6.7
2	0	16	26.46	3.368	8	33.7	3	2	15	37.58	2.393	16	4.3	4	2	20	48.01	1.895	16	4.8
2	2	6	26.52	3.361	8	10.6	4	0	8	37.69	2.386	8	3.1	5	0	12	48.37	1.882	8	3.2
2	2	7	26.88	3.316	8	3.6	2	1	26	37.72	2.385	16	3.3	3	3	24	49.10	1.856	8	5.5
2	2	8	27.30	3.267	8	8.9	3	1	20	37.75	2.383	16	12.6	5	1	12	49.30	1.848	16	13.6
1	0	22	28.14	3.171	8	3.5	4	1	5	38.03	2.366	16	2.3	4	2	22	49.41	1.844	16	2.9
2	<b>2</b>	10	28.27	3.157	8	100.0	4	1	$\overline{7}$	38.52	2.337	16	4.3	2	2	34	49.51	1.841	8	4.6



# CHEMICAL COMPOSITION: $|Na_{32}(H_2O)_{40}|$ [Si₅₆Zn₁₆O₁₄₄]

REFINED COMPOSITION:  $|Na_{28.48}(H_2O)_{49.76}|$  [Si₅₆Zn₁₆O₁₄₄]

CRYSTAL DATA: Fdd2 (No. 43)

 $\begin{array}{ll} a = 39.88 \text{ Å} & b = 10.326 \text{ Å} & c = 10.219 \text{ Å} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray Rietveld refinement}, R_{\mathrm{exp}} = 0.248, R_{\mathrm{wp}} = 0.162, R_{\mathrm{I}} = 0.100 \end{array}$ 

REFERENCE:

C. Röhrig, H. Gies and B. Marler, *Zeolites* **14** 498–503 (1994).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
4	0	0	8.87	9.970	2	9.1	9	3	1	34.13	2.627	8	1.2	8	4	2	43.26	2.092	8	0.7
1	1	1	12.39	7.146	8	1.8	9	1	3	34.32	2.613	8	0.3	8	2	4	43.49	2.081	8	0.8
3	1	1	13.89	6.374	8	100.0	0	4	0	34.75	2.582	2	2.2	15	3	1	43.93	2.061	8	0.4
5	1	1	16.51	5.370	8	30.4	2	4	0	35.05	2.560	4	6.5	16	2	2	44.06	2.055	8	1.3
2	2	0	17.75	4.998	4	4.0	0	0	4	35.13	2.555	2	5.2	15	1	3	44.09	2.054	8	0.6
8	0	0	17.79	4.985	2	17.3	4	4	0	35.93	2.499	4	0.3	12	4	0	44.44	2.039	4	1.6
2	0	2	17.92	4.950	4	22.4	15	1	1	35.97	2.497	8	10.1	18	2	0	44.50	2.036	4	1.8
4	2	0	19.36	4.585	4	9.1	16	0	0	36.03	2.493	2	1.5	18	0	2	44.57	2.033	4	6.3
7	1	1	19.80	4.483	8	5.9	14	0	2	36.10	2.488	4	9.1	12	0	4	44.74	2.025	4	3.8
6	0	2	21.94	4.051	4	0.8	4	0	4	36.30	2.475	4	0.5	1	5	1	44.83	2.022	8	2.2
9	1	1	23.52	3.783	8	2.3	12	2	2	36.65	2.452	8	6.3	19	1	1	44.95	2.016	8	0.6
0	2	2	24.51	3.632	4	0.4	11	3	1	37.07	2.425	8	6.7	11	3	3	45.02	2.013	8	0.3
8	2	0	24.83	3.586	4	0.3	1	3	3	37.20	2.417	8	4.4	1	1	5	45.29	2.002	8	1.2
2	2	2	24.92	3.573	8	3.2	11	1	3	37.25	2.414	8	7.9	3	5	1	45.31	2.001	8	1.2
4	2	2	26.11	3.412	8	11.8	6	4	0	37.37	2.406	4	1.1	10	4	2	45.46	1.995	8	3.0
12	0	0	26.83	3.323	2	15.3	3	3	3	37.77	2.382	8	12.6	20	0	0	45.49	1.994	2	0.1
1	3	1	27.43	3.251	8	50.8	5	3	3	38.87	2.317	8	1.1	10	2	4	45.69	1.986	8	2.6
11	1	1	27.50	3.244	8	22.6	8	4	0	39.30	2.292	4	1.9	3	1	5	45.77	1.982	8	4.3
1	1	3	27.67	3.224	8	14.5	2	4	2	39.36	2.289	8	2.6	5	5	1	46.27	1.962	8	3.5
6	2	2	28.00	3.187	8	36.8	8	0	4	39.64	2.274	4	5.1	5	1	5	46.72	1.944	8	0.1
3	3	1	28.17	3.168	8	14.1	4	4	2	40.17	2.245	8	0.6	14	4	0	47.53	1.913	4	1.5
10	2	0	28.28	3.156	4	6.9	16	2	0	40.17	2.245	4	0.9	7	5	1	47.68	1.907	8	3.1
10	0	2	28.39	3.144	4	8.7	14	2	2	40.23	2.241	8	8.7	17	3	1	47.75	1.905	8	0.4
3	1	3	28.39	3.143	8	30.8	13	3	1	40.36	2.235	8	3.4	13	3	3	47.86	1.901	8	1.7
5	3	1	29.59	3.019	8	3.9	17	1	1	40.40	2.232	8	1.9	17	1	3	47.90	1.899	8	0.1
5	1	3	29.80	2.998	8	26.3	4	2	4	40.42	2.232	8	3.3	12	4	2	48.05	1.894	8	0.6
8	2	2	30.45	2.935	8	17.8	7	3	3	40.48	2.228	8	0.2	7	1	5	48.11	1.891	8	1.8
7	3	1	31.61	2.831	8	7.2	13	1	3	40.53	2.226	8	1.5	12	2	4	48.26	1.886	8	1.6
13	1	1	31.66	2.826	8	24.1	6	4	2	41.48	2.177	8	1.4	20	2	0	48.97	1.860	4	0.8
7	1	3	31.81	2.813	8	0.9	10	4	0	41.68	2.167	4	0.5	9	5	1	49.50	1.841	8	1.5
12	2	0	32.03	2.794	4	3.6	6	2	4	41.72	2.165	8	0.4	21	1	1	49.62	1.837	8	3.3
10	2	2	33.37	2.685	8	1.0	9	3	3	42.55	2.125	8	1.1	9	1	5	49.93	1.827	8	2.3



CHEMICAL COMPOSITION:	$ Ca_4(H_2O)_{16}  [Be_{12}P_8O_{32}(OH)_8]$
	Weinebene Pass, Koralpe, Austria

REFINED COMPOSITION:  $|Ca_4(H_2O)_{16}|$  [Be₁₂P₈O₃₂(OH)₈]

CRYSTAL DATA: C1c1 (No. 9) unique axis **b**, cell choice 1 a = 11.897 Å b = 9.707 Å c = 9.633 Å  $\alpha = 90^{\circ}$   $\beta = 95.76^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.044$ 

REFERENCE: F. Walter,

Eur. J. Mineral. 4 1275–1283 (1992).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	1	0	11.79	7.506	4	17.7	1	3	2	34.71	2.584	4	0.7	0	2	4	42.05	2.149	4	2.4
-1	1	1	14.52	6.101	4	19.0	4	2	0	35.53	2.527	4	1.5	2	0	4	42.08	2.147	2	3.0
2	0	0	14.97	5.918	2	100.0	-3	1	3	35.56	2.525	4	3.8	-3	1	4	43.18	2.095	4	2.2
1	1	1	15.45	5.735	4	69.7	-2	2	3	35.73	2.513	4	65.1	-2	2	4	43.50	2.081	4	0.8
0	2	0	18.28	4.853	2	35.3	3	3	0	35.89	2.502	4	8.9	-4	<b>2</b>	3	43.73	2.070	4	5.8
0	0	2	18.51	4.792	2	34.2	-4	2	1	35.97	2.496	4	1.8	-2	4	2	43.87	2.064	4	8.9
0	2	1	20.51	4.330	4	52.2	-3	3	1	36.53	2.459	4	20.1	-3	3	3	44.55	2.034	4	0.7
-1	1	2	21.35	4.161	4	38.1	0	4	0	37.04	2.427	2	14.9	2	4	2	45.25	2.004	4	1.5
1	1	2	22.64	3.927	4	7.1	4	0	2	37.28	2.412	2	1.0	5	1	2	45.37	1.999	4	2.3
-2	0	2	22.67	3.922	2	8.6	0	0	4	37.54	2.396	2	6.9	6	0	0	46.00	1.973	2	8.9
2	2	0	23.71	3.753	4	1.4	4	2	1	37.58	2.393	4	4.2	2	<b>2</b>	4	46.23	1.964	4	0.8
3	1	0	24.35	3.655	4	7.4	3	3	1	37.73	2.384	4	2.9	-4	0	4	46.30	1.961	2	5.5
-2	2	1	24.92	3.573	4	12.5	2	2	3	38.14	2.360	4	12.0	-5	1	3	46.34	1.959	4	3.2
2	0	2	25.06	3.554	2	10.8	0	4	1	38.26	2.353	4	1.4	0	4	3	47.02	1.932	4	3.1
-3	1	1	25.26	3.526	4	7.1	-1	1	4	38.71	2.326	4	5.7	3	1	4	47.25	1.924	4	6.2
2	2	1	26.04	3.421	4	63.8	-4	2	2	38.84	2.318	4	1.4	1	5	0	47.46	1.916	4	0.6
0	2	2	26.13	3.410	4	7.4	-2	0	4	39.12	2.303	2	1.9	3	<b>3</b>	3	47.57	1.912	4	7.2
3	1	1	26.90	3.314	4	8.3	3	1	3	39.13	2.302	4	4.5	5	3	0	47.59	1.911	4	1.4
1	3	0	28.60	3.121	4	5.0	5	1	0	39.17	2.300	4	1.3	4	2	3	47.77	1.904	4	4.7
-2	2	2	29.28	3.050	4	2.2	-5	1	1	39.39	2.288	4	2.4	-5	3	1	47.78	1.904	4	24.6
-3	1	2	29.32	3.046	4	30.2	-1	3	3	39.84	2.263	4	1.4	-6	0	2	48.08	1.892	2	1.9
-1	1	3	29.69	3.009	4	14.3	2	4	0	40.16	2.245	4	4.3	-1	1	5	48.25	1.886	4	1.7
-1	3	1	29.87	2.991	4	19.3	1	1	4	40.23	2.242	4	7.6	-1	5	1	48.29	1.885	4	1.0
4	0	0	30.20	2.959	2	38.3	-2	4	1	40.93	2.205	4	5.6	1	3	4	48.50	1.877	4	0.3
1	3	1	30.35	2.945	4	34.3	1	3	3	40.95	2.204	4	2.0	1	5	1	48.61	1.873	4	1.1
1	1	3	31.11	2.874	4	27.5	5	1	1	41.25	2.189	4	3.7	-2	4	3	48.67	1.871	4	11.3
2	2	2	31.19	2.867	4	2.2	2	4	1	41.66	2.168	4	4.6	-4	4	1	48.86	1.864	4	2.5
3	1	2	32.15	2.784	4	33.0	0	4	2	41.72	2.165	4	0.8	5	<b>3</b>	1	49.39	1.845	4	2.1
0	2	3	33.58	2.669	4	0.3	3	3	2	41.78	2.162	4	0.3	1	1	5	49.84	1.830	4	0.4
-1	3	2	33.86	2.648	4	1.4	4	2	2	41.82	2.160	4	3.9	6	2	0	49.90	1.828	4	3.8
-4	0	2	33.97	2.639	2	3.5	-5	1	2	41.88	2.157	4	2.5	-6	2	1	49.92	1.827	4	0.9



WEI

3

 $\mathbf{2}$  $\mathbf{2}$ 0

1 1

3 1 0

 $\mathbf{2}$ 0  $\mathbf{2}$ 

 $\mathbf{2}$  $\mathbf{2}$ 

3 1 1

4 0 0

0 1

 $\mathbf{2}$ 

1

25.77

26.39

27.31

27.48

28.37

29.02

30.03

30.56

3.457

3.378

3.266

3.245

3.146

3.077

2.976

2.925

12

6

12

12

12

12

24

6

100.0

62.5

4.2

63.2

83.0

20.1

26.9

0.1

40  $\mathbf{2}$ 

 $\mathbf{2}$ 0 3

3 3 0

50

4

3

 $\mathbf{2}$ 1 3

3

39.13

39.36

40.04

40.39

40.81

41.44

41.66

41.90

1

 $\mathbf{2}$ 

 $\mathbf{2}$ 0

 $\mathbf{2}$ 

3 1 2.302

2.289

2.252

2.233

2.211

2.179

2.168

2.156

12

12

6

12

12

24

24

12

7.7

15.1

7.1

65.5

1.1

19.0

5.1

3.0

СН	[EN	1IC	AL CO	OMPOS	SITIC	DN:  Ν Cε	a _{0.5} K ₀ andogli	$_{1.5}^{.5}$ C	a _{5.5} Ital	Ba _{3.5} () y	$SO_4)_3$ I	$H_2O$	[Si ₁₁ A	$l_9O_{41}($	OH	[)2]		
R	REF	'IN	ED CO	OMPOS	SITIC	)N:  N	$a_{0.5}K_0$	$_{.5}\mathrm{C}$	$a_{5.5}$	$Ba_{3.5}S$	$S_3(OH)$	$_{12} [$	$\mathrm{Si}_{11}\mathrm{Al}_9$	$O_{41}(O_{1})$	$H)_2$	2]		
			CR	YSTAL	DAT	TA: $P\overline{0}$ a: $\alpha$ X-	$\overline{5}2m$ (N = 13.5 = 90° ray sir	Vo. 11 ngle	189 Å	b = 1 $\beta = 1$ ystal re	13.511 90° efinemo	Å ent,	c = 7. $\gamma = 1$ R = 0.2	462 Å 20° 10				
				REFER	RENC	CE: S. Ad	Merlin eta Crį	no, yst.	в	<b>30</b> 126	2–1266	6 (19	74).					
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d
1	0	0	7.56	11.701	6	0.1	2	1	2	31.37	2.852	24	37.4	4	2	1	42.64	2.120
0	0	1	11.86	7.462	2	24.9	4	0	1	32.89	2.723	12	15.0	4	1	2	42.92	2.107
1	1	0	13.11	6.755	6	27.7	3	0	2	33.23	2.696	12	32.7	5	1	0	43.04	2.102
1	0	1	14.08	6.292	12	12.0	3	2	0	33.38	2.684	12	68.0	3	0	3	43.13	2.097
2	0	0	15.14	5.850	6	3.9	4	1	0	35.15	2.553	12	3.6	5	1	1	44.80	2.023
1	1	1	17.71	5.008	12	17.5	3	2	1	35.54	2.526	24	2.4	2	2	3	45.27	2.003
2	0	1	19.28	4.604	12	32.1	2	2	2	35.86	2.504	12	16.3	5	0	2	45.77	1.982
2	1	0	20.08	4.423	12	4.3	0	0	3	36.11	2.487	2	3.1	3	1	3	45.97	1.974
3	0	0	22.80	3.900	6	0.1	3	1	2	36.70	2.449	24	30.9	6	0	0	46.57	1.950
2	1	1	23.38	3.805	24	31.6	4	1	1	37.22	2.416	24	18.6	3	3	2	47.14	1.928
0	0	2	23.85	3.731	2	32.5	5	0	0	38.47	2.340	6	19.1	4	3	0	47.25	1.924
1	0	2	$\begin{array}{c} \text{REFEREN} \\ \hline \\ 2\theta & d & M \\ \hline \\ 7.56 & 11.701 & 6 \\ 11.86 & 7.462 & 2 \\ 13.11 & 6.755 & 6 \\ 14.08 & 6.292 & 12 \\ 15.14 & 5.850 & 6 \\ 17.71 & 5.008 & 12 \\ 19.28 & 4.604 & 12 \\ 20.08 & 4.423 & 12 \\ 22.80 & 3.900 & 6 \\ 23.38 & 3.805 & 24 \\ 23.85 & 3.731 & 2 \\ 25.05 & 3.555 & 12 \\ \end{array}$			56.8	1	1	3	38.57	2.334	12	5.5	4	2	2	47.81	1.902

M

24

24

12

12

24

12

12

24

6

12

12

24

12

12

 $\mathbf{2}$ 

24

12

24

24

1.895

1.874

1.865

1.863

1.842

1.831

1.824

0

 $\mathbf{3}$ 

 $\mathbf{2}$ 

3

1

4

3

48.01

48.59

48.82

48.89

49.47

49.80

49.99

4

520

004

4

1 0

51  $\mathbf{2}$ 

3

 $I_{\rm rel}$ 

23.8

1.7

2.5

0.5

2.3

8.6

8.8

3.7

3.9

2.5

0.9

10.6

1.6

19.5

10.2

0.7

1.6

22.6



CH	[EN	1IC	CAL CO	OMPOS	SITI	ON:	Ca ₂ (H ₂ ( Hvalfjörd	D)8 lur,	[S]	i ₁₂ Al ₄ ( eland	$D_{32}]$									
F	REF	'IN	ED CO	OMPOS	ITI	ON:	$ Ca_{2}H_{15.8} $	₈₂ O	8.13	$_{6} $ [Si ₁₂	$_{2}\mathrm{Al}_{4}\mathrm{O}_{3}$	2]								
			CB	VSTAL	DA	та∙	P1c1 (No	- 7	) 11	nique :	avis h	cell	choice	1						
			UII	ISIAL	DA	1	a = 6.70	ο. ΛΔ	Ju	h = 1	3 072	Å	c = 10	1 1 030 Å						
						(	a = 0.10	0 11		$\beta = 1$	111 079	)	c = 10	nº						
						( 1	$\alpha = 90$		1	$\rho = 1$	C		$\gamma = 9$	1917	л		0.045			
						]	Neutron	sinį	gie	crystal	reпne	men	t at 1	= 13K,	$R_{\rm W}$	v =	0.045			
				סדידים	TIM	CF.	Å Vzriale	C	٨	ntiali a	ndI	v c.								
				ΠΕΓΕΝ	UE/INV	UE: .	A. Kvick Z. Krista	, G ıllog	. А gr.	<b>174</b> 26	55–281	(198)	86).							
h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	1	0	6.33	13.972	2	4.8	0	5	1	33.46	2.678	4	10.1	-2	5	<b>2</b>	43.08	2.099	4	1.3
0	1	1	11.37	7.781	4	8.1	1	3	2	33.75	2.655	4	4.0	-3	1	3	43.14	2.097	4	3.9
0	2	0	12.67	6.986	2	30.6	2	1	1	33.95	2.641	4	8.8	0	3	4	43.24	2.092	4	1.2
1	0	0	14.17	6.252	2	6.4	-2	3	2	34.13	2.627	4	8.3	0	6	2	43.39	2.085	4	0.9
-1	1	1	15.30	5.790	4	82.6	2	3	0	34.56	2.596	4	2.6	3	0	0	43.42	2.084	2	8.9
1	1	0	15.53	5.707	4	1.5	-2	2	3	34.95	2.567	4	5.0	2	5	0	43.43	2.083	4	0.9
0	2	1	15.82	5.600	4 2	2.4	-1 1	5 5	1	35.07	2.559 2.551	4	1.7	0	5 6	ა ე	43.40	2.082	4	1.2
1	2	2 0	10.95	4.004	2 1	29.3 51.1	1	0 9	1	35.10 35.78	2.001 2.510	4	3.2 1.0	-1 2	0 3	2 1	43.50	2.081 2.074	4	0.0
0	3	0	19.05	4.055 4.657	2	6.4	-1	0	4	35.78	2.510 2.509	2	1.0 4.3	-2	6	1	43.05 43.76	2.074	4	0.0
-1	0	$\frac{0}{2}$	19.16	4.632	$\frac{2}{2}$	71.5	-1	1	4	36.37	2.300 2.470	4	5.5	-1	4	4	44.45	2.009 2.038	4	2.0
0	1	$\overline{2}$	19.99	4.441	4	5.9	1	1	3	37.08	2.425	4	5.9	-3	2	3	44.65	2.029	4	0.6
-1	1	2	20.20	4.397	4	13.5	-2	4	1	37.19	2.417	4	2.5	2	3	2	44.68	2.028	4	0.6
1	1	1	20.71	4.288	4	34.9	0	5	2	37.48	2.400	4	2.6	1	4	3	45.05	2.012	4	1.7
0	3	1	21.30	4.170	4	18.1	-1	5	2	37.59	2.393	4	0.7	-3	3	2	45.18	2.007	4	2.5
0	2	<b>2</b>	22.86	3.890	4	6.7	-2	3	3	37.89	2.375	4	0.9	3	<b>2</b>	0	45.41	1.997	4	0.9
-1	2	2	23.04	3.860	4	2.2	1	4	2	37.92	2.372	4	0.8	-3	3	1	45.43	1.996	4	4.7
1	2	1	23.49	3.787	4	1.9	-1	2	4	38.10	2.362	4	9.4	0	7	0	45.44	1.996	2	1.1
-1	3	1	23.67	3.758	4	10.0	-2	4	2	38.27	2.352	4	0.7	-1	1	5	45.74	1.983	4	1.3
1	3	0	23.82	3.735	4	3.2	0	0	4	38.44	2.342	2	8.3	1	0	4	46.01	1.973	2	3.3
0	3	2	27.00	3.303	4	5.4	2	4	0	38.65	2.329	4	1.4	-2	5	3	46.23	1.964	4	0.4
-1	3	2	27.15	3.284	4	3.5	2	3	1	38.66	2.329	4	3.2	1	17	4	46.49	1.953	4	1.3
0	4	1	27.20	3.213	4	2.1 6 5	0	0	0	38.00	2.329	2	0.5	0	(	1	40.02	1.952	4	0.0 0.0
-2 1	3	1	27.59 27.54	3.200	4	0.0	1	4 2	ა კ	30.00 38.78	2.020	4	1.4	-ə 9	5	4	40.79	1.942 1.038	2 4	2.3 0.6
1	0	2	27.04 27.60	3.230	2	27.2	-2	0	4	38.89	2.322 2.316	2	2.1	-2	1	5	40.89	1.906	4	22
-1	1	3	27.70	3.220	4	11.1	0	1	4	38.99	2.310	4	1.0	-1	2	5	47.19	1.926	4	0.7
-2	0	2	28.05	3.181	2	2.3	-2	1	4	39.44	2.285	4	1.1	-3	1	4	47.26	1.923	4	4.7
1	1	2	28.34	3.149	4	3.4	0	6	1	39.89	2.260	4	0.7	-1	6	3	47.76	1.904	4	2.1
<b>2</b>	0	0	28.55	3.126	2	7.7	2	1	2	40.56	2.224	4	1.0	3	3	0	47.81	1.902	4	0.7
-2	1	<b>2</b>	28.78	3.102	4	5.2	-3	0	2	40.56	2.224	2	1.2	1	7	0	47.84	1.901	4	1.8
2	1	0	29.28	3.051	4	1.6	0	2	4	40.63	2.221	4	1.1	1	2	4	47.92	1.898	4	0.8
1	4	0	29.29	3.049	4	100.0	-1	3	4	40.85	2.209	4	2.0	2	4	2	48.06	1.893	4	9.1
0	1	3	29.31	3.047	4	16.9	-2	2	4	41.06	2.198	4	2.5	3	1	1	48.48	1.878	4	0.5
-2	2	1	29.58	3.020	4	2.5	-3	1	2	41.10	2.196	4	0.8	2	1	3	48.48	1.878	4	1.9
-1	2	3	29.87	2.991	4	3.9	-1	6	1	41.28	2.187	4	3.3	-3	4	2	48.53	1.876	4	0.8
1	2	2	30.47 20.00	2.933	4	14.9	-3	1 c	1	41.37	2.183	4	0.5	-2	2	5	48.60 48.76	1.873	4	1.0
-⊿ ົ	2 2	2 0	JU.88 31 2≍	∠.090 ೧೪೯೨	41 1	24.3 1 C	1	U 9	U 9	41.37 71.70	2.182 2.177	4 1	0.0 9 ¤	2	0 1	1	40.10 18 77	1.007	4 1	1.0 1.7
⊿ ∩	⊿ ?	0 २	91.99 31.98	2.000 2.851	4 /	4.0 1 0	1	Л	ა კ	41.49 41.70	2.177 2.166	4 1	2.0 1.6	-ə 0	4 1	1 5	40.77 40.06	1.807	4 1	1.1 1.2
0	4	2	31.96	2.801	4	1.0	-2	- 5	1	42.12	2.100 2.146	4	1.0	-1	3	5	49.50	1.841	4	1.0
-1	4	$\overline{2}$	32.09	2.789	4	0.5	2	$\tilde{2}$	2	42.14	2.144	4	2.4	0	7	$\tilde{2}$	49.65	1.836	4	0.6
1	4	1	32.43	2.761	4	14.7	-1	5	3	42.33	2.135	4	1.9	-1	7	2	49.74	1.833	4	0.8
-2	1	3	33.08	2.708	4	17.6	2	4	1	42.42	2.131	4	4.2	3	<b>2</b>	1	49.86	1.829	4	0.5
-1	3	3	33 21	2.698	1	13	1	5	2	42.78	2114	4	13	1	7	1	10.08	1.825	4	07


1

- 09

CHEMICAL COMPOSITION:  $|((CH_3)_4N)_8|$  [Al₂₄P₃₂Zn₈O₁₂₈]  $((CH_3)_4N)^+ = tetramethylammonium$ 

 $|N_8C_{42.656}|$  [Al₂₅Zn₇P₃₂O₁₂₈] REFINED COMPOSITION:

> CRYSTAL DATA: Pbca (No. 61) a = 14.226 Åb = 15.117 Å c = 17.557 Å  $\beta=90^{\circ}$  $\alpha = 90^{\circ}$  $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.069$

REFERENCE: B. Marler, J. Patarin and L. Sierra, Microporous Materials 5 151–159 (1995).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	ı	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	2	10.08	8.779	2	100.0	1	4	3	28.81	3.099	8	0.5	6 4	2	4	6	41.02	2.200	8	0.6
0	<b>2</b>	0	11.71	7.558	2	11.4	2	1	5	28.97	3.082	8	4.5	(	)	6	4	41.32	2.185	4	0.8
1	0	2	11.85	7.471	4	0.6	4	2	2	29.56	3.021	8	1.1	4 4	2	5	5	41.40	2.181	8	4.5
2	0	0	12.44	7.113	2	33.4	2	3	4	29.77	3.001	8	2.9	6	3	1	3	41.52	2.175	8	3.2
0	<b>2</b>	1	12.75	6.942	4	2.5	4	1	3	29.99	2.980	8	24.4	4	ł	<b>2</b>	6	41.72	2.165	8	0.8
1	1	2	13.22	6.697	8	0.7	0	0	6	30.55	2.926	2	1.0	6	3	3	0	42.12	2.145	4	1.1
<b>2</b>	1	0	13.76	6.436	4	39.2	2	2	5	30.76	2.907	8	11.4	(	)	2	8	42.91	2.108	4	0.5
2	1	1	14.66	6.043	8	2.8	4	3	0	30.77	2.906	4	2.1	(	)	4	$\overline{7}$	43.29	2.090	4	0.2
0	<b>2</b>	2	15.47	5.728	4	2.6	4	3	1	31.20	2.867	8	2.5	4	2	6	4	43.32	2.089	8	0.6
<b>2</b>	<b>2</b>	0	17.12	5.180	4	0.4	0	4	4	31.23	2.864	4	1.1	4	ł	4	5	43.41	2.084	8	0.6
<b>2</b>	<b>2</b>	1	17.85	4.968	8	0.8	2	5	1	32.58	2.748	8	6.5	6	3	3	2	43.42	2.084	8	0.3
0	<b>2</b>	3	19.18	4.627	4	25.1	0	2	6	32.82	2.729	4	12.2	4	2	1	8	43.57	2.077	8	0.5
<b>2</b>	<b>2</b>	2	19.90	4.461	8	51.1	4	1	4	32.95	2.718	8	3.7	4	2	$\overline{7}$	0	43.81	2.066	4	0.3
0	0	4	20.23	4.389	2	2.0	2	1	6	33.64	2.664	8	3.5	4	ł	3	6	43.91	2.062	8	4.0
3	1	1	20.27	4.381	8	0.8	2	4	4	33.74	2.657	8	1.5	4	ł	6	0	44.05	2.056	4	0.3
<b>2</b>	1	3	20.51	4.330	8	61.5	2	5	2	33.79	2.652	8	0.6	4	2	$\overline{7}$	1	44.13	2.052	8	0.9
1	3	2	21.27	4.178	8	0.2	4	3	3	34.46	2.603	8	3.4	(	)	6	5	44.24	2.047	4	1.6
3	0	2	21.30	4.172	4	0.3	4	2	4	34.56	2.595	8	0.7	4	ł	1	7	44.61	2.031	8	0.2
<b>2</b>	3	0	21.61	4.112	4	15.6	0	4	5	34.88	2.572	4	0.3	6 4	2	<b>2</b>	8	44.85	2.021	8	0.6
<b>2</b>	3	1	22.20	4.003	8	1.5	2	2	6	35.23	2.548	8	4.1	6 4	2	5	6	44.95	2.016	8	0.3
<b>2</b>	2	3	22.93	3.879	8	29.5	0	6	0	35.63	2.520	2	0.5	4	2	$\overline{7}$	2	45.07	2.011	8	0.4
0	<b>2</b>	4	23.44	3.796	4	5.7	2	5	3	35.73	2.513	8	9.2	6	3	<b>2</b>	4	45.08	2.011	8	0.2
0	4	0	23.54	3.779	2	14.8	0	6	1	36.01	2.494	4	1.6	4	ł	6	2	45.30	2.002	8	0.4
2	0	4	23.82	3.735	4	27.6	4	1	5	36.44	2.465	8	1.5	4	ł	<b>2</b>	$\overline{7}$	45.87	1.978	8	0.8
2	3	2	23.90	3.724	8	4.7	3	5	2	36.71	2.448	8	0.2	6	5	4	2	46.38	1.958	8	0.5
0	4	1	24.09	3.695	4	13.5	0	6	2	37.12	2.422	4	1.1	6 4	2	7	3	46.61	1.949	8	0.3
1	2	4	24.27	3.667	8	0.5	2	4	5	37.17	2.419	8	1.5	4	ł	5	5	47.19	1.926	8	0.8
<b>2</b>	1	4	24.55	3.626	8	1.8	2	6	0	37.88	2.375	4	1.4	6	5	2	5	47.83	1.902	8	0.8
3	1	3	24.87	3.580	8	0.2	6	0	0	37.95	2.371	<b>2</b>	2.4	6	5	4	3	47.88	1.900	8	0.4
4	0	0	25.04	3.556	2	2.4	4	4	3	37.99	2.368	8	0.7	(	)	4	8	47.93	1.898	4	2.1
0	4	2	25.66	3.471	4	40.5	2	6	1	38.24	2.353	8	2.8	(	)	8	0	48.15	1.890	2	0.5
4	1	0	25.73	3.462	4	1.8	1	2	$\overline{7}$	38.34	2.348	8	0.3	(	)	8	1	48.45	1.879	4	0.6
4	1	1	26.24	3.397	8	13.1	6	1	0	38.43	2.342	4	1.7	6 4	2	1	9	48.78	1.867	8	1.6
1	4	2	26.43	3.372	8	0.3	6	1	1	38.78	2.322	8	1.3	6 4	2	5	$\overline{7}$	48.89	1.863	8	0.5
2	<b>2</b>	4	26.62	3.349	8	2.9	0	4	6	38.92	2.314	4	2.0	(	)	8	2	49.33	1.847	4	0.7
2	4	0	26.71	3.337	4	0.6	4	5	0	39.10	2.304	4	4.2	4	ł	7	0	49.37	1.846	4	1.0
4	0	2	27.05	3.296	4	0.9	2	6	2	39.30	2.293	8	1.6	4	2	6	6	49.42	1.844	8	0.2
<b>2</b>	4	1	27.20	3.279	8	0.5	4	5	1	39.45	2.284	8	1.9	6	5	0	6	49.48	1.842	4	0.3
3	0	4	27.69	3.221	4	0.4	1	4	6	39.46	2.284	8	0.3	4	ł	7	1	49.66	1.836	8	1.3
4	1	2	27.70	3.221	8	24.0	4	0	6	39.90	2.260	4	0.3	6	3	3	5	49.81	1.831	8	1.5
4	2	0	27.72	3.218	4	0.9	2	2	7	39.94	2.257	8	2.3	é	;	1	6	49.87	1.829	8	0.2
0	2	$\overline{5}$	28.02	3.185	4	0.4	4	3	5	40.29	2.239	8	0.6	é	3	4	4	49.93	1.826	8	0.2
õ	4	3	28.11	3.175	4	1.4	4	1	6	40.36	2.235	8	0.8	9	2	8	0	49,94	1.826	4	0.3
4	2	1	$\frac{-0.11}{28,19}$	3.165	8	0.6	4	5	2	40.48	2.228	8	0.7	- !	5	$\tilde{2}$	7	49,95	1.826	8	0.3
2	4	2	28.61	3.120	8	4.6	2	6	3	41.01	2.201	8	0.5	ĥ	3	5	2	49,98	1.825	8	0.6
-	-	-	-0.01	5.1-5	0	1.0	-	5	<u> </u>			0	0.0			~	-	10.00	1.010	0	0.0



CHEMICAL COMPOSITION: [Si₄O₈] Ellora, Hyderabad, India

REFINED COMPOSITION:  $[Si_4O_8]$ 

CRYSTAL DATA:  $P4_12_12$  (No. 92) a = 4.97 Å b = 4.97 Å c = 6.94 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.044$ 

REFERENCE: W. A. Dollase,

Z. Kristallogr. **121** 369–377 (1965).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	22.00	4.041	8	100.0	2	0	0	36.15	2.485	4	14.0	2	0	<b>2</b>	44.86	2.020	8	2.6
1	1	0	25.34	3.514	4	0.7	1	1	2	36.38	2.469	8	4.3	1	1	3	47.03	1.932	8	5.2
1	1	1	28.47	3.135	8	9.0	2	1	1	42.72	2.117	16	2.7	2	1	2	48.65	1.872	16	5.4
1	0	<b>2</b>	31.44	2.845	8	11.2	1	0	3	43.13	2.097	8	0.2							

## Alpha Cristobalite



CHEMICAL COMPOSITION:  $[Si_{12}O_{24}]$ Synthetic material

REFINED COMPOSITION: [Si₁₂O₂₄]

CRYSTAL DATA:	$P4_{3}2_{1}2$ (No. 96	3)		
	a = 7.46 Å	b = 7.46 Å	$c=8.61~{\rm \AA}$	
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$	
	X-ray single cry	ystal refinement,	$R_{hk0} = 0.129,$	$R_{hhl} = 0.098$

REFERENCE: J. Shropshire, P. P. Keat and P. A. Vaughan, Z. Kristallogr. **112** 409–413 (1959).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	1	15.72	5.638	8	4.4	2	0	<b>2</b>	31.74	2.819	8	0.4	0	0	4	41.97	2.152	2	1.2
1	1	0	16.81	5.275	4	0.2	2	2	0	33.99	2.638	4	0.3	3	2	0	43.75	2.069	8	0.2
1	1	1	19.74	4.498	8	11.0	2	1	2	34.00	2.637	16	0.3	3	1	<b>2</b>	43.76	2.069	16	1.9
<b>2</b>	0	0	23.86	3.730	4	0.7	1	1	3	35.61	2.521	8	1.6	1	0	4	43.77	2.068	8	0.8
1	0	2	23.86	3.729	8	39.8	3	0	1	37.65	2.389	8	0.2	1	1	4	45.51	1.993	8	0.7
<b>2</b>	0	1	26.03	3.423	8	100.0	3	1	0	38.15	2.359	8	0.1	3	0	3	48.43	1.879	8	6.5
<b>2</b>	1	0	26.72	3.336	8	0.5	3	1	1	39.61	2.275	16	0.7	4	0	0	48.83	1.865	4	7.8
1	1	2	26.73	3.335	8	20.7	2	<b>2</b>	2	40.09	2.249	8	3.2	3	2	<b>2</b>	48.84	1.865	16	2.6
2	1	1	28.70	3.111	16	15.5	2	1	3	41.50	2.176	16	3.7							

## Keatite



CHEMICAL COMPOSITION:  $[Si_{12}O_{24}]$ Mogan formation, Gran Canaria, Canary Islands

REFINED COMPOSITION: [Si₁₂O₂₄]

CRYSTAL DATA:	I12/a1 (No.	15) unique axis $\mathbf{b}$	, cell choice 3
	$a=8.758~{\rm \AA}$	$b=4.876~{\rm \AA}$	c=10.715 Å
	$\alpha = 90^{\circ}$	$\beta = 90.08^{\circ}$	$\gamma = 90^{\circ}$

REFERENCE: G. Miehe and H. Graetsch, Eur. J. Mineral. 4 693–706 (1992).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	2	16.55	5.357	2	0.2	0	2	0	36.87	2.438	2	9.2	2	2	0	42.43	2.130	4	9.5
0	1	1	20.01	4.438	4	45.7	-2	1	3	37.34	2.408	4	0.1	-4	0	2	44.69	2.028	2	1.9
2	0	0	20.28	4.379	2	22.3	2	1	3	37.38	2.406	4	1.3	4	0	<b>2</b>	44.73	2.026	2	3.8
-2	0	2	26.27	3.393	2	47.4	-1	2	1	39.27	2.294	4	3.3	2	2	<b>2</b>	45.85	1.979	4	0.5
2	0	2	26.30	3.388	2	75.5	1	2	1	39.27	2.294	4	5.0	-4	1	1	46.22	1.964	4	0.4
-1	1	2	26.73	3.336	4	100.0	-2	0	4	39.41	2.287	2	7.6	4	1	1	46.24	1.963	4	3.0
1	1	2	26.74	3.333	4	57.3	2	0	4	39.46	2.284	2	0.6	-1	2	3	46.25	1.963	4	0.5
-2	1	1	28.63	3.118	4	26.7	-3	1	<b>2</b>	39.70	2.270	4	0.4	1	2	3	46.27	1.962	4	0.4
2	1	1	28.65	3.116	4	12.1	3	1	<b>2</b>	39.74	2.268	4	0.4	0	1	5	46.28	1.962	4	0.6
0	1	3	31.04	2.881	4	16.4	1	1	4	39.76	2.267	4	4.2	-3	1	4	49.81	1.831	4	11.2
0	0	4	33.45	2.679	2	1.0	0	2	<b>2</b>	40.66	2.219	4	0.9	3	1	4	49.87	1.828	4	12.5
3	1	0	35.85	2.505	4	1.2	4	0	0	41.23	2.189	2	6.8							

## Moganite



CHEMICAL COMPOSITION: [Si₃O₆] Dextro-rotatory synthetic material REFINED COMPOSITION: [Si₃O₆]

> CRYSTAL DATA:  $P3_221$  (No. 154) a = 4.916 Å b = 4.916 Å c = 5.4054 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.016$

REFERENCE: L. Levien, C. T. Prewitt and D. J. Weidner, American Mineralogist 65 920–930 (1980).

h	k	l	$2\theta$	d	M	$I_{\mathrm{rel}}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
1	0	0	20.86	4.257	6	26.7	1	0	<b>2</b>	39.49	2.282	6	1.1	2	0	1	45.81	1.981	6	2.8
0	1	1	26.65	3.345	6	8.9	0	1	2	39.49	2.282	6	21.2	0	2	1	45.81	1.981	6	1.3
1	0	1	26.65	3.345	6	100.0	1	1	1	40.31	2.238	12	8.3							
1	1	0	36.56	2.458	6	9.6	2	0	0	42.46	2.129	6	7.0							



CHEMICAL COMPOSITION: [Si₄₈O₉₆] From the Steinbach meteorite, Harvard Museum, U.S.A.

REFINED COMPOSITION: [Si₄₈O₉₆]

CRYSTAL DATA:	C1c1 (No. 9) u	nique axis $\mathbf{b}$ , cel	l choice 1
	$a=18.524~{\rm \AA}$	$b=5.0032~{\rm \AA}$	c=23.810 Å
	$\alpha = 90^{\circ}$	$\beta = 105.82^\circ$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement,	$R_{\rm w} = 0.069$

REFERENCE: W. A. Dollase and W. H. Baur, American Mineralogist 61 971–978 (1976).

h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$	h	k	l	$2\theta$	d	M	$I_{\rm rel}$
0	0	<b>2</b>	7.72	11.454	2	0.4	1	1	7	34.24	2.619	4	4.1	-8	0	8	44.18	2.050	2	2.6
2	0	0	9.93	8.911	<b>2</b>	0.2	-5	1	6	34.41	2.607	4	2.6	-5	1	10	44.61	2.031	4	0.7
2	0	<b>2</b>	14.16	6.255	2	0.2	4	0	6	34.87	2.573	2	1.1	4	<b>2</b>	3	44.70	2.027	4	0.2
1	1	0	18.42	4.817	4	0.6	5	1	3	35.43	2.533	4	3.4	-4	2	6	45.03	2.013	4	0.2
-1	1	1	18.54	4.785	4	0.2	2	0	8	35.44	2.533	2	0.1	1	1	10	45.06	2.012	4	0.2
-4	0	2	19.31	4.597	<b>2</b>	2.4	-3	1	8	35.71	2.514	4	0.4	-2	<b>2</b>	7	45.06	2.012	4	0.6
-1	1	2	19.46	4.562	4	1.1	0	2	0	35.90	2.502	2	20.9	0	<b>2</b>	7	45.65	1.987	4	0.3
1	1	2	20.52	4.328	4	100.0	3	1	6	36.03	2.493	4	11.0	-3	1	11	45.80	1.981	4	0.7
2	0	4	20.59	4.313	2	56.5	0	2	1	36.12	2.487	4	0.1	-2	0	12	45.81	1.981	2	0.3
-1	1	3	21.07	4.217	4	1.7	-5	1	7	36.53	2.460	4	0.4	2	2	6	46.01	1.973	4	0.6
-4	0	4	21.68	4.100	2	82.5	-2	0	10	37.79	2.381	2	0.5	3	1	9	46.17	1.966	4	0.3
1	1	3	22.54	3.945	4	0.3	0	2	3	37.84	2.377	4	0.1	5	1	7	46.18	1.966	4	0.1
-2	0	6	22.70	3.917	2	0.6	-1	1	9	38.78	2.322	4	0.6	-1	1	11	46.20	1.965	4	0.1
-3	1	1	22.88	3.887	4	1.3	-3	1	9	38.90	2.315	4	0.2	-4	0	12	46.36	1.959	2	0.7
-1	1	4	23.24	3.828	4	27.0	-7	1	1	38.92	2.314	4	0.3	4	2	4	46.48	1.954	4	0.3
3	1	0	23.24	3.827	4	26.8	-5	1	8	38.97	2.311	4	1.8	7	1	4	46.49	1.953	4	0.2
0	0	6	23.30	3.818	2	15.7	-7	1	4	38.98	2.311	4	4.6	-7	1	9	46.71	1.945	4	1.2
4	0	2	23.31	3.816	2	15.0	-4	0	10	39.00	2.309	2	2.3	-6	2	3	46.88	1.938	4	0.1
-3	1	3	24.11	3.691	4	0.4	-8	0	2	39.03	2.308	2	6.7	-6	2	1	46.95	1.935	4	0.2
3	1	1	24.24	3.671	4	3.1	3	1	7	39.24	2.296	4	0.4	-6	2	4	47.37	1.919	4	0.3
-3	1	4	25.62	3.476	4	0.5	7	1	0	39.72	2.269	4	0.2	-2	2	8	47.50	1.914	4	0.2
3	1	2	25.81	3.452	4	2.5	-7	1	5	39.82	2.264	4	0.2	6	2	10	47.52	1.913	4	0.3
-1	1	5	25.83	3.449	4	2.3	5	1	5	40.30	2.238	4	2.3	0	0	12	47.63	1.909	2	0.2
-4	0	6	26.27	3.392	2	4.5	7	1		40.91	2.206	4	0.4	8	0	4	47.66	1.908	2	0.3
-3	1	5	27.62	3.229	4	3.5	-8	0	6	40.96	2.203	2	0.6	-5	1	11	47.76	1.904	4	0.1
2	0	6	27.82	3.207	2	1.5	-2	2	5	41.03	2.200	4	0.2	-9	1	3	47.79	1.903	4	0.9
1	1	5	27.84	3.204	4	1.3	- (	1	6	41.04	2.199	4	0.1	-9	1	2	48.02	1.895	4	0.1
3	1	3	27.85	3.203	4	0.8	0	2	5	41.11	2.196	4	0.1	-0	2	5	48.21	1.887	4	0.2
4	0	4	28.54	3.128	2	0.9	1	1	9	41.32	2.185	4	1.0	-9	1	5	48.38	1.881	4	0.6
-0 C	0	2	28.92	3.087	2	1.1	2	2	4	41.74	2.164	4	0.3	0	2	1 7	48.43	1.880	4	0.2
-0	1	4	29.87	2.991	2	0.1	4	0	0	41.89	2.150	2	0.3	2	1	(	48.55	1.873	4	0.1
-3 E	1	0	30.02	2.977	4	0.1	4	2 1	10	42.13	2.140	4	0.2	-9	1	10	48.59	1.874	4	0.3
-0	1	2	30.03 20.06	2.970	4	1.5	-3	1 0	10	42.27	2.100	4	0.4	-0	1	10	48.02	1.072	2 4	0.0
-2 C	0	0	20.00	2.972	2	4.0 E 1	-4 1	2 1	4	42.32	2.130 9.121	4	2.4	1 7	1	11	40.91	1.002	4	0.2
5	1	1	20.16	2.970	2 4	0.1 1.0	-1	1	10	42.45	2.131 2.120	4	0.2	(	1	0	40.95	1.001	4	0.0
-0 9	1	1	20.10	2.905	4	1.0 9.1	7	1	2 7	42.40	2.129	4	0.5	-4	2 1	10	49.00	1.009	4	0.0
-Э Б	1	49	20.20	2.901	4	2.1	-1	1	0	42.01	2.122 9.191	4	0.0	-7	1	10	49.17	1.000	4	0.2
-5	1	3 6	20.04	2.939	4	2.1	ა 6	1	10	42.03 49.77	2.121 9.114	4	1.9	-9	1	10	49.19	1.002	4	0.0
5	1	4	30.94	2.090	4	0.0	-0 0	0	10	42.77	2.114 2.108	2 1	0.2	-0 10	0	12	49.20	1.002	2	0.3
-5	1	47	31.00	2.000	4	0.2	-2	2 1	6	42.09	2.103 2.007	4	0.1	-10	1	4	49.23	1.001	2 1	0.3
-1	1	1	31.91	2.803	4	1.0	0	1 9	6	43.13	2.097	4	2.0	9	1 9	0	49.50	1.041	4	0.2
4	1	8	31.92 30.00	2.003 2.778	4 9	1.9 5.5	1	∠ 2	2	40.24 13.24	2.092	4	2.0	0 2	∠ 1	∠ 10	49.07	1 820	4 /	0.2
-4 -5	1	5	32.44 32.64	2.773	∠ ∕	0.0	4 9	0	10 10	43.24	2.092	+ 9	$\frac{2.1}{2.1}$	5 6	1	8	49.00 49.00	1.828	+ 9	11
-0	1	7	32.04	2.140	-± /	1.4	2 6	0	6	43.00	2.000	2	2.0 1 9	0	0	0	ч <i>э</i> .э0	1.040	2	1.1
-0	1	-	04.10	2.100	-1	1.4	0	0	0	10.10	4.000	4	T.0							

## Tridymite



# POWDER PATTERN SIMULATIONS OF DISORDERED INTERGROWTHS













## ATOMIC COORDINATES

#### REFINED COMPOSITION: |Li₄(H₂O)₄| [Si₄Al₄O₁₆]

CRYSTAL DATA:  $Pna2_1$  (No. 33) a = 10.313 Å b = 8.194 Å c = 4.993 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.081$ 

REFERENCE: E. Krogh Andersen and G. Ploug-Sørensen, Z. Kristallogr. **176** 67–73 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Li	0.1862	0.6849	0.2520	1.57	1.0
Si	0.3544	0.3757	0.2492	0.44	1.0
Al	0.1593	0.0810	0.2500	0.4	1.0
O 1	0.0061	0.1584	0.1970	0.75	1.0
O 2	0.2736	0.2198	0.1391	0.97	1.0
O 3	0.1912	0.0399	0.5907	0.76	1.0
O 4	0.1804	-0.1008	0.0689	0.68	1.0
H 1	0.5497	0.1798	0.8651	4.0	1.0
H 2	0.4965	0.0587	0.5773	4.2	1.0
O 5	0.4891	0.0903	-0.2395	2.93	1.0

### REFINED COMPOSITION: |C₈N₈O₂| [C₀₈P₈O₃₂]

CRYSTAL DATA:  $I\overline{4}2m$  (No. 121) a = 10.240 Å b = 10.240 Å c = 9.652 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray single crystal refinement,  $R_{\rm p} = 0.0775$ 

REFERENCE: P. Feng, X. Bu and G. D. Stucky, *Nature* **388** 735–741 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
Co	0.6332	0.3668	0.1316	3.79	0.89
Al	0.6332	0.3668	0.1316	3.79	0.11
Р	0.6647	0.3353	0.8092	4.34	1.0
O 1	0.6999	0.3001	0.9553	5.37	1.0
O 2	0.4818	0.3036	0.2179	6.0	1.0
O 3	0.7417	0.2583	0.7049	11.2	1.0
Ν	0.5	0.1847	0.5	4.03	1.0
С	0.5017	0.0444	0.568	3.0	0.5
O 10	0.5	0.5	0.0	4.82	0.5
O 20	0.5	0.5	0.5	8.37	0.5

#### REFINED COMPOSITION: [Al₂₄P₂₄O₉₆]

- CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 13.7114 Å b = 12.7315 Å c = 18.5706 Å  $\alpha = 90^{\circ}$   $\beta = 90.01^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.047$ ,  $R_{wp} = 0.108$ ,  $R_{F} = 0.032$ 
  - REFERENCE: A. Simmen, L. B. McCusker, Ch. Baerlocher and W. M. Meier, Zeolites 11 654–661 (1991). Ch. Baerlocher, Private communication.

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.88997	0.95872	0.16598	0.75	1.0
Al 2	0.88129	0.22661	0.93877	0.96	1.0
Al 3	0.22953	0.09687	0.04922	1.42	1.0
P 1	0.77251	0.09559	0.05384	1.42	1.0
P 2	0.10981	0.23135	0.93763	0.96	1.0
P 3	0.11634	0.96983	0.16394	0.75	1.0
O 1	0.17723	0.05318	0.12913	0.72	1.0
O 2	0.14278	0.16702	0.00209	0.72	1.0
O 3	0.00371	0.25884	0.94574	0.72	1.0
O 4	0.84714	0.16747	0.02039	0.72	1.0
O 5	0.81686	0.04552	0.12009	0.72	1.0
O 6	0.01022	0.99732	0.15632	0.72	1.0
O 7	0.13601	0.86260	0.13230	0.72	1.0
O 8	0.33199	0.16953	0.06981	0.72	1.0
O 9	0.85795	0.96546	0.25665	0.72	1.0
O 10	0.81531	0.33988	0.92509	0.72	1.0
O 11	0.12779	0.16274	0.87230	0.72	1.0
O 12	0.26213	-0.01281	0.99849	0.72	1.0

### REFINED COMPOSITION: [Al₂₀P₂₀O₈₀]

CRYSTAL DATA:	<i>Ibm</i> 2 (No. 46)	$\mathbf{ba}\overline{\mathbf{c}}$ setting	
	$a=13.5336~{\rm \AA}$	b = 18.4821  Å	$c=8.3703~{\rm \AA}$
	$\alpha=90^\circ$	$\beta=90^\circ$	$\gamma = 90^{\circ}$
	Neutron Rietve	ld refinement, $R_{\gamma}$	$_{\rm vp} = 0.027, R_{\rm F^2} = 0.058$

REFERENCE: J. W. Richardson, Jr., J. J. Pluth and J. V. Smith, Acta Cryst. **B44** 367–373 (1988).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.134	0.035	-0.199	2.76	1.0
Al 2	0.949	0.102	0.317	3.54	1.0
Al 3	0.850	0.250	-0.185	1.89	1.0
P 1	0.143	0.025	0.182	2.76	1.0
P 2	0.953	0.104	-0.306	3.54	1.0
P 3	0.857	0.250	0.185	1.89	1.0
O 1	0.143	0.039	0.000	12.15	1.0
O 2	0.945	0.105	0.517	6.09	1.0
O 3	0.860	0.250	0.024	9.72	1.0
O 4	0.242	0.068	0.243	5.04	1.0
O 5	0.068	0.088	0.252	5.37	1.0
O 51	0.057	0.091	-0.257	5.37	1.0
O 6	0.118	0.955	0.232	8.52	1.0
O 61	0.125	0.954	-0.264	8.52	1.0
O 7	0.913	0.179	0.232	8.76	1.0
O 71	0.909	0.177	-0.263	8.76	1.0
O 8	0.762	0.250	0.234	7.02	1.0

REFINED COMPOSITION:  $|C_{15.5}N_{2.58}|$  [Al_{20.54}P_{18.22}O₈₀]

CRYSTAL DATA:	Ibm2 (No. 46)	$ba\overline{c}$ setting	
	$a=13.472~{\rm \AA}$	$b=18.712~{\rm \AA}$	c=8.4431 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cry	ystal refinement,	$R_{\rm w} = 0.042$

REFERENCE: J. J. Pluth, J. V. Smith and J. W. Richardson, Jr., J. Phys. Chem. **92** 2734–2738 (1988).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.1390	0.0331	-0.203	3.553	1.034
Al 2	0.9501	0.1060	0.294	3.553	1.028
Al 3	0.8565	0.250	-0.208	2.921	1.010
P 1	0.1464	0.0365	0.170	3.324	0.913
P 2	0.9515	0.10846	-0.334	3.024	0.912
P 3	0.8621	0.250	0.163	2.661	0.904
O 1	0.1430	0.0364	0.000	9.396	1.0
O 2	0.9515	0.1120	0.491	10.185	1.0
O 3	0.8542	0.250	0.001	10.422	1.0
O 4	0.2455	0.0612	0.228	6.711	1.0
O 5	0.0690	0.0874	0.234	6.632	1.0
O 51	0.0564	0.0974	-0.277	6.79	1.0
O 6	0.1250	0.9611	0.232	7.106	1.0
O 61	0.1158	0.9498	-0.276	7.896	1.0
O 7	0.9175	0.1863	0.221	8.764	1.0
O 71	0.9169	0.1786	-0.267	8.922	1.0
O 8	0.7620	0.250	0.227	9.554	1.0
C 1	0.250	0.250	0.073	21.318	0.646
C 2	0.246	0.250	0.346	21.318	0.646
C 3	0.3449	0.250	0.457	13.738	1.292
C 4	0.161	0.250	0.448	17.371	1.292
Ν	0.301	0.206	0.242	17.371	0.323

#### REFINED COMPOSITION: |(C₈N₈O₈)(H₂O)₈| [P₂₄Al₂₄O₉₆]

CRYSTAL DATA:  $P2_12_12_1$  (No. 19) a = 10.321 Å b = 13.631 Å c = 17.454 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement.  $R_{\rm p} = 0.140$ ,  $R_{\rm wp} = 0.182$ ,  $R_{\rm F^2} = 0.103$ 

#### REFERENCE: R. M. Kirchner, R. W. Grosse-Kunstleve, J. J. Pluth, S. T. Wilson, R. W. Broach and J. V. Smith, *Microporous and Mesoporous Materials* **39** 319–332 (2000).

Atom	x	y	z	$B_{\rm iso}$	occ
P 1	0.8718	0.0088	0.0463	1.05	1.0
P 2	0.1248	0.3179	0.1721	1.05	1.0
P 3	0.1135	0.8170	0.8271	1.05	1.0
P 4	0.8810	0.4973	0.9579	1.05	1.0
P 5	0.1237	0.7200	0.0851	1.05	1.0
P 6	0.1289	0.2104	0.9227	1.05	1.0
Al 1	0.1124	0.9905	0.9460	1.22	1.0
Al 2	0.8750	0.8123	0.1446	1.22	1.0
Al 3	0.1226	0.4884	0.0590	1.22	1.0
Al 4	0.8804	0.3091	0.8580	1.22	1.0
Al 5	0.9268	0.7311	0.9514	1.22	1.0
Al 6	0.9210	0.2354	0.0511	1.22	1.0
O 1	0.8514	0.2491	0.9560	0.83	1.0
O 2	0.8494	0.7656	0.0421	0.83	1.0
O 3	0.9414	0.1067	0.0646	0.83	1.0
O 4	0.9102	0.6021	0.9286	0.83	1.0
O 5	0.8696	0.4348	0.8842	0.83	1.0
O 6	0.8749	0.9373	0.1152	0.83	1.0
O7	0.1273	0.6078	0.0976	0.83	1.0
O 8	0.0863	0.1051	0.9013	0.83	1.0
O 9	0.0864	0.2483	0.0029	0.83	1.0
O 10	0.9660	0.4661	0.0268	0.83	1.0
O 11	0.9946	0.2866	0.1359	0.83	1.0
O 12	0.9674	0.9566	0.9900	0.83	1.0
O 13	0.0440	0.7717	0.1486	0.83	1.0
O 14	0.2307	0.2390	0.1688	0.83	1.0
O 15	0.1777	0.4108	0.1322	0.83	1.0
O 16	0.9831	0.7730	0.8558	0.83	1.0
O 17	0.0876	0.7357	0.9998	0.83	1.0
O 18	0.0946	0.3485	0.2546	0.83	1.0
O 19	0.7355	0.0268	0.0144	0.83	1.0
O 20	0.2163	0.7365	0.8383	0.83	1.0
O 21	0.9102	0.3467	0.7561	0.83	1.0
O 22	0.2701	0.7347	0.0944	0.83	1.0
O 23	0.7596	0.2456	0.1026	0.83	1.0
O 24	0.0393	0.2626	0.8658	0.83	1.0
O 25	0.8490	0.4091	0.6274	0.83	1.0
O 26	0.7580	0.4987	0.4900	0.83	1.0
$H_2O1$	0.7788	0.3736	0.2476	4.74	1.0
$H_2O 2$	0.7142	0.1702	0.2521	7.11	1.0

continued...

Atom	x	y	z	$B_{\rm iso}$	occ
N 1	0.0457	0.5689	0.2542	3.95	1.0
C 1	0.9121	0.5366	0.2338	3.95	1.0
N 2	0.4381	0.4467	0.2655	3.95	1.0
C 2	0.3506	0.5317	0.2604	3.95	1.0

### REFINED COMPOSITION: [Si₇₂O₁₄₄]

Cmcm (No. 63)	)	
a = 33.2900  Å	b = 14.7036  Å	c = 8.3863  Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
Neutron Rietve	ld refinement, $R_{\rm v}$	$_{\rm vp} = 0.043, R_{\rm F^2} = 0.077$
	Cmcm  (No. 63) a = 33.2900  Å $\alpha = 90^{\circ}$ Neutron Rietvez	$\begin{array}{l} Cmcm \mbox{ (No. 63)} \\ a = 33.2900 \mbox{ \AA } b = 14.7036 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \\ \mbox{ Neutron Rietveld refinement, } R_{\rm v} \end{array}$

REFERENCE: J. W. Richardson, Jr. and E. T. C. Vogt, Zeolites **12** 13–19 (1992).

Atom	x	y	z	$B_{\rm iso}$	occ
Si 11	0.1904	0.416	0.066	-1.3	1.0
Si 12	0.0	0.132	-0.028	12.4	1.0
$Si\ 21$	0.0878	0.094	0.055	-0.1	1.0
Si $22$	0.2740	0.404	-0.061	-0.1	1.0
Si 23	0.1573	0.226	-0.071	-0.1	1.0
O 11	0.1767	0.5	0.0	0.3	1.0
O 12	0.0	0.0	0.0	12.8	1.0
O 21	0.1772	0.402	0.25	-0.7	1.0
O 22	0.0	0.127	-0.25	12.5	1.0
O 31	0.0456	0.133	0.018	2.0	1.0
O 32	0.2317	0.394	0.020	3.0	1.0
O 33	0.1580	0.324	0.031	3.0	1.0
O 41	0.1993	0.175	0.017	3.0	1.0
O 42	0.0906	0.0	0.0	3.0	1.0
O 51	0.0847	0.096	0.25	6.6	1.0
O 52	0.2590	0.378	-0.25	6.6	1.0
O 53	0.1444	0.232	-0.25	6.6	1.0
O 61	0.1154	0.174	0.002	3.0	1.0
O 62	0.2865	0.5	0.0	3.0	1.0

Aluminophosphate material refined assuming  $\mathrm{SiO}_2$  composition in a higher space group symmetry.

REFINED COMPOSITION:	$ (Na_{10.134}K_{5.304}Ca_{9.332})((SO_4)_6Cl_{5.8}F_{0.18}) $ [Si ₂₄ Al ₂₄ O ₉₆ ] Pitigliano, Tuscany, Italy					
CRYSTAL DATA:	$P31c$ $a = 1$ $\alpha = 9$ X-ray	(No. 159 2.801 Å 90° y single cr	b = 12 $\beta = 90$ rystal ref	.801 Å )°	$c = 2$ $\gamma = 1$ $R_{\rm p} = 0$	1.412 Å 120° 0.045, $R_{\rm wp} = 0.102$
REFERENCE:	P. Ba <i>Eur.</i>	llirano, I J. Miner	E. Bonaco val. <b>9</b> 21–	corsi, A. 1 30 (1997)	Maras ).	and S. Merlino,
А	tom	x	y	z	$B_{\rm iso}$	occ
Si	1	0.253	0.0	0.495	0.39	1.0
Ā	11	0.7412	0.0	0.9952	0.92	1.0
Si	2	0.9234	0.5849	0.3687	0.72	1.0
А	12	0.0784	0.4032	0.8684	0.69	1.0
Si	3	0.0056	0.257	0.2445	0.72	1.0
А	13	0.004	0.7424	0.745	0.45	1.0
Si	4	0.9232	0.5851	0.1217	0.59	1.0
А	l 4	0.0783	0.4035	0.622	0.55	1.0
Ο	1	0.342	0.333	0.6773	2.01	1.0
О	2	0.669	0.68	0.182	1.53	1.0
О	3	0.348	0.345	0.8062	1.27	1.0
О	4	0.663	0.668	0.302	1.53	1.0
Ο	5	0.122	0.887	0.7462	1.16	1.0
О	6	0.336	0.335	0.4281	2.1	1.0
О	7	0.674	0.677	0.9335	1.69	1.0
Ο	8	0.3516	0.3424	0.0554	1.21	1.0
Ο	9	0.658	0.669	0.5508	1.74	1.0
Ο	10	0.121	0.883	0.0028	2.45	1.0
Ο	11	0.117	0.887	0.4947	1.71	1.0
Ο	12	0.118	0.884	0.2491	1.76	1.0
Ο	13	0.458	0.5465	0.6257	2.31	1.0
Ο	14	0.4562	0.5482	0.875	1.59	1.0
Ο	15	0.2113	0.7732	0.6264	1.64	1.0
Ο	16	0.2128	0.7715	0.866	1.48	1.0
$\mathbf{C}$	a 1	0.0	0.0	0.0	1.38	1.0
$\mathbf{C}$	$a\ 2$	0.0	0.0	0.25	1.29	1.0
$\mathbf{C}$	a 3	0.3333	0.6667	0.6296	1.03	0.9
$\mathbf{C}$	a 31	0.3333	0.6667	0.66	1.03	0.1
$\mathbf{C}$	a 4	0.3333	0.6667	0.8791	1.16	0.9
$\mathbf{C}$	a 41	0.3333	0.6667	0.853	1.16	0.1
C	11	0.0	0.0	0.1237	5.53	1.0
C	12	0.0	0.0	0.3739	6.28	1.0
C	13	0.3333	0.6667	0.7527	9.14	0.9
F	_	0.4018	0.5995	0.7452	3.95	0.03
K	1	0.4432	0.2235	0.8651	3.06	0.218
$\mathbf{C}$	a 1	0.4432	0.2235	0.8651	3.06	0.092

Na 1 K 11 K 2

0.4432

0.5054

0.386

0.2235

0.199

0.5014

continued...

3.06

3.06

2.98

0.364

0.243

0.1

0.8651

0.9912

0.86

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
Ca 22	0.5054	0.5014	0.9912	2.98	0.103
Na 2	0.5054	0.5014	0.9912	2.98	0.423
К 3	0.5211	0.4845	0.7412	3.15	0.012
Ca 32	0.5211	0.4845	0.7412	3.15	0.005
Na 3	0.5211	0.4845	0.7412	3.15	0.573
K 4	0.423	0.21	0.6238	2.69	0.051
Ca 42	0.423	0.21	0.6238	2.69	0.022
Na 4	0.423	0.21	0.6238	2.69	0.329
K $41$	0.456	0.236	0.6163	2.69	0.26
S 1	0.3333	0.6667	0.2475	3.39	1.0
S $2$	0.3333	0.6667	0.4625	3.51	1.0
S 3	0.3333	0.6667	0.0301	4.2	1.0
O 17	0.444	0.744	0.278	7.26	0.3333
O 18	0.4	0.619	0.208	9.26	0.3333
O 19	0.4	0.64	0.296	10.95	0.3333
O 20	0.432	0.762	0.214	14.96	0.3333
O 21	0.3333	0.6667	0.5231	9.89	1.0
O 22	0.211	0.608	0.442	6.91	1.0
O 23	0.206	0.587	0.073	12.8	0.3333
O 24	0.215	0.608	0.042	9.88	0.6667
O~25	0.265	0.635	0.97	12.6	0.3333

REFINED COMPOSITION: |C₁₂NF| [Al₁₂P₁₂O₄₈]

CRYSTAL DATA:	P6cc (No. 184)		
	a=13.740 Å	b=13.740 Å	$c=8.474~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray single cry	vstal refinement,	$R_{\rm w} = 0.042$

REFERENCE: S. Qiu, W. Pang, H. Kessler and J. L. Guth, Zeolites **9** 440–444 (1989).

Atom	x	y	z	$B_{\rm iso}$	occ
Р	0.4529	0.3281	0.053	2.25	1.0
Al	0.4571	0.3382	0.425	1.89	1.0
O 1	0.4214	0.209	0.008	4.18	1.0
O 2	0.4550	0.3299	0.251	5.33	1.0
O 3	0.3658	0.3597	0.004	4.11	1.0
O 4	0.5742	0.4175	0.007	5.03	1.0
C 1	0.104	0.041	0.666	3.95	0.1667
C 2	0.125	0.979	0.750	3.95	0.1667
C 3	0.104	0.979	0.416	3.95	0.1667
C4	0.000	0.895	0.500	3.95	0.1667
C 5	0.041	0.895	0.359	3.95	0.1667
C 6	0.082	0.957	0.221	3.95	0.1667
Ν	0.000	0.000	0.543	3.95	0.5
$\mathbf{F}$	0.500	0.500	0.317	3.95	0.1667

#### REFINED COMPOSITION: [Al₈P₈O₃₂]

CRYSTAL DATA:  $P\overline{1}$  (No. 2) a = 9.7041 Å b = 9.7361 Å c = 10.202 Å  $\alpha = 77.811^{\circ}$   $\beta = 77.504^{\circ}$   $\gamma = 87.691^{\circ}$ X-ray Rietveld refinement,  $R_{\rm F} = 0.059$ ,  $R_{\rm P} = 0.114$ ,  $R_{\rm wP} = 0.135$ 

REFERENCE: R. W. Broach, S. T. Wilson and R. M. Kirchner, in *Proceedings of the 12th International Zeolite Conference*, Ed. by M. M. J. Treacy, B. K. Marcus, J. B. Higgins and M. E. Bisher (Materials Research Society: Warrendale) vol. **III** 1715–1722 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.2730	0.7425	0.8445	0.79	1.0
Al 2	0.4322	0.2004	0.9080	0.79	1.0
Al 3	0.8141	0.0506	0.6558	0.79	1.0
Al 4	0.0699	0.4732	0.2015	0.79	1.0
P 1	0.5246	0.9351	0.7996	1.03	1.0
P 2	0.2010	0.4282	0.9010	1.03	1.0
P 3	0.9511	0.1884	0.3437	1.03	1.0
P 4	0.7520	0.2740	0.8400	1.03	1.0
O 1	0.0766	0.4368	0.8348	0.79	1.0
O 2	0.3024	0.3126	0.8628	0.79	1.0
O 3	0.7757	0.2329	-0.0177	0.79	1.0
O 4	0.4396	0.6420	0.8307	0.79	1.0
O 5	0.4431	0.8367	0.7641	0.79	1.0
O 6	0.2989	0.5607	0.8480	0.79	1.0
O 7	0.0245	0.3297	0.3318	0.79	1.0
O 8	0.8582	0.1495	0.4864	0.79	1.0
O 9	0.9407	0.9216	0.6755	0.79	1.0
O 10	0.1609	0.4094	0.0595	0.79	1.0
O 11	0.8659	0.1898	0.2366	0.79	1.0
O 12	0.6009	0.2911	0.8439	0.79	1.0
O 13	0.8048	0.1556	0.7691	0.79	1.0
O 14	0.3519	0.0299	0.3184	0.79	1.0
O 15	0.4183	0.1391	0.0786	0.79	1.0
O 16	0.8210	0.4141	0.7623	0.79	1.0
# REFINED COMPOSITION: [Al₁₀P₁₀O₄₀]

$P112_1$ (No. 4) u	unique axis ${f c}$	
$a=9.7179~{\rm \AA}$	b = 13.7915  Å	$c=8.3591~{\rm \AA}$
$\alpha=90^\circ$	$\beta = 90^{\circ}$	$\gamma = 110.6^{\circ}$
X-ray Rietveld	refinement, $R_{\rm exp}$	$= 0.023, R_{\rm wp} = 0.164, R_{\rm F} = 0.074$
	$P112_1 \text{ (No. 4)}$ $a = 9.7179 \text{ Å}$ $\alpha = 90^{\circ}$ X-ray Rietveld	$\begin{array}{ll} P112_1 \mbox{ (No. 4) unique axis } \mathbf{c} \\ a = 9.7179 \mbox{ Å } & b = 13.7915 \mbox{ Å } \\ \alpha = 90^\circ & \beta = 90^\circ \\ \mbox{ X-ray Rietveld refinement, } R_{\rm exp} \end{array}$

REFERENCE: R. M. Kirchner and J. M. Bennett, Zeolites 14 523–528 (1994).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.562	0.122	0.638	1.97	1.0
Al 2	0.852	0.278	0.124	1.97	1.0
Al 3	0.725	0.443	0.627	1.97	1.0
Al 4	0.826	0.666	0.142	1.97	1.0
Al 5	0.580	0.743	0.672	1.97	1.0
P 1	0.548	0.096	0.022	1.97	1.0
P 2	0.859	0.284	0.499	1.97	1.0
P 3	0.713	0.440	0.008	1.97	1.0
P 4	0.828	0.671	0.518	1.97	1.0
P 5	0.561	0.716	0.016	1.97	1.0
O 1	0.449	0.138	0.146	3.0	1.0
O 2	0.543	0.127	0.839	3.0	1.0
O 3	0.708	0.156	0.042	3.0	1.0
O 4	0.518	0.976	0.048	3.0	1.0
O 5	0.835	0.385	0.548	3.0	1.0
O 6	-0.006	0.294	0.559	3.0	1.0
O 7	0.743	0.158	0.549	3.0	1.0
O 8	0.855	0.258	0.313	3.0	1.0
O 9	0.825	0.393	0.057	3.0	1.0
O 10	0.752	0.551	0.110	3.0	1.0
O 11	0.545	0.342	0.019	3.0	1.0
O 12	0.751	0.448	0.827	3.0	1.0
O 13	0.754	0.745	0.620	3.0	1.0
O 14	0.775	0.554	0.572	3.0	1.0
O 15	0.801	0.683	0.327	3.0	1.0
O 16	-0.022	0.730	0.555	3.0	1.0
O 17	0.744	0.742	0.061	3.0	1.0
O 18	0.534	0.679	0.834	3.0	1.0
O 19	0.546	0.806	0.089	3.0	1.0
O 20	0.464	0.605	0.089	3.0	1.0

REFINED COMPOSITION:	$ ((C_3)) $	$H_7)_4N)_4 $	$[Al_{32}P_{32}O$	$D_{128}]$		
CRYSTAL DATA:	$Pccn \\ a = 2 \\ \alpha = 2 \\ X-ray$	(No. 56) 21.9443 Å 90° y Rietveld	b = 13. $\beta = 90^{\circ}$ refineme	$^{6911}_{\circ}$ Å ont, $R_{ m exp}$ :	c = 14. $\gamma = 90$ = 0.149	2486 Å , $R_{\rm wp} = 0.161, R_{\rm F} = 0.066$
REFERENCE:	L. B. Micr	McCuske oporous M	er and Ch <i>laterials</i> (	a. Baerloo <b>6</b> 51–54 (	cher, 1996).	
А	tom	x	$\boldsymbol{u}$	z	Biso	OCC
Δ	11	0.0860	0.1/17	0.2174	1.03	1.0
Δ	19	0.0000 0.1778	0.1417	0.2174 0.0553	1.03 1.03	1.0
Δ	12	_0.0110	0.3024	0.0000	1.00 1.03	1.0
A	14	0.0833	0.0000	-0.0764	1.00 1.03	1.0
P	1	0.0055	0.0402 0.3652	0.0104	1.00 1.03	1.0
P	2	0.0000	0.3052 0.1295	0.2190 0.0587	$1.00 \\ 1.03$	1.0
P	3	-0.0125	0.1230 0.1420	0.0507 0.0587	$1.00 \\ 1.03$	1.0
P	4	0.0120	0.1420 0.4489	-0.0808	$1.00 \\ 1.03$	1.0
	1	0.0050 0.0954	0.2605	0.0000 0.2514	0.79	1.0
Ő	$\frac{1}{2}$	0.0001 0.1471	0.2000	0.2011 0.1506	0.79	1.0
Ő	3	0.1111 0.0207	0.1000 0.1285	0.1500 0.1529	0.79	1.0
Ő	4	0.0201 0.0812	0.0682	0.3134	0.79	1.0
Ő	5	0.0012 0.1372	0.3945	0.0101 0.1554	0.79	1.0
Ő	6	0.1072 0.0265	0.3770	0.1671	0.79	1.0
Ő	07	0.0200 0.0857	0.0110 0.4322	0.3036	0.79	1.0
0	8	0.0001 0.1751	0.4022 0.2388	0.0000	0.79	1.0
0	9	0.1701	0.2000 0.4007	0.0401 0.0687	0.79	1.0
0	10	0.2020 0.1454	0.4190	-0.0410	0.79	1.0
Ő	) 11	0.1521	0.0719	-0.0229	0.79	1.0
Ő	12	-0.0369	0.0110 0.2460	0.0226 0.0526	0.79	1.0
Ő	13	0.0341	0.2400 0.3867	-0.0342	0.79	1.0
Ő	14	-0.0741	0.4414	0.0012 0.0607	0.79	1.0
Ő	15	0.0297	0.1238	-0.0260	0.79	1.0
Ő	16	-0.0659	0.0720	0.0550	0.79	1.0
Ň		0.25	-0.25	-0.0080	5.53	1.0
C	1	0.1994	-0.2871	0.0541	5.53	1.0
Č	2	0.1726	-0.2012	0.1130	5.53	1.0
Č	3	0.1186	-0.2388	0.1727	5.53	1.0
C	4	0.2243	-0.1690	-0.0669	5.53	1.0
C	5	0.2730	-0.1304	-0.1357	5.53	1.0
C	6	0.2487	-0.0377	-0.1838	5.53	1.0
H	11	0.1665	-0.3160	0.0142	0.0	1.0
H	12	0.2158	-0.3382	0.0972	0.0	1.0
Н	21	0.1580	-0.1485	0.0698	0.0	1.0
Н	22	0.2049	-0.1744	0.1552	0.0	1.0
Н	31	0.1332	-0.2913	0.2160	0.0	1.0
Н	32	0.0863	-0.2656	0.1304	0.0	1.0
Н	33	0.1014	-0.1836	0.2103	0.0	1.0
Н	41	0.2107	-0.1145	-0.0250	0.0	1.0
Н	42	0.1886	-0.1940	-0.1032	0.0	1.0

continued...

... continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
H 51	0.3111	-0.1145	-0.1004	0.0	1.0
H 52	0.2819	-0.1812	-0.1841	0.0	1.0
H~61	0.2307	0.0069	-0.1353	0.0	1.0
H 62	0.2165	-0.0559	-0.2303	0.0	1.0
H 63	0.2828	-0.0035	-0.2167	0.0	1.0

#### REFINED COMPOSITION: $|(C_4N)_6|$ [Al₂₈P₂₈O₁₁₂] CRYSTAL DATA: P3c1 (No. 158) a = 13.2251 Å b = 13.2251 Å c = 26.8922 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 120^{\circ}$ X-ray single crystal refinement, $R_{\rm w} = 0.119$ **REFERENCE:** J. M. Bennett and B. K. Marcus, in Innovations in Zeolite Material Science (Stud. Surf. Sci. Catal. No. 37) Ed. by P. J. Grobet, W. J. Mortier, E. F. Vansant and G. Schulz-Ekloff (Elsevier: Amsterdam) 269–279 (1988). And J. M. Bennett, Private communication. Atom xyz $B_{\rm iso}$ occ Al 1 0.000000.000000.064571.551.0Al 20.469670.31584 0.13168 2.551.0Al 3 0.198750.965240.189251.041.0Al 4 0.467260.11576 0.307751.421.0Al 5 0.19352 0.172900.362461.461.0Al 6 0.666671.391.00.33333 0.43950Ρ1 0.666670.333330.060391.221.0P20.198620.180820.131651.621.0P30.469650.107670.190501.021.0P40.20093 0.965920.30722 1.731.0P50.469600.31962 0.365551.161.0 $P_{6}$ 0.000000.000000.437711.61.0O 12 1.00.9846 0.11740.58521.75O 16 2.491.00.0000 0.00000.9957 O 21 1.360.68750.23360.08191.0O 22 0.73500.06490.11601.021.0O 231 2.290.91920.47270.16611.0O 230.78260.27130.17591.911.0O 32 0.15150.25870.1616 2.651.0O 321 0.19100.09270.17481.961.0O 33 0.33890.99360.17962.581.0O 34 1.00.21993.210.16380.7555O 43 1.740.89760.50520.74771.0

O 44

O45

O54

O 541

O 55

O 56

O 61

O 65

C 1

C 11

C 21

C2

Ν

O 451

0.3218

0.5189

0.4884

0.1405

0.1867

0.7279

0.9997

0.6666

0.7979

0.2968

0.0527

0.3242

0.9726

0.3242

0.0036

0.4365

0.2442

0.2616

0.0777

0.0750

0.8889

0.3333

0.4676

0.1621

0.3242

0.4316

0.7011

0.0800

0.3158

0.3483

0.3316

0.3398

0.3187

0.3741

0.4222

0.0081

0.4151

0.5117

0.4726

0.9472

0.5117

0.4863

1.95

1.15

2.85

1.76

2.29

2.09

2.66

2.85

2.54

4.0

4.0

4.0

4.0

4.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

# REFINED COMPOSITION: [Al₃₆P₃₆O₁₄₄]

- CRYSTAL DATA:  $P\overline{3}1c$  (No. 163) a = 13.715 Å b = 13.715 Å c = 29.676 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.130$ ,  $R_{wp} = 0.197$ ,  $R_p = 0.173$ 
  - REFERENCE: N. K. McGuire, C. A. Bateman, C. S. Blackwell, S. T. Wilson and R. M. Kirchner, *Zeolites* **15** 460–469 (1995).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.231	0.000	0.198	1.97	1.0
Al 2	0.341	0.445	0.469	1.97	1.0
Al 3	0.435	0.326	0.635	1.97	1.0
P 1	0.225	0.223	0.202	1.97	1.0
P 2	0.339	0.448	0.368	1.97	1.0
P 3	0.435	0.329	0.534	1.97	1.0
O 1	0.267	0.007	0.253	1.97	1.0
O 2	0.234	0.125	0.182	1.97	1.0
O 3	0.097	-0.103	0.195	1.97	1.0
O 4	0.317	-0.026	0.163	1.97	1.0
O 5	0.344	0.413	0.414	1.97	1.0
O 6	0.362	0.354	0.503	1.97	1.0
O 7	0.445	0.581	0.477	1.97	1.0
O 8	0.223	0.453	0.487	1.97	1.0
O 9	0.302	0.323	0.170	1.97	1.0
O 10	0.472	0.224	0.648	1.97	1.0
O 11	0.550	0.452	0.651	1.97	1.0
O 12	0.394	0.318	0.580	1.97	1.0

#### REFINED COMPOSITION: [Al₂₄P₂₄O₉₆]

- CRYSTAL DATA:  $P\overline{3}1c$  (No. 163) a = 13.7617 Å b = 13.7617 Å c = 19.949 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{\exp} = 0.068$ ,  $R_{wp} = 0.219$ 
  - REFERENCE: N. K. McGuire, C. S. Blackwell, C. A. Bateman, S. T. Wilson and R. M. Kirchner, *Microporous and Mesoporous Materials* **28** 125–137 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.001	0.225	0.077	1.185	1.0
Al 2	0.338	0.439	0.173	1.185	1.0
P 1	0.107	0.441	0.179	1.422	1.0
P 2	0.231	0.229	0.079	1.422	1.0
O 1	-0.126	0.112	0.104	1.974	1.0
O 2	0.105	0.189	0.093	1.974	1.0
O 3	0.024	0.348	0.119	1.974	1.0
O 4	0.013	0.277	-0.006	1.974	1.0
O 5	0.231	0.469	0.159	1.974	1.0
O 6	0.095	0.54	0.143	1.974	1.0
O 7	0.073	0.4	0.242	1.974	1.0
O 8	0.319	0.323	0.125	1.974	1.0

# REFINED COMPOSITION: $|(C_4N)_6|$ [Al₆Co₂P₈O₃₂]

CRYSTAL DATA:  $P\overline{3}$  (No. 147) a = 12.7468 Å b = 12.7468 Å c = 9.0153 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.071$ 

REFERENCE: J. M. Bennett and B. K. Marcus, in *Innovations in Zeolite Material Science (Stud. Surf. Sci. Catal. No. 37)* Ed. by P. J. Grobet, W. J. Mortier, E. F. Vansant and G. Schulz-Ekloff (Elsevier: Amsterdam) 269–279 (1988). and J. M. Bennett, Private communication.

Atom	x	y	z	$B_{\rm iso}$	occ
Al	0.85585	0.32535	0.40999	0.09	1.0
Co	0.33333	0.66667	0.18423	0.24	1.0
P 1	0.66667	0.33333	0.19314	0.23	1.0
P 2	0.32138	0.86415	0.38454	0.23	1.0
O 31	0.85934	0.44164	0.52440	0.29	1.0
O 32	0.39760	0.20587	0.52481	0.39	1.0
O 11	0.54705	0.23176	0.25047	0.45	1.0
O 12	0.20298	0.50794	0.24269	0.36	1.0
O 14	0.33333	0.66667	-0.02687	0.36	1.0
O 2	0.35660	0.99417	0.35229	0.44	1.0
C 1	0.40093	0.40351	0.07477	8.9	1.0
C 11	0.21931	0.21598	0.20291	10.03	1.0
C 2	0.46509	0.00622	0.04137	14.41	1.0
C 21	0.34138	0.32934	0.23073	17.57	1.0
Ν	0.28549	0.01616	0.90866	20.45	1.0

### REFINED COMPOSITION: $|(H_2O)_4|$ [Al₆P₆O₂₄]

- CRYSTAL DATA: P112₁ (No. 4) unique axis c a = 9.486 Å b = 9.914 Å c = 8.126 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 121.49^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.127$ 
  - REFERENCE: J. B. Higgins, R. M. Dessau, H-X. Li, M. E. Davis and J.M. Newsam, American Crystallographic Association Abstracts K005 39 (1993).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.0	0.215	0.139	1.263	1.0
Al 2	0.347	0.303	0.664	1.263	1.0
Al 3	0.348	0.037	0.134	1.263	1.0
P 1	0.007	0.094	0.526	1.263	1.0
P 2	0.366	0.349	0.064	1.263	1.0
P 3	0.373	0.038	0.537	1.263	1.0
O 1	0.014	0.067	0.013	2.052	1.0
O 2	0.0	0.116	0.337	2.052	1.0
O 3	0.229	0.347	0.165	2.052	1.0
O 4	0.419	0.234	0.112	2.052	1.0
O 5	0.352	0.333	0.876	2.052	1.0
O 6	0.512	0.523	0.067	2.052	1.0
O 7	0.16	0.254	0.576	2.052	1.0
O 8	-0.229	0.112	0.111	2.052	1.0
O 9	0.406	0.166	0.661	2.052	1.0
O 10	0.362	0.035	0.348	2.052	1.0
O 11	0.525	0.038	0.605	2.052	1.0
O 12	-0.138	0.097	0.608	2.052	1.0
$H_2O~1$	0.016	0.277	-0.097	1.815	0.5
$H_2O~2$	-0.045	0.384	0.196	1.815	0.5
$H_2O~3$	0.262	0.615	0.365	2.607	0.5
$H_2O 4$	0.752	0.408	0.265	2.607	0.5

REFINED COMPOSITION:	$ Na_{16}(H_2O)_{16} $ [Si ₃₂ Al ₁₆ O ₉₆ ]
	Cyclopean Islands, Greece

- CRYSTAL DATA:  $Ia\overline{3}d$  (No. 230) a = 13.73 Å b = 13.73 Å c = 13.73 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.04
  - REFERENCE: G. Ferraris, D. W. Jones and J. Yerkess, Z. Kristallogr. **135** 240–252 (1972).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.125	0.0	0.25	0.32	0.6667
Si	0.66208	-0.41208	0.125	0.14	0.6667
Al	0.66208	-0.41208	0.125	0.14	0.3333
O 1	0.10428	0.13440	0.71932	0.29	1.0
H 1	0.0791	0.0791	0.0791	1.05	0.25
H 2	0.1402	0.1006	0.0548	0.83	0.25
O 2	0.125	0.125	0.125	0.69	1.0

O1 z-coordinate changed from 0.21932 to 0.71932.

# REFINED COMPOSITION: $|(H_2O)_{16}O_8|$ [Al₁₆P₁₆O₆₄]

CRYSTAL DATA:	Pbca (No. 61)		
	$a=19.3525~\text{\AA}$	$b=9.7272~{\rm \AA}$	$c=9.7621~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cry	vstal refinement,	R = 0.033

REFERENCE: J. J. Pluth and J. V. Smith, Acta Cryst. C42 1118–1120 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.44808	0.08470	0.32419	0.23	1.0
Al 2	0.28207	0.33224	0.14654	0.21	1.0
P 1	0.44769	0.34071	0.13498	0.22	1.0
P 2	0.29050	0.06565	0.33879	0.21	1.0
O 1	0.37433	0.3765	0.1701	0.39	1.0
O 2	0.46047	0.1662	0.4804	0.45	1.0
O 3	0.49520	0.4497	0.1971	0.42	1.0
O 4	0.46889	0.2004	0.1942	0.34	1.0
O 5	0.27397	0.0582	0.4913	0.29	1.0
O 6	0.36522	0.0190	0.3136	0.42	1.0
O 7	0.28329	0.2158	0.2953	0.34	1.0
O 8	0.25855	0.4758	0.2592	0.29	1.0
H 1	0.15752	0.2988	0.0523	5.26	1.0
H 2	0.16096	0.2574	0.1883	3.95	1.0
H 3	0.28123	0.1025	0.0541	1.74	1.0
H 4	0.30108	0.1902	0.9490	1.42	1.0
O 9	0.18446	0.2831	0.1193	0.58	1.0
O 10	0.30512	0.1730	0.0340	0.39	1.0
O 11	0.11929	0.1440	0.3627	1.5	1.0

The third water molecule (O11) is missing hydrogen atoms.

# REFINED COMPOSITION: [Al₁₆P₁₆O₆₄]

CRYSTAL DATA:	Pbca (No. 61)		
	a=19.816 Å	b=10.047 Å	c = 8.935 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray Rietveld	refinement, $R_{\rm wp}$	$= 0.17, R_{\rm F} = 0.051; \text{ At } T = 100^{\circ} \text{C}.$

REFERENCE: E. B. Keller, W. M. Meier and R. M. Kirchner, Solid State Ionics 43 93–102 (1990).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.455	0.160	0.360	0.3	1.0
Al 2	0.297	0.423	0.197	1.5	1.0
P 1	0.456	0.424	0.206	2.7	1.0
P 2	0.293	0.145	0.346	0.3	1.0
O 1	0.384	0.465	0.222	9.0	1.0
O 2	0.465	0.143	0.546	0.7	1.0
O 3	0.500	0.539	0.238	1.5	1.0
O 4	0.476	0.317	0.323	0.5	1.0
O 5	0.280	0.110	0.506	1.3	1.0
O 6	0.370	0.124	0.313	5.1	1.0
O 7	0.278	0.284	0.297	0.1	1.0
O 8	0.249	0.560	0.241	3.3	1.0

#### REFINED COMPOSITION: [Al₁₆P₁₆O₆₄]

CRYSTAL DATA:  $Pca2_1$  (No. 29) a = 19.187 Å b = 8.576 Å c = 9.804 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.203$ ,  $R_{\rm F} = 0.115$ ; At  $T = 100^{\circ}$ C.

REFERENCE: E. B. Keller, W. M. Meier and R. M. Kirchner, Solid State Ionics 43 93–102 (1990).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 11	0.531	0.065	0.133	9.1	1.0
Al 12	0.572	0.574	0.385	4.0	1.0
Al 21	0.721	0.074	0.320	0.2	1.0
Al 22	0.681	0.572	0.026	0.8	1.0
P 11	0.574	-0.031	0.421	6.9	1.0
P 12	0.529	0.473	0.107	2.5	1.0
P 21	0.680	-0.051	0.040	0.8	1.0
P 22	0.724	0.453	0.298	0.2	1.0
O 11	0.645	0.035	0.406	1.3	1.0
O 12	0.593	0.526	0.031	0.0	1.0
O 21	0.531	0.284	0.130	8.7	1.0
O 22	0.584	0.784	0.418	4.0	1.0
O 31	0.540	0.017	0.553	6.4	1.0
O 32	0.469	0.518	0.019	0.8	1.0
O 41	0.532	0.018	0.302	5.1	1.0
O 42	0.524	0.557	0.238	0.8	1.0
O 51	0.691	0.773	0.060	4.0	1.0
O 52	0.734	0.278	0.320	8.0	1.0
O 61	0.601	-0.015	0.045	0.7	1.0
O 62	0.655	0.498	0.361	9.4	1.0
O 71	0.716	0.025	0.154	0.8	1.0
O 72	0.724	0.478	0.150	0.8	1.0
O 81	0.789	-0.010	0.405	0.8	1.0
O 82	0.719	0.539	0.869	6.2	1.0

REFINED COMPOSITION:  $|(C_7H_{13}N)_4|$  [Al₂₀P₂₀O₈₀]

CRYSTAL DATA: F23 (No. 196) a = 13.3832 Å b = 13.3832 Å c = 13.3832 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.192$ ,  $R_{\rm F} = 0.106$ 

REFERENCE: J. M. Bennett and R. M. Kirchner, Zeolites 11 502–506 (1991).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.1186	0.1186	0.1186	6.4	1.0
P 1	-0.1116	0.1116	0.1116	5.2	1.0
P 2	0.2500	0.2500	0.2500	4.4	1.0
Al 2	-0.2500	0.2500	0.2500	2.5	1.0
O 1	-0.0078	0.1285	0.1495	3.0	1.0
O 2	0.1915	0.1915	0.1915	5.0	1.0
O 3	-0.1704	0.1704	0.1704	8.0	1.0
Ν	0.0560	0.4329	0.0424	6.0	0.0833
C 1	0.0056	0.3916	-0.0462	6.0	0.0833
C 2	-0.0601	0.4680	-0.0973	6.0	0.0833
C 3	0.1159	0.5193	0.0103	6.0	0.0833
C 4	0.0529	0.5988	-0.0393	6.0	0.0833
C 5	-0.0214	0.4689	0.1118	6.0	0.0833
C 6	-0.0878	0.5472	0.0646	6.0	0.0833
C 7	-0.0552	0.5662	-0.0418	6.0	0.0833
H~11	0.0566	0.3668	-0.0939	7.0	0.0833
H~12	-0.0351	0.3331	-0.0261	7.0	0.0833
H 21	-0.0382	0.4774	-0.1673	7.0	0.0833
H 22	-0.1300	0.4437	-0.0995	7.0	0.0833
H 31	0.1506	0.5481	0.0691	7.0	0.0833
H $32$	0.1686	0.4965	-0.0364	7.0	0.0833
H 41	0.0592	0.6627	-0.0025	7.0	0.0833
H 42	0.0772	0.6110	-0.1081	7.0	0.0833
H 51	-0.0626	0.4116	0.1344	7.0	0.0833
H 52	0.0122	0.4970	0.1722	7.0	0.0833
H 61	-0.1583	0.5246	0.0658	7.0	0.0833
H 62	-0.0845	0.6099	0.1036	7.0	0.0833
H7	-0.0978	0.6173	-0.0741	7.0	0.0833

### REFINED COMPOSITION: $|C_{6.18}F_{0.07}|$ [Si₂₀O₄₀]

CRYSTAL DATA: I 4/m (No. 87) a = 9.194 Å b = 9.194 Å c = 13.396 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.039$ 

REFERENCE: P. Caullet, J. L. Guth, J. Hazm, J. M. Lamblin and H. Gies, Eur. J. Solid State Inorg. Chem. 28 345–361 (1991).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.2303	0.0387	0.1137	0.61	1.0
Si $2$	0.5	0.0	0.25	0.47	1.0
O 1	0.3724	0.0659	0.1817	0.96	1.0
O 2	0.3308	0.6201	0.3583	1.27	1.0
O 3	0.2883	0.0502	0.0	1.36	1.0
C 1	0.05	0.14	0.5	11.91	0.151
C 2	0.13	0.06	0.41	14.5	0.184
C 3	0.00	0.07	0.37	3.87	0.049
C 4	0.14	0.13	0.16	6.15	0.078
F	0.0	0.0	0.0	2.91	0.037

# REFINED COMPOSITION: $|(C_4N_2)(H_2O)_2|$ [Ge₂₀O₄₀]

CRYSTAL DATA:	P4/mcc (No.	124)	
	a=8.7795 Å	b=8.7795 Å	c = 14.4696  Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cry	ystal refinement,	$R_{\rm F}=0.025,wR_{\rm F2}=0.053;{\rm at}$ -75 C.

REFERENCE:	H. Li and O. M. Yaghi,
	J. Am. Chem. Soc. <b>120</b> 10569–10570 (1998).

Atom	x	y	z	$B_{\rm iso}$	occ
${\rm Ge}\;1$	0.0	0.5000	0.2500	0.71	1.0
${\rm Ge}\ 2$	0.2565	0.4239	0.1086	0.71	1.0
O 1	0.1043	0.3755	0.1810	0.95	1.0
O 20	0.2010	0.3595	0.0	1.11	0.5
O 21	0.1764	0.4393	0.0	0.95	0.5
O 30	0.3257	0.5936	0.1557	1.18	0.5
O 31	0.3793	0.2692	0.1194	0.95	0.5
$H_2O$	0.5000	0.5000	0.0	2.53	1.0
C 1	0.0	0.0	0.1258	6.63	0.5
C 2	-0.0333	0.0537	0.2080	7.42	0.125
Ν	-0.0333	0.0537	0.2080	7.42	0.125

Framework oxygen atoms O2 and O3 are statistically disordered between two alternative sites in the lattice, O20 and O21, and O30 and O31, respectively.

REFINED COMPOSITION: |C_{13.16}O_{0.168}| [Al_{7.512}P_{7.504}O₃₂]

- CRYSTAL DATA: I 4/m (No. 87)  $a = 13.2088 \text{ Å} \quad b = 13.2088 \text{ Å} \quad c = 5.2771 \text{ Å}$   $\alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.02, R_{\rm F} = 0.093$ 
  - REFERENCE: W. H. Baur, W. Joswig, D. Kassner, A. Bieniok, G. Finger and J. Kornatowski, Z. Kristallogr. **214** 154–159 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
P 1	0.21631	0.38206	0.0	2.4	0.898
P 2	0.1226	0.4167	0.0	1.2	0.04
Al 1	0.37846	0.20842	0.0	2.5	0.4495
$Al^{3+} 1$	0.37846	0.20842	0.0	2.5	0.4495
Al 2	0.4104	0.1156	0.0	1.6	0.02
$Al^{3+} 2$	0.4104	0.1156	0.0	1.6	0.02
$0^{-} 1$	0.31508	0.32477	0.0	4.6	0.959
$O^- 2$	0.15488	0.35625	0.2302	6.8	1.008
$O^{-} 3$	0.2418	0.49346	0.0	4.9	0.926
$O^{-} 31$	0.187	0.511	0.0	3.3	0.04
$O^{-} 32$	0.517	0.19	0.0	3.3	0.04
$O^{-} 41$	0.015	0.445	0.0	3.3	0.04
C 1	0.5	0.5	0.743	4.3	0.37
C 2	0.449	0.522	0.5	45.8	0.82
C 3	0.4857	0.513	0.0	23.7	0.259
C 4	0.4676	0.0389	0.0	10.5	0.381

The original refinement for the two Al sites used interpolated scattering factors for  $Al^{+1.5}$ , which we model as an equal mix of Al and  $Al^{3+}$ .

### REFINED COMPOSITION: $|C_{14.76}|$ [Al_{17.71}P_{16.67}O₇₂]

- CRYSTAL DATA:  $R\overline{3}$  (No. 148) hexagonal setting a = 20.839 Å b = 20.839 Å c = 5.041 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement,  $R_{\rm wF} = 0.018$ ,  $R_{\rm F} = 0.051$ 
  - REFERENCE: W. H. Baur, W. Joswig, D. Kassner and J. Kornatowski, Acta Cryst. B50 290–294 (1994).

Atom	x	y	z	$B_{\rm iso}$	occ
Al	0.61736	0.08455	0.0381	1.89	0.984
Р	0.47126	0.08774	0.1138	1.31	0.926
O 1	0.55134	0.10711	0.1317	3.0	1.0
O 2	0.42390	0.00893	0.0133	3.32	1.0
O 3	0.44586	0.09533	0.3880	3.32	1.0
O 4	0.46468	0.14061	0.9208	3.32	1.0
C 1	0.046	0.013	0.111	15.79	0.46
C 2	0.064	0.029	0.388	15.79	0.25
C 3	0.0	0.0	0.30	15.79	0.33

#### REFINED COMPOSITION: [Si₂₄O₄₈]

- CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 13.1483 Å b = 21.5771 Å c = 5.1639 Å  $\alpha = 90^{\circ}$   $\beta = 91.84^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.112$ ,  $R_{wp} = 0.135$ ,  $R_{F} = 0.058$ 
  - REFERENCE: J. V. Smith, J. J. Pluth and K. J. Andries, Zeolites 13 166–169 (1993).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.619	0.041	0.767	0.92	1.0
Si $2$	0.314	0.174	0.768	0.92	1.0
Si 3	0.617	0.243	0.223	0.92	1.0
O 1	0.690	0.101	0.773	1.237	1.0
O 2	0.500	0.048	0.750	1.237	1.0
O 3	0.622	0.212	0.934	1.237	1.0
O 4	0.354	0.189	0.069	1.237	1.0
O 5	0.500	0.265	0.250	1.237	1.0
O 6	0.645	0.001	0.022	1.237	1.0
O 7	0.811	0.195	0.748	1.237	1.0

REFINED COMPOSITION:  $|(C_4NO)_4|$  [Al₁₂P₁₂O₄₈]

CRYSTAL DATA:	$P2_12_12$ (No. 18		
	a=10.3325 Å	b = 14.6405  Å	$c=9.5112~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray Rietveld	refinement, $R_{\rm wp}$	$= 0.19, R_{\rm F} = 0.17$

REFERENCE: P. R. Rudolf, C. Saldarriaga-Molina and A. Clearfield, J. Phys. Chem. **90** 6122–6125 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.354	0.608	0.387	3.0	1.0
Al 2	0.366	0.896	0.383	3.0	1.0
Al 3	0.349	0.249	0.139	3.0	1.0
P 1	0.339	0.770	0.157	4.8	1.0
P 2	0.354	0.112	0.368	4.8	1.0
P 3	0.343	0.415	0.369	4.8	1.0
O 1	0.338	0.696	0.272	4.3	1.0
O 2	0.311	0.864	0.218	4.3	1.0
O 3	0.482	0.758	0.086	4.3	1.0
O 4	0.249	0.764	0.018	4.3	1.0
O 5	0.318	0.137	0.210	4.3	1.0
O 6	0.370	0.012	0.381	4.3	1.0
Ο7	0.485	0.168	0.412	4.3	1.0
O 8	0.244	0.143	0.466	4.3	1.0
O 9	0.300	0.506	0.317	4.3	1.0
O 10	0.337	0.349	0.242	4.3	1.0
O 11	0.482	0.412	0.425	4.3	1.0
O 12	0.254	0.381	0.488	4.3	1.0
C 1	-0.024	0.089	0.196	13.1	1.0
C 2	-0.131	-0.017	0.004	13.1	1.0
C 3	-0.018	0.587	0.249	13.1	1.0
C 4	-0.129	0.482	0.065	13.1	1.0
N 1	0.000	0.000	0.100	13.1	1.0
N $2$	0.000	0.500	0.158	13.1	1.0
O 13	0.000	0.000	0.284	13.1	1.0
O 14	0.000	0.500	-0.024	13.1	1.0

### REFINED COMPOSITION: [Al₁₂P₁₂O₄₈]

- CRYSTAL DATA: Acmm (No. 67) **cba** setting a = 9.4489 Å b = 15.2028 Å c = 8.4084 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron Rietveld refinement,  $R_{\rm wp} = 0.041$ ,  $R_{\rm F^2} = 0.133$ ; At T = 593 K.
  - REFERENCE: J. W. Richardson, Jr., J. V. Smith and J. J. Pluth, J. Phys. Chem. **94** 3365–3367 (1990).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.3535	0.0982	0.1987	2.63	0.5
Al 2	0.1566	0.2500	0.3142	0.92	0.5
P 1	0.3535	0.0982	0.1987	2.63	0.5
P 2	0.1566	0.2500	0.3142	0.92	0.5
O 1	0.3017	0.0000	0.2500	1.95	1.0
O 2	0.5000	0.1275	0.2500	2.08	1.0
O 3	0.2317	0.1625	0.2497	2.53	1.0
O 4	0.3308	0.0971	0.0000	2.95	1.0
O 5	0.0000	0.2500	0.2500	1.84	1.0
O 6	0.1076	0.2500	0.5000	5.76	1.0

REFINED COMPOSITION:  $|N_{2.84}C_{13.41}O_4H_4|$  [Al₁₂P₁₂O₄₈]

CRYSTAL DATA:  $P1 2_1/a 1$  (No. 14) unique axis **b**, cell choice 3 a = 10.3307 Å b = 17.5241 Å c = 8.6757 Å  $\alpha = 90.0^{\circ}$   $\beta = 123.369^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray single crystal refinement, R = 0.046,  $R_{\rm w} = 0.042$ 

REFERENCE: J. M. Bennett, J. M. Cohen, G. Artioli, J. J. Pluth and J. V. Smith, Inorg. Chem. 24 188–193 (1985).

Atom	x	y	z	$B_{\rm iso}$	occ
P 1	0.1335	0.0708	0.9738	0.58	1.0
P 2	0.0269	0.2112	0.3235	0.70	1.0
P 3	0.4967	0.1646	0.7462	0.65	1.0
Al 1	0.3082	0.1714	0.3192	0.76	1.0
Al 2	0.3372	0.3892	0.9739	0.61	1.0
Al 3	0.2057	0.2037	0.7707	0.63	1.0
O 1	0.3375	0.4885	0.0519	0.84	1.0
O 2	0.2331	0.0912	0.1807	1.16	1.0
O 3	0.421	0.2188	0.258	1.12	1.0
O 4	0.0904	0.1947	0.5237	1.29	1.0
O 5	0.0484	0.2523	0.7775	0.94	1.0
O 6	0.4254	0.1411	0.5439	1.46	1.0
O 7	0.4636	0.4153	0.9012	0.85	1.0
O 8	0.1819	0.1203	0.8696	1.08	1.0
O 9	0.3221	0.2905	0.8647	1.08	1.0
O 10	0.3759	0.1525	0.7924	1.01	1.0
O 11	0.1316	0.3898	0.8632	0.99	1.0
O 12	0.1589	0.2283	0.2955	1.33	1.0
O 13	0.4353	0.3575	0.2081	1.12	1.0
Ν	0.2155	0.4898	0.2852	3.06	0.71
C 1	0.3305	0.4857	0.4786	12.70	1.425
C 2	0.0868	0.4358	0.2039	7.39	1.295
C 3	0.177	0.4828	0.362	0.00	0.22
C 4	0.125	0.4639	0.477	7.11	0.412
Η	0.381	0.286	0.854	2.02	1.0

REFINED COMPOSITION:  $|P_2O_{8.48}(C_7N)_4|$  [Al₂₄P₂₄O₉₆]

- CRYSTAL DATA: P 4/n cc (No. 130) origin at centre  $\overline{1}$ a = 13.628 Å b = 13.628 Å c = 15.463 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.18
  - REFERENCE: J. W. Richardson, Jr., J. J. Pluth and J. V. Smith, *Naturwiss.* **76** 467–469 (1989). And J. J. Pluth, Private communication (1990).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.1360	0.8640	0.2500	0.63	1.0
Al $2$	0.4660	-0.1419	0.4284	0.843	1.0
P 1	0.1354	0.8646	0.7500	0.737	1.0
P 2	0.6308	0.0185	0.4214	0.79	1.0
O 1	0.2565	-0.1166	0.2738	1.08	1.0
O 2	0.4998	-0.2584	0.4317	1.107	1.0
O 3	0.4258	-0.1044	0.3241	1.37	1.0
O 4	0.5794	-0.0795	0.4309	1.343	1.0
O 5	0.1060	-0.0629	0.1620	1.5	1.0
O 6	0.599	0.0912	0.4905	2.683	1.0
C 1	0.250	0.250	0.739	12.633	1.0
C 2	0.282	0.163	0.389	12.633	0.25
C 3	0.274	0.339	0.389	12.633	0.25
C 5	0.227	0.157	0.302	12.633	0.25
C 6	0.219	0.341	0.302	12.633	0.25
C 8	0.250	0.250	0.249	12.633	1.0
C 9	0.250	0.250	0.298	12.633	1.0
Ν	0.250	0.250	0.4389	12.633	1.0
P 3	0.250	0.750	0.000	0.87	0.5
O 7	0.164	0.787	0.936	0.71	0.5
O 8	0.276	0.0852	0.4213	5.267	0.03

REFINED COMPOSITION:	$[Si_{64}O_{128}]$	]			
CRYSTAL DATA:	$P4_{1}22 \text{ (N}$ $a = 12.66$ $\alpha = 90^{\circ}$ DLS refin	$\begin{array}{ll} \text{fo. 91} \\ \beta 1 & b = \\ & \beta = \\ & \beta = \\ \text{nement.} \end{array}$	= 12.661 Å = 90°	$c = 26.4$ $\gamma = 90^{\circ}$	406 Å
REFERENCE:	J. M. Nev Proc. Roy	wsam, M. <i>y. Soc.</i> (Le	M. J. Trea ondon) <b>A</b> 4	acy, W. T. K <b>120</b> 375–405	Koetsier and C. B. deGruyter (1988).
	Atom	x	y	z	
	Si 1	0.33694	0.79277	0.05619	
	Si 2	0.33711	0.54031	0.05606	
	Si $3$	0.71647	0.79300	0.05872	
	Si 4	0.71656	0.54076	0.05884	
	Si $5$	0.95425	0.79364	0.05555	
	Si 6	0.95434	0.54040	0.05556	
	Si 7	0.14278	0.85722	0.12500	
	Si 8	0.52836	0.85702	0.12552	
	Si 9	0.52842	0.47158	0.12500	
	O 10	0.33623	0.66652	0.06515	
	O 11	0.33454	0.81732	-0.00385	
	O 12	0.23433	0.84457	0.08279	
	O 13	0.44268	0.84276	0.08069	
	O 20	0.33456	0.51612	-0.00402	
	O 21	0.23464	0.48822	0.08264	
	O 22	0.44301	0.49038	0.08043	
	O 30	0.71891	0.66690	0.06809	
	O 31	0.83544	0.83902	0.06074	
	O 32	0.64609	0.84874	0.10222	
	O 40	0.83559	0.49490	0.06084	
	O 41	0.64627	0.48518	0.10242	
	O 50	1.00000	0.82149	0.00000	
	O 51	0.95304	0.66702	0.06321	

O 52

O 60

O 61

1.02844

1.00000

1.02874

Zeolite beta is an intergrown material and *BEA represents the framework of a hypothetical end member. The  $P4_322$  (No. 95) topology can be generated by the coordinate transformation  $z \rightarrow -z$ .

0.84708

0.51256

0.48708

0.09824

0.00000

0.09821

REFINED COMPOSITION:	$[Si_{64}O_{128}]$				
CRYSTAL DATA:	C12/c1 ( a = 17.89 $\alpha = 90^{\circ}$ DLS refin	C12/c1 (No. 15) unique axis <b>b</b> , cell choice 1 a = 17.89654 Å $b = 17.92002$ Å $c = 14.32815$ Å $\alpha = 90^{\circ}$ $\beta = 114.803^{\circ}$ $\gamma = 90^{\circ}$ DLS refinement			
REFERENCE:	J. M. New Proc. Roy	vsam, M. <i>J. Soc.</i> (Lo	M. J. Treatondon) <b>A4</b>	cy, W. T. Koetsier and C. B. deGruyter, <b>20</b> 375–405 (1988).	
	Atom	r	21	7	
	S; 1		9 0.02206	~ 0.38119	
	Si 1	0.00007	-0.02200	0.37030	
	Si 2	0.40352 0.700/7	-0.14001	0.38677	
	Si 4	0.13541 0.67495	-0.33750	0.38698	
	Si 5	0.91268	-0.33092	0.38275	
	Si 6	0.79042	-0.45237	0.38137	
	Si 7	0.50000	0.110201	0.25000	
	Si 8	0.69528	-0.08286	0.25183	
	Si 9	0.50000	-0.27723	0.25000	
	O 10	0.53355	-0.08379	0.34288	
	O 11	0.64810	-0.01901	0.50530	
	O 12	0.56790	0.05877	0.33609	
	O 13	0.67468	-0.04420	0.34022	
	O 20	0.52172	-0.14542	0.50343	
	O 21	0.38767	-0.11893	0.33454	
	O 22	0.49034	-0.22518	0.33637	
	O 30	0.73217	-0.27927	0.36034	
	O 31	0.88292	-0.24602	0.38479	
	O 32	0.76334	-0.14756	0.30231	
	O 33	0.81946	-0.18012	0.49966	
	O 40	0.70644	-0.42162	0.38400	
	O 41	0.58064	-0.32929	0.30322	
	O 51	0.83406	-0.38605	0.34599	
	O 52	0.95542	-0.33707	0.30360	

Zeolite beta is an intergrown material. Polymorph B represents the framework of a hypothetical end member of the beta family.

0.76924 -0.52075

0.30078

O 60

REFINED COMPOSITION:	$ Li_{1.86}(H_2O)_2 $ [Si _{3.89} Al _{2.13} O ₁₂ ] Bikita, Zimbabwe			
CRYSTAL DATA:	P1 (No. 1) a = 8.6071 Å $b = 4.0540$ Å $a$			

AIA.	1 1 (110. 1)		
	$a=8.6071~{\rm \AA}$	$b=4.9540~{\rm \AA}$	c=7.5972 Å
	$\alpha=89.900^\circ$	$\beta=114.437^{\circ}$	$\gamma=89.988^\circ$
	Neutron single	crystal refineme	nt, $R_{\rm w} = 0.056$

REFERENCE: K. Ståhl, Å. Kvick and S. Ghose, Zeolites **9** 303–311 (1989).

Atom	x	y	z	$B_{\rm iso}$	occ
Li 1	0.3095	0.3657	0.1469	1.07	0.91
Li $2$	0.6995	0.8655	0.8722	1.36	0.947
Si 11	0.1057	0.8645	0.0975	0.42	0.957
Si 12	0.1038	0.8006	0.5049	0.51	0.981
Si $22$	0.8920	0.2984	0.4877	0.53	0.981
Si 23	0.6187	0.3748	0.0630	0.41	0.975
Al 13	0.3803	0.8749	0.9374	0.58	1.061
Al 21	0.8985	0.3639	0.9065	0.58	1.066
O 11	0.2641	0.7404	0.0569	0.85	1.0
O 12	0.0830	0.1853	0.0413	0.97	1.0
O 13	0.1584	0.8281	0.3279	1.49	1.0
O 14	0.0557	0.4868	0.5173	1.50	1.0
O 15	0.2612	0.8920	0.6947	1.34	1.0
O 16	0.4496	0.1940	0.0282	0.88	1.0
O 21	0.7311	0.2433	0.9552	0.85	1.0
O 22	0.9283	0.7021	0.9708	0.98	1.0
O 23	0.8414	0.3281	0.6655	1.52	1.0
O 24	0.9378	0.9872	0.4657	1.45	1.0
O~25	0.7318	0.3929	0.2966	1.29	1.0
O 26	0.5593	0.6797	0.9807	0.85	1.0
H 11	0.3230	0.2849	0.4786	5.96	1.0
H $12$	0.4870	0.1784	0.4863	5.21	1.0
H 21	0.6853	0.7872	0.5420	6.35	1.0
H 22	0.5214	0.6763	0.5343	5.28	1.0
O 17	0.4083	0.3224	0.4347	2.35	1.0
O 27	0.5991	0.8225	0.5871	2.35	1.0

REFINED COMPOSITION:	$ (H_2O)_{137.04} $ [Si _{77.76} Al _{18.24} O ₁₉₂ ] Goble area, Oregon, U.S.A.					
CRYSTAL DATA:	$Imma \text{ (No.} \\ a = 20.236 \text{ Å} \\ \alpha = 90^{\circ} \\ \text{X-ray single}$	$\begin{array}{l} 74) \\ \mathbf{\hat{A}}  b = 23.7 \\ \beta = 90^{\circ} \\ \text{crystal refin} \end{array}$	$798 \text{ Å}  c = \gamma$ $\gamma = \gamma$ mement, $R_{ m w}$	= 12.798 $= 90^{\circ}$ = 0.094	3Å	
REFERENCE:	J. J. Pluth a American M	and J. V. Sm <i>Vineralogist</i>	nith, <b>75</b> 501–507	(1990).		
Atom	x	y	z	$B_{\rm iso}$	occ	
Si 1	0.18881	0.18550	0.67190	1.38	0.81	
Si 2	0.19006	0.02407	0.32970	1.54	0.81	
Si 3	0.07689	0.18517	0.83570	1.29	0.81	
Si 4	0.07768	0.022100	0.164300	.41	0.81	
Si 5	0.22108	0.083000	0.537800	.35	0.81	
Si 6	0.12270	0.083710	0.965600	.35	0.81	
Al 1	0.18881	0.18550	0.67190	1.38	0.19	
Al 2	0.19006	0.02407	0.32970	1.54	0.19	
Al 3	0.07689	0.18517	0.83570	1.29	0.19	
Al 4	0.07768	0.02210	0.16430	1.41	0.19	
Al 5	0.22108	0.08300	0.53780	1.35	0.19	
Al 6	0.12270	0.08371	0.96560	1.35	0.19	
O 1	0.18820	0.250000	0.629100	.37	1.0	
O 2	0.11940	0.170700	0.732200	.67	1.0	
O 3	0.195000	0.145600	0.567900	.76	1.0	
O 4	0.190000	0.070200	0.423600	.85	1.0	
O 5	0.119400	0.031900	0.272200	.85	1.0	
O 6	0.089300	0.250000	0.873100	.22	1.0	
O 7	0.000000	0.173800	0.804300	.46	1.0	
O 8	0.000000	0.026300	0.196800	.15	1.0	
O 9	0.194400	0.037900	0.620400	.26	1.0	
O 10	0.097800	0.146400	0.932700	.09	1.0	
O 11	0.095900	0.072500	0.081300	.48	1.0	
O 12	0.200700	0.080000	0.968200	.61	1.0	
O 13	0.094900	0.039500	0.884700	.63	1.0	
O 14	0.250000	0.175500	0.750000	.15	1.0	
O 15	0.250000	-0.037500	0.750000	.39	1.0	
$H_2O 1$	0.000000	0.173500	0.136000	5.26	1.85	
$H_2O 2$	0.193600	0.170100	0.203000	7.89	1.35	
$H_2O 3$	0.193000	0.250000	0.057000	9.74	0.92	
$H_2O 4$	0.107400	0.175400	0.372000	3.96	1.16	
$H_2O~5$	0.000000	0.175000	0.570000	13.7	3.2	
$H_2O~6$	0.000000	0.028400	0.429000	6.07	0.91	
$H_2O$ 7	0.056200	0.114700	0.410000	9.74	0.63	
$H_2O 8$	0.043100	0.081200	0.626000	1.33	0.77	
$H_2O9$	0.149000	0.250000	0.237000	4.22	0.5	
$H_2O$ 1	0 0.106000	0.250000	0.086000	5.0	0.61	
$H_2O 1$	1  0.206000	0.250000	0.401000	4.74	1.32	

REFINED COMPOSITION:  $|Na_{8.36}K_{5.49}(H_2O)_{30.48}| [Be_{14}P_{14}O_{56}]$ 

CRYSTAL DATA:	P321 (No. 150)	1	
	a=12.5815 Å	b=12.5815 Å	c=12.4508 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray Rietveld	refinement, $R_{\rm wp}$	$= 0.192, R_{\rm F} = 0.106$

REFERENCE: G. Harvey, Ch. Baerlocher and T. Wroblewski, Z. Kristallogr. **201** 113–123 (1992).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.3333	0.6667	0.502	1.02	1.0
$\operatorname{Na} 2$	0.184	0.164	0.317	14.28	1.06
K 1	0.6260	0.0000	0.5000	1.02	1.0
K 2	0.5230	0.0000	0.0000	13.59	0.83
Be $1$	0.6667	0.3333	0.1311	0.09	1.0
Be $2$	0.3576	0.4981	0.2681	3.09	1.0
$Be\ 3$	0.6996	0.5607	0.3819	0.33	1.0
P 1	0.3333	0.6667	0.1199	0.08	1.0
P 2	0.4907	0.3534	0.2699	1.74	1.0
P 3	0.5609	0.6992	0.3793	1.11	1.0
O 1	0.5696	0.3736	0.1701	3.24	1.0
O 2	0.3333	0.6667	-0.0013	2.46	1.0
O 3	0.4332	0.5920	0.3659	0.09	1.0
O 4	0.4078	0.4054	0.2520	0.09	1.0
O 5	0.5869	0.8005	0.2973	3.72	1.0
O 6	0.4231	0.7992	0.1584	0.96	1.0
O 7	0.4102	0.2168	0.2954	0.09	1.0
O 8	0.5842	0.4242	0.3611	1.74	1.0
O 9	0.6548	0.6592	0.3646	2.85	1.0
O 10	0.5705	0.7509	0.4945	1.65	1.0
$H_2O 1$	0.406	0.282	-0.002	7.41	1.25
$H_2O\ 2$	0.079	-0.070	0.160	18.54	0.83
$H_2O$ 3	0.045	0.237	-0.116	12.0	1.06
$H_2O$ 4	0.044	0.168	0.515	9.09	1.02
$H_2O~5$	0.647	0.622	0.129	10.65	0.92

REFINED COMPOSITION:	$\begin{aligned} & Ba_{0.52}Sr_{1.48}(H_2O)_{10}  [Si_{12}Al_4O_{32}] \\ &Strontian, Argyll, Scotland \end{aligned}$

- CRYSTAL DATA:  $P1 2_1/m 1$  (No. 11) unique axis **b**  a = 6.793 Å b = 17.573 Å c = 7.759 Å  $\alpha = 90^{\circ}$   $\beta = 94.54^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.06$ 
  - REFERENCE: J. L. Schlenker, J. J. Pluth and J. V. Smith, Acta Cryst. **B33** 2907–2910 (1977).

Atom	x	y	z	$B_{\rm iso}$	occ
Ba	0.2501	0.2500	0.1780	1.19	0.26
$\operatorname{Sr}$	0.2501	0.2500	0.1780	1.19	0.74
Si $1$	0.3218	0.0812	0.8224	1.1	0.75
$Si\ 2$	0.4054	0.0566	0.2108	1.2	0.75
Si 3	0.5553	0.1582	0.5336	1.09	0.75
Si 4	0.9087	0.0528	0.6410	1.01	0.75
Al 1	0.3218	0.0812	0.8224	1.1	0.25
Al 2	0.4054	0.0566	0.2108	1.2	0.25
Al 3	0.5553	0.1582	0.5336	1.09	0.25
Al 4	0.9087	0.0528	0.6410	1.01	0.25
O 1	0.3501	0.1059	0.0283	1.78	1.0
O 2	0.4218	0.1240	0.3607	2.32	1.0
O 3	0.7825	0.1211	0.5454	1.93	1.0
O 4	0.4500	0.1408	0.7150	1.99	1.0
O 5	0.0850	0.0920	0.7615	2.33	1.0
O 6	0.2228	0.9966	0.2388	2.76	1.0
O 7	0.3851	0.9921	0.7952	1.83	1.0
O 8	0.0000	0.0000	0.5000	3.19	1.0
O 9	0.5718	0.2500	0.4994	2.81	1.0
$H_2O~1$	0.0598	0.2500	0.4699	4.14	1.0
$H_2O\ 2$	0.9286	0.1474	0.1518	5.6	1.0
$H_2O\ 3$	0.5996	0.2500	0.0241	4.39	1.0
$H_2O 4$	0.0665	0.2500	0.8660	4.25	1.0

- - CRYSTAL DATA:  $P6_3$  (No. 173) a = 12.635 Å b = 12.635 Å c = 5.115 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.04
    - REFERENCE: Y. I. Smolin, Y. F. Shepelev, I. K. Butikova and I. B. Kobyakov, *Kristallografiya* **26** 63–66 (1981).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.6667	0.3333	0.1354	1.86	1.0
Na 2	0.1254	0.2521	0.2943	1.21	1.0
Si	0.3300	0.4115	0.7500	0.32	1.0
Al	0.0772	0.4221	0.75	0.27	1.0
O 1	0.2019	0.4035	0.6586	0.56	1.0
O 2	0.1157	0.5619	0.7248	0.74	1.0
O 3	0.0329	0.3526	0.0588	0.69	1.0
O 4	0.3161	0.3582	0.0486	0.72	1.0
С	0.0	0.0	0.173	3.27	0.595
O 5	0.1179	0.0603	0.173	1.57	0.6
$H_2O$	0.378	0.701	0.179	5.28	0.333

REFINED COMPOSITION:	$ Li_{2.9}Na_{1.7}K_2Ca_{0.7}O_6  [Be_6P_6O_{24}]$
	Tip Top Mine, Custer, S. Dakota, U.S.A

CRYSTAL DATA:	$P6_3$ (No. 173)		
	$a=11.655~{\rm \AA}$	$b=11.655~{\rm \AA}$	$c=4.692~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray single cry	vstal refinement,	$R_{\rm w} = 0.048$

REFERENCE: D. R. Peacor, R. C. Rouse and J. H. Ahn, American Mineralogist **72** 816–820 (1987).

Atom	x	y	z	$B_{\rm iso}$	occ
Li	0.2207	0.1137	0.7486	2.32	0.483
Na	0.2207	0.1137	0.7486	2.32	0.283
Κ	0.3333	0.6667	0.253	2.04	1.0
Ca	0.2207	0.1137	0.7486	2.32	0.1167
Be	0.338	0.418	0.746	0.63	1.0
Р	0.0851	0.4167	0.7500	0.5	1.0
O 1	0.1902	0.3843	0.6518	0.97	1.0
O 2	0.1378	0.5647	0.7027	0.75	1.0
O 3	0.0547	0.3801	0.0688	0.95	1.0
O 4	0.3302	0.3747	0.0862	0.65	1.0
O 5	0.0000	0.0000	0.253	2.67	1.0
O 6	0.064	0.130	0.378	1.58	0.25
O 7	0.066	0.130	0.097	1.58	0.25
O 8	0.168	0.322	0.236	1.58	0.17

O5 represents a hydroxyl (OH) in the channel. O6, O7 and 08 are non-framework oxygen atoms.

# REFINED COMPOSITION: |Cs_{3.26}| [Si₂₄O₄₈]

CRYSTAL DATA:	Ama2 (No. 40)		
	$a=16.776~{\rm \AA}$	b=13.828 Å	$c=5.021~{\rm \AA}$
	$\alpha=90^\circ$	$\beta = 90^{\circ}$	$\gamma=90^\circ$
	X-ray single cry	stal refinement,	$R_{\rm w}=0.0549$

<b>REFERENCE</b> :	T. Araki,
	Z. Kristallogr. <b>152</b> 207–213 (1980).

Atom	x	y	z	$B_{\rm iso}$	occ
$\mathbf{Cs}$	0.2500	0.20406	0.00000	4.665	0.814
Si $1$	0.05281	0.74134	0.04651	1.469	1.0
Si $2$	0.15709	0.42622	0.41971	1.404	1.0
Si 3	0.08952	0.02677	0.40524	1.444	1.0
O 1	0.00000	0.00000	0.31644	2.851	1.0
O 2	0.25000	0.41029	0.35466	4.888	1.0
O 3	0.12235	0.32339	0.51936	3.97	1.0
O 4	0.09931	0.14024	0.48097	3.014	1.0
O 5	0.02323	0.73969	0.35550	2.718	1.0
O 6	0.11123	0.45939	0.15344	4.334	1.0
O 7	0.14838	0.00661	0.15333	2.614	1.0

Coordinates converted from  $Bbm2~({\bf ba}\overline{{\bf c}})$  setting.

#### REFINED COMPOSITION: [Si₃₂O₆₄]

CRYSTAL DATA: Imma (No. 74) a = 13.695 Å b = 5.021 Å c = 25.497 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.0875$ ,  $R_{\rm wp} = 0.1143$ 

REFERENCE: P. Wagner, M. Yoshikawa, M. Lavallo, K. Tsuji, M. Tsapatsis and M. E. Davis, J. Chem. Soc., Chem. Commun. 2179–2180 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.1160	0.2500	0.0317	3.32	1.0
Si $2$	0.0000	0.7500	0.2788	6.47	1.0
Si 3	0.2820	0.7500	0.1887	3.95	1.0
Si 4	0.0000	0.2500	0.2177	1.58	1.0
Si $5$	0.1936	0.2500	0.1479	3.24	1.0
O 1	0.0000	0.2500	0.0512	3.87	1.0
O 2	0.0853	0.2500	0.1737	1.18	1.0
O 3	0.0000	0.5776	0.2309	8.69	1.0
O 4	0.1303	0.0000	0.0000	42.56	1.0
O 5	0.1896	0.2500	0.0909	4.74	1.0
O 6	0.2500	0.7500	0.2500	6.79	1.0
O 7	0.0913	0.7500	0.3099	3.71	1.0
O 8	0.2640	0.4474	0.1665	5.53	1.0

REFINED COMPOSITION:	$ C_{48} $	$N_{16}$ [Co	${ m D}_{16}{ m Ga}_{20}{ m P}_{36}$	$O_{144}]$		
CRYSTAL DATA:	I1 2/a = 1 $\alpha = 1$ X-ray	a 1 (No 15.002 A 90° y single	. 15) uniqu $\dot{A}  b = 17$ $\beta = 97$ crystal refi	ue axis <b>b</b> , o 7.688 Å 7.24° inement, <i>F</i>	$c = 15$ $\gamma = 90$ $R = 0.0$	bice 3 .751 Å $^{0^{\circ}}$ 704, $R_{\rm w} = 0.0850$
REFERENCE:	A. M Zeoli	[. Chipp <i>tes</i> <b>18</b> [	oindale and 176–181 (19	A. R. Co [*] 997).	wley,	
Ato	m	x	u	z	Biso	OCC
Ga	1 0	~ 75	9 0 20158	0.5	1/17	0 5556
	1 0.	75	0.29158	0.5	1.47	0.4444
Ga	$\frac{1}{2}$ 0.	32984	0.16923	0.18415	1.47	0.5556
	$\frac{2}{2}$ 0.1	32984	0.16923	0.18415	1.63	0 4444
Ga	$\frac{2}{3}$ 0.	42202	0 24028	0 41491	1 45	0.5556
Co	3 0.4	42202	0.24028	0.41491	1.45	0.4444
Ga	4 0.	63514	0.18555	0.24494	1.63	0.5556
Co	4 0.	63514	0.18555	0.24494	1.63	0.4444
Ga	5 0.	52517	0.40972	0.18697	2.16	0.5556
Co	5 0.	52517	0.40972	0.18697	2.16	0.4444
P 6	0.	3610	0.3363	0.2520	1.71	1.0
P 7	0.	5774	0.2711	0.0693	1.47	1.0
P 8	0.	6822	0.3463	0.3219	2.04	1.0
P 9	0.	4756	0.0936	0.3070	1.55	1.0
P 10	0.	25	0.2890	0.5	1.98	1.0
O 1	0.	8277	0.2249	0.4553	3.05	1.0
O 2	0.	7114	0.3640	0.4163	2.79	1.0
O 3	0.	4202	0.0985	0.2176	2.56	1.0
O 4	0.	2386	0.1480	0.2461	3.96	1.0
O 5	0.	3731	0.2661	0.1994	3.44	1.0
O 6	0.	2983	0.1586	0.0673	2.83	1.0
O 7	0.	4106	0.3250	0.3414	2.87	1.0
O 8	0.	4355	0.1478	0.3661	2.98	1.0
O 9	0.	5182	0.2648	0.4944	3.17	1.0
01	0 0.	3135	0.2365	0.4613	3.71	1.0
01	1  0.	5739	0.2161	0.1438	3.06	1.0
01	2 0.	5731	0.1122	0.2980	3.34	1.0
01	$\begin{array}{ccc} 3 & 0. \end{array}$	6558	0.2632	0.3183	4.52	1.0
01	$\begin{array}{ccc} 4 & 0.7 \\ 5 & 0.7 \\ \end{array}$	7439	0.1405	0.2334	4.74	1.0
	5 0.0	6056	0.3974	0.2906	3.55	1.0
01	6 U.	4009	0.4030	0.2099	2.23	1.0
01	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	5493	0.3499	0.0891	2.68	1.0
U I	8 0.	5272 8040	0.5173	0.1552	2.59	1.0
IN 1	0.	0049 097	0.0594	0.00/1	2.00 6.01	1.0
IN 2	0.	901 951	0.0084	0.0420	0.21 4.60	1.0
	0.	004 740	0.512	0.009	4.09 1 99	0.5
	0.	740 753	0.009	0.000	4.20 1 39	0.5
	0.	700 7130	0.4020	0.000	4.00 5.0	0.5
	0.	807	0.019	0.000	5.02	0.5
C 6	0.	007	0.4300	0.024	0.02	0.0

continued...

... continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
C 5	0.831	0.564	0.010	5.01	0.5
C 7	0.993	0.074	-0.049	7.1	0.5
C 8	0.917	-0.001	0.049	4.87	0.5
C 9	1.075	0.027	0.081	13.81	0.5
$C \ 10$	1.018	-0.004	0.102	6.3	0.5
C 11	1.059	0.075	-0.011	5.74	0.5
C 12	0.907	0.031	-0.016	16.12	0.5

REFINED COMPOSITION:	$ C_{28}N_4 $ [Co.	$_4\mathrm{Ga}_{12}\mathrm{P}_{16}$	$O_{64}]$		
CRYSTAL DATA:	$P1 2_1/c 1 (N)$ $a = 14.365 L$ $\alpha = 90^{\circ}$ X-ray single	No. 14) ur $\hat{A}  b = 1$ $\beta = 1$ crystal r	nique axis 16.305 Å 90.243° efinement.	<b>b</b> , cell cho c = 8.73 $\gamma = 90^{\circ}$ R = 0.03	pice 1 34 Å 310, $R_{\rm w} = 0.0365$
REFERENCE:	A. R. Cowle Microporous	ey and A. s and Mes	M. Chipp soporous N	indale, <i>Iaterials</i> 2	<b>28</b> 163–172 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
$Ga\ 1$	0.1365	0.0342	0.5716	1.0028	0.53
$\operatorname{Ga} 2$	0.04238	0.2716	0.6324	1.1765	0.87
$Ga\ 3$	0.47446	-0.1263	0.5896	1.0659	0.88
$\operatorname{Ga} 4$	0.36576	0.1616	0.8134	1.1133	0.72
Co 1	0.1365	0.0342	0.5716	1.0028	0.47
Co 2	0.04238	0.2716	0.6324	1.1765	0.13
Co 3	0.47446	-0.1263	0.5896	1.0659	0.12
Co 4	0.36576	0.1616	0.8134	1.1133	0.28
P 5	0.14798	0.1518	0.8485	1.3028	1.0
P 6	0.35984	0.0307	0.5527	0.9949	1.0
P7	0.47275	0.2188	1.1099	0.9712	1.0
P 8	-0.02864	0.1324	0.4143	1.0106	1.0
O 1	0.4479	0.1630	0.9765	1.7134	1.0
O 2	0.464	-0.1709	0.7813	1.7528	1.0
O 3	-0.0339	0.1972	0.5409	2.3687	1.0
O 4	0.3701	-0.0628	0.5607	1.8634	1.0
O 5	-0.0364	0.1735	0.2574	2.2582	1.0
O 6	0.2498	0.1493	0.8965	2.8109	1.0
O 7	0.1352	0.2251	0.7428	2.7714	1.0
O 8	0.0883	0.1587	0.9916	2.9135	1.0
O 9	0.1184	0.0727	0.7705	2.5345	1.0
O 10	0.3842	0.253	0.6913	1.8239	1.0
O 11	0.4197	0.0638	0.4221	1.7134	1.0
O 12	0.0625	0.0856	0.4233	1.9187	1.0
O 13	0.2599	0.0521	0.5152	2.1792	1.0
O 14	0.392	0.0664	0.7056	2.0292	1.0
O~15	0.4704	-0.2072	0.4434	1.5554	1.0
O 16	0.1137	-0.0781	0.5674	1.8397	1.0
N 1	0.2511	0.9653	0.013	6.1665	0.483
N 2	0.2528	0.9332	0.236	8.1562	0.517
C 1	0.177	0.963	0.119	12.2067	0.483
C 2	0.167	0.882	0.189	11.9935	0.483
C 3	0.2399	0.9008	-0.099	4.3584	0.483
C 4	0.2491	0.8189	-0.028	4.6663	0.483
C 5	0.338	0.952	0.087	9.538	0.483
C 6	0.337	0.881	0.181	9.4038	0.483
C 7	0.254	0.8269	0.148	6.9245	0.483
C 8	0.254	0.8471	0.2510	7.6114	0.517
C 9	0.256	0.8053	0.0970	7.9588	0.517
$C \ 10$	0.3236	0.9609	0.1360	6.7666	0.517

continued...

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
C 11	0.3053	0.9362	-0.0230	5.7165	0.517
C 12	0.1654	0.9564	0.1760	5.4717	0.517
C 13	0.139	0.9113	0.0390	4.1689	0.517
C 14	0.225	0.8699	-0.0280	5.3928	0.517
- CRYSTAL DATA:  $R\overline{3}m$  (No. 166) rhombohedral setting a = 9.459 Å b = 9.459 Å c = 9.459 Å  $\alpha = 94.07^{\circ}$   $\beta = 94.07^{\circ}$   $\gamma = 94.07^{\circ}$ X-ray single crystal refinement, R = 0.05
  - REFERENCE: M. Calligaris, G. Nardin and L. Randaccio, Zeolites **3** 205–208 (1983).

Atom	x	y	z	$B_{\rm iso}$	occ
K 1	0.2222	0.2222	0.2222	0.529	0.97
K 2	0.5611	0.5611	0.2506	2.277	0.15
K 3	0.5255	0.5255	0.1064	2.5	0.22
Si	0.1033	0.3331	0.8743	0.223	0.68
Al	0.1033	0.3331	0.8743	0.223	0.32
O 1	0.2665	-0.2665	0.0	0.579	1.0
O 2	0.1506	-0.1506	0.5	0.52	1.0
O 3	0.2503	0.2503	0.8930	0.559	1.0
O 4	0.0204	0.0204	0.3193	0.406	1.0
$H_2O~1$	0.0	0.50	0.50	3.2	0.61
$H_2O~2$	0.7387	0.7387	0.4784	2.0	0.77
$H_2O 3$	0.4469	0.4469	0.2260	3.2	0.13

REFINED COMPOSITION:	(	$(C_5N)$	$)_{2.06}$		$[Al_{5.47}]$	$P_{5.37}$	$O_{24}$	]
----------------------	---	----------	------------	--	---------------	------------	----------	---

- CRYSTAL DATA:  $R\overline{3}$  (No. 148) rhombohedral setting a = 9.3834 Å b = 9.3834 Å c = 9.3834 Å  $\alpha = 94.085^{\circ}$   $\beta = 94.085^{\circ}$   $\gamma = 94.085^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.068$ 
  - REFERENCE: J. J. Pluth and J. V. Smith, J. Phys. Chem. **93** 6516–6520 (1989).

Atom	x	y	z	$B_{\rm iso}$	occ
Al	0.09888	0.33196	0.87510	1.2	0.912
Р	0.33245	0.10847	0.87466	1.176	0.895
O 1	0.2580	-0.2704	-0.0127	2.763	1.0
O 2	0.1519	-0.1445	0.4911	2.424	1.0
O 3	0.2542	0.2460	0.8876	2.779	1.0
O 4	0.0291	0.0104	0.3178	3.008	1.0
C 1	-0.132	0.524	0.500	17.92	0.344
C 2	0.112	0.492	0.440	31.9	0.344
C 3	0.189	0.353	0.424	31.9	0.344
C 4	0.334	0.382	0.359	31.9	0.344
C 5	0.449	0.303	0.439	31.9	0.344
Ν	0.009	0.480	0.551	17.92	0.344

- CRYSTAL DATA: Pnab (No. 60)  $\overline{\mathbf{cba}}$  setting a = 8.729 Å b = 31.326 Å c = 4.903 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.041
  - REFERENCE: V. Tazzoli, M. C. Domeneghetti, F. Mazzi and E. Cannillo Eur. J. Mineral. 7 1339–1344 (1995).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.25000	0.08789	0.00000	1.45	1.0
Mn	0.00000	0.00000	0.00000	1.20	1.0
Si $1$	0.25000	0.00131	0.50000	0.98	1.0
Si $2$	0.58376	0.23216	0.10475	1.46	1.0
Si 3	0.14247	-0.13511	0.24360	1.53	1.0
Be	-0.00037	0.05722	-0.42986	0.69	1.0
O 1	0.13917	-0.02785	0.31336	1.22	1.0
O 2	0.15170	0.03243	-0.29572	1.21	1.0
O 3	0.04143	0.23906	0.13475	3.23	1.0
O 4	0.25000	-0.24779	0.00000	2.25	1.0
O 5	0.25000	-0.11875	0.00000	6.10	1.0
O 6	0.25000	-0.13872	0.50000	0.28	1.0
O 7	0.07997	-0.18239	0.17734	2.70	1.0
O 8	0.00055	-0.10438	0.27050	1.63	1.0
OH	0.01254	0.05814	0.24296	1.63	1.0
$H_2O$	0.15815	0.14739	0.26022	2.93	1.0

The OH provide the terminal oxygens, where the framework is not fully connected.

REFINED COMPOSITION:	$ F_{192} $ [Ga ₇₆₈ P ₇₆₈ O ₃₁₆₈ ]
CRYSTAL DATA:	$\begin{array}{ll} Fm\overline{3}c \ (\text{No. 226}) \\ a = 51.7120 \ \text{\AA} & b = 51.7120 \ \text{\AA} & c = 51.7120 \ \text{\AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement, } R_{\rm w} = 0.076 \end{array}$
REFERENCE:	M. Estermann, L. B. McCusker, Ch. Baerlocher, A. Merrouche and H. Kessler, <i>Nature</i> <b>352</b> 320–322 (1991).

Atom	x	y	z	$B_{\rm iso}$	occ
$\operatorname{Ga} 1$	0.1341	0.3275	0.2780	1.098	1.0
$\operatorname{Ga} 2$	0.0370	0.3507	0.3134	1.382	1.0
${ m Ga}\ 3$	0.0958	0.3654	0.2236	1.105	1.0
$Ga\ 4$	0.0	0.3242	0.2140	1.184	1.0
$Ga\ 5$	0.0	0.3415	0.3801	2.487	1.0
P 1	0.0888	0.3656	0.2818	1.358	1.0
P 2	0.0	0.3226	0.2769	0.742	1.0
P 3	0.0	0.3876	0.3414	1.153	1.0
P 4	0.1336	0.3210	0.2180	0.616	1.0
P 5	0.0446	0.3097	0.3556	0.955	1.0
O 1	0.0800	0.3669	0.2542	2.771	1.0
O 2	0.1059	0.3885	0.2891	1.413	1.0
O 3	0.1036	0.3404	0.2866	2.448	1.0
O 4	0.0657	0.3679	0.2999	1.587	1.0
O 5	0.1360	0.3124	0.2458	3.995	1.0
O 6	0.1339	0.2970	0.2951	1.437	1.0
O 7	0.1631	0.3439	0.2914	4.572	1.0
O 8	0.0237	0.3376	0.2830	3.427	1.0
O 9	0.0	0.3158	0.2475	1.2	1.0
O 10	0.0	0.2979	0.2916	2.045	1.0
O 11	0.0521	0.3286	0.3360	4.24	1.0
O 12	0.0242	0.3795	0.3277	3.948	1.0
O 13	0.0	0.3738	0.3670	3.119	1.0
O 14	0.1091	0.3344	0.2142	3.206	1.0
O 15	0.0675	0.3692	0.2010	2.258	1.0
O 16	-0.0289	0.3436	0.2115	2.795	1.0
O 17	0.0283	0.3231	0.3764	3.119	1.0
O 18	0.0	0.4161	0.3461	1.169	1.0
O 19	0.0	0.3461	0.4150	5.993	1.0
F 1	0.1335	0.3664	0.25	1.729	1.0
F 2	0.0	0.3325	0.3297	2.037	1.0

O18 and O19 are terminal oxygens, where the framework is not fully connected.

# REFINED COMPOSITION: [Si₅₆O₁₁₂]

CRYSTAL DATA:	C12/m1 (No.	12) unique axis <b>b</b>	<b>b</b> , cell choice 1
	$a=22.6242~{\rm \AA}$	b = 13.3503 Å	c=12.3642 Å
	$\alpha = 90^{\circ}$	$\beta=68.913^\circ$	$\gamma = 90^{\circ}$
	X-ray Rietveld	refinement, $R_{\rm wp}$	$= 0.136, R_{\rm F} = 0.106$

REFERENCE: R. F. Lobo and M. E. Davis, J. Am. Chem. Soc. **117** 3766–3779 (1994).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0677	0.1102	0.4914	1.48	1.0
Si $2$	0.1567	0.1889	0.2510	1.48	1.0
Si 3	0.0734	0.1204	0.7390	1.48	1.0
Si 4	0.2879	0.1171	0.1026	1.48	1.0
Si $5$	0.2770	0.1141	0.8607	1.48	1.0
Si 6	0.0738	0.1195	0.1043	1.48	1.0
Si 7	0.1480	0.1898	0.8835	1.48	1.0
O 8	0.0763	0.0000	0.4256	1.42	1.0
O 9	0.0784	0.1380	0.6085	1.42	1.0
O 1	0.1205	0.1669	0.3814	1.42	1.0
O 2	0.0000	0.1458	0.5000	1.42	1.0
O 3	0.2185	0.1200	0.2009	1.42	1.0
O 4	0.1097	0.1569	0.1860	1.42	1.0
O 5	0.1728	0.3005	0.2109	1.42	1.0
O 6	0.0852	0.0000	0.7309	1.42	1.0
Ο7	0.0003	0.1379	0.8223	1.42	1.0
O 8	0.1271	0.1859	0.7717	1.42	1.0
O 9	0.3045	0.0000	0.1272	1.42	1.0
O 10	0.2721	0.1330	0.9904	1.42	1.0
O 11	0.3442	0.1888	0.0983	1.42	1.0
O 12	0.2102	0.1217	0.8382	1.42	1.0
O 13	0.3046	0.0000	0.8219	1.42	1.0
O 14	0.0873	0.0000	0.1087	1.42	1.0
O~15	0.0837	0.1783	0.9900	1.42	1.0

 $\operatorname{SSZ-33}/\operatorname{SSZ-26}$  family, Polymorph B  $\operatorname{SiO}_2$  framework.

### REFINED COMPOSITION: [Si₅₆O₁₁₂]

CRYSTAL DATA:	Pmna (No. 53)	)	
	a = 13.26 Å	$b=12.33~{\rm \AA}$	c=21.08 Å
	$\alpha = 90^{\circ}$	$\beta=90^\circ$	$\gamma=90^\circ$

REFERENCE: R. F. Lobo, M. Pan, I. Chan, H-X. Li, R. C. Medrud, S. I. Zones, P. A. Crozier and M. E. Davis, *Science* **262** 1543–1546 (1993).

Atom	x	y	z
Si 1	0.111	0.208	0.074
Si 2	0.114	0.158	0.927
Si 3	0.211	0.030	0.150
Si 4	0.113	0.463	0.072
Si 5	0.198	0.359	0.849
Si 6	0.112	0.960	0.271
Si 7	0.116	0.711	0.278
O 1	0.192	0.148	0.117
O 2	0.123	0.168	0.002
O 3	0.129	0.336	0.078
O 4	0.000	0.180	0.099
O 5	0.150	0.269	0.895
O 6	0.184	0.061	0.903
O 7	0.000	0.135	0.908
O 8	0.311	0.017	0.181
O 9	0.117	0.018	0.204
O 10	0.000	0.494	0.091
O 11	0.134	0.500	0.000
O 12	0.190	0.525	0.118
O 13	0.314	0.330	0.836
O 14	0.137	0.361	0.783
O 15	0.000	0.969	0.299
O 16	0.141	0.835	0.263
O 17	0.000	0.700	0.298

SSZ-33/SSZ-26 represents a family of intergrown materials. The polymorph A framework is a hypothetical end member of the family.

REFINED COMPOSITION:	$ Na_{6.06}O_{9.12}  [Zn_{12}P_{12}O_{48}]$
CRYSTAL DATA:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
<b>REFERENCE</b> :	W. T. A. Harrison, T. E. Gier, G. D. Stucky, R. W. Broach and

R. A. Bedard, *Chemistry of Materials* 8 145–151 (1996).

Atom	x	y	z	$B_{\rm iso}$	occ
$Zn \ 1$	0.8414	0.6827	0.25	1.44	1.0
$Zn \ 2$	0.5071	0.4929	0.41667	1.56	1.0
Р	0.8324	0.5912	0.4409	1.6	1.0
O 1	0.805	0.5403	0.3439	1.82	1.0
O 2	1.0485	0.8019	0.2185	2.01	1.0
O 3	0.689	0.571	0.4808	2.59	1.0
O 4	0.873	0.489	0.4910	2.46	1.0
Na 1	0.668	0.336	0.25	2.92	0.53
$\operatorname{Na} 2$	0.602	0.336	0.235	2.92	0.24
O 5	0.07	0.033	0.08333	2.92	0.10
O 6	0.410	0.302	0.161	2.92	0.29
O 7	0.076	0.0	0.0	2.92	0.24
O 8	0.425	0.247	0.117	2.92	0.30

REFINED COMPOSITION:  $|Na_{2.04}O_{4.08}| [Zn_{12}P_{12}O_{48}]$ 

CRYSTAL DATA:  $P6_522$  (No. 179) a = 10.412 Å b = 10.412 Å c = 15.184 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 120.0^{\circ}$ X-ray single crystal refinement, R = 0.0690,  $R_{\rm w} = 0.0810$ 

REFERENCE: W. T. A. Harrison, T. E. Gier, G. D. Stucky, R. W. Broach and R. A. Bedard, *Chemistry of Materials* 8 145–151 (1996).

Atom	x	y	z	$B_{\rm iso}$	occ
$Zn \ 1$	0.84243	0.68486	0.75	1.8	1.0
$Zn \ 2$	0.49697	0.99393	0.75	2.46	1.0
Р	0.17041	0.40605	0.06011	1.74	1.0
O 1	0.1976	0.4597	0.1566	2.68	1.0
O 2	0.0519	0.2464	0.0547	2.61	1.0
O 3	0.3130	0.4229	0.0201	2.37	1.0
O 4	0.1292	0.5030	0.0075	2.84	1.0
Na	0.6713	0.3425	0.75	8.76	0.34
O 5	0.5908	0.7113	0.3441	7.26	0.34

REFINED COMPOSITION:	$\begin{split}  K_{0.62}Ca_{2.76}(H_2O)_{12}  \ [Si_{19.2}Al_{4.8}O_{48}] \\ Elba, \ Italy \end{split}$

CRYSTAL DATA:	C12/m1 (No.	12) unique axis	<b>b</b> , cell choice 1
	$a=18.676~{\rm \AA}$	b=7.518 Å	c=10.246 Å
	$\alpha = 90^{\circ}$	$\beta = 107.87^\circ$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement.	$R_{\rm w} = 0.06$

REFERENCE:	G. Vezzalini,	
	Z. Kristallogr. 166 63–71 (	1984).

Atom	x	y	z	$B_{\rm iso}$	occ
Κ	0.4544	0.0	0.4626	10.3	0.156
Ca	-0.0091	0.2598	0.1297	7.8	0.345
Si 11	0.2905	0.2084	0.1496	1.2	0.4
Si $12$	0.2846	0.2053	0.1660	1.1	0.4
Si $21$	0.1914	0.2901	0.3371	1.3	0.4
Si 22	0.1929	0.2978	0.3714	1.0	0.4
Si 3	0.0964	0.0	0.7007	1.1	0.8
Si 4	0.0816	0.0	0.3793	1.2	0.8
Al 11	0.2905	0.2084	0.1496	1.2	0.1
Al 12	0.2846	0.2053	0.1660	1.1	0.1
Al 21	0.1914	0.2901	0.3371	1.3	0.1
Al 22	0.1929	0.2978	0.3714	1.0	0.1
Al 3	0.0964	0.0	0.7007	1.1	0.2
Al 4	0.0816	0.0	0.3793	1.2	0.2
O 1	0.3636	0.3239	0.2168	3.3	1.0
O 2	0.1162	0.1770	0.3265	3.1	1.0
O 31	0.2188	0.2642	0.2070	2.4	0.5
O 32	0.2382	0.2370	0.2652	4.3	0.5
O 4	0.1002	0.0	0.5457	4.3	1.0
O 5	0.1688	0.5000	0.3487	4.0	1.0
O 6	0.3098	0.0	0.1759	3.5	1.0
O 7	0.2335	0.2452	0.0131	3.2	0.5
O 8	0.2427	0.2777	0.5249	2.9	0.5
O 9	0.0103	0.0	0.7080	1.9	1.0
$H_2O 1$	-0.0084	0.5	0.2668	5.4	1.0
$H_2O~2$	0.0884	0.0	0.0330	6.7	0.5
$H_2O$ 3	0.0694	0.1037	0.0261	7.5	0.25
$H_2O$ 4	0.0724	0.3931	0.0258	6.5	0.25
$H_2O~5$	0.0860	0.5000	0.0310	6.0	0.5

# REFINED COMPOSITION: $|C_{69}N_6|$ [Si₁₂₀O₂₄₀] CRYSTAL DATA: $R\overline{3}m$ (No. 166) hexagonal setting a = 13.860 Å b = 13.860 Å c = 40.891 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 120^{\circ}$ X-ray single crystal refinement, $R_w = 0.066$ REFERENCE: H. Gies, Z. Kristallogr. **175** 93–104 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Si 1	0.7267	0.0511	0.0700	0.76	1.0
Si $2$	0.1264	0.2527	0.1095	0.76	1.0
Si 3	0.2020	0.4039	0.1711	0.2	1.0
Si4	0.1227	0.2454	0.2325	0.6	1.0
$\mathrm{Si}\;5$	0.2256	0.0000	0.0000	0.82	1.0
Si 6	0.0000	0.0000	0.2039	1.53	1.0
$\mathrm{Si}\ 7$	0.0000	0.0000	0.1280	0.87	1.0
O 1	0.3576	0.3881	0.6358	2.37	1.0
O 2	0.2792	0.3749	0.5768	1.45	1.0
O 3	0.4067	0.2954	0.5889	1.96	1.0
O 4	0.2277	0.4554	0.6589	3.76	1.0
O 5	0.1767	0.3534	0.7447	2.24	1.0
O 6	0.3233	0.1616	0.5391	3.01	1.0
O 7	0.5401	0.2700	0.5494	3.7	1.0
O 8	0.2713	0.5426	0.5529	2.49	1.0
O 9	0.1780	0.3561	0.5230	3.33	1.0
O 10	0.1870	0.0000	0.5000	1.65	1.0
O 11	0.0000	0.0000	0.1661	4.47	1.0
$\rm C\;512$	0.5000	0.0000	0.5000	15.112	1.0
N 1	0.0000	0.0000	0.4455	40.908	0.9
C 1	0.0000	0.0000	0.4095	37.228	0.9
C 2	0.0596	0.1192	0.3954	14.915	0.9
C 3	0.0596	0.1192	0.3577	28.274	0.9
C 4	0.1192	0.0596	0.3438	14.654	0.9
N 11	0.0000	0.0000	0.2815	15.728	0.1
$C \ 11$	0.0000	0.0000	0.3175	23.237	0.1
C 21	0.0596	0.1192	0.3317	8.598	0.1
C 31	0.0596	0.1192	0.3694	4.461	0.1
C 41	0.1192	0.0596	0.3833	15.404	0.1

DDR

REFINED COMPOSITION: |C₂₃| [Si₁₃₂O₂₆₄]

CRYSTAL DATA: P6/mmm (No. 191) a = 22.351 Å b = 22.351 Å c = 21.693 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.122$ 

REFERENCE: P. A. Wright, R. H. Jones, S. Natarajan, R. G. Bell, J. Chen, M. B. Hursthouse and J. M. Thomas, J. Chem. Soc., Chem. Comm. 633–635 (1993).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0803	0.3024	0.50000	1.87	1.0
$\mathrm{Si}\ 2$	0.1471	0.4356	0.1836	1.88	1.0
Si 3	0.0816	0.4710	0.2940	1.8	1.0
Si4	0.0811	0.4703	0.0727	2.27	1.0
$\mathrm{Si}\;5$	0.1217	0.3812	0.3706	1.97	1.0
Si 6	0.0782	0.2904	0.2486	2.05	1.0
O 1	0.0993	0.3514	0.1995	3.71	1.0
O 2	0.0923	0.3520	0.4391	4.1	1.0
O 3	0.1063	0.4430	0.3533	3.48	1.0
O 4	0.1306	0.4517	0.1122	3.49	1.0
O 5	0.1298	0.4794	0.2351	4.37	1.0
O 6	0.0847	0.3203	0.3175	3.98	1.0
O 7	0.0	0.2363	0.5	3.29	1.0
O 8	0.1375	0.2750	0.5	4.37	1.0
O 9	0.0	0.2285	0.2361	2.88	1.0
O 10	0.0	0.4158	0.879	4.33	1.0
O 11	0.0	0.4188	0.2775	3.55	1.0
O 12	0.0953	0.4615	0.0	3.76	1.0
O 13	0.2295	0.4590	0.1903	3.45	1.0
O 14	0.0935	0.5468	0.3133	2.78	1.0
O~15	0.2050	0.4101	0.3678	2.8	1.0
O 16	0.1293	0.2586	0.2404	2.8	1.0
O 17	0.0974	0.5487	0.0867	4.36	1.0
C 1	0.5	0.0	0.5	11.84	1.0
C 2	0.4453	0.0246	0.5	11.84	0.3333
C 3	0.5197	0.0394	0.4403	11.84	0.3333
C 4	0.66667	0.33333	0.2688	11.84	1.0
C 5	0.6406	0.2811	0.3088	11.84	0.3333
C 6	0.5949	0.2974	0.3129	9.67	0.3333

Refined in higher symmetry space group (P6/mmm) with disordered T-sites.

REFINED COMPOSITION: |C₃₂N₃₂| [Mg₃₂P₃₂O₁₂₈]

- CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 20.9098 Å b = 17.8855 Å c = 14.7913 Å  $\alpha = 90.0^{\circ}$   $\beta = 134.842^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray single crystal refinement, R = 0.1007,  $R_{\rm w} = 0.0994$ 
  - REFERENCE: K. O. Kongshaug, H. Fjellvåg and K. P. Lillerud, Chemistry of Materials **12** 1095–1099 (2000).

Atom	x	y	z	$B_{\rm iso}$	occ
$Mg \ 1$	0.6337	0.5791	0.8697	0.71	1.0
$Mg\ 2$	0.1339	0.5828	0.8798	0.71	1.0
$Mg \ 3$	0.5134	0.6686	0.3938	0.63	1.0
Mg 4	0.0011	0.6701	0.3846	0.79	1.0
P 1	0.488	0.645	0.5859	0.71	1.0
P 2	0.8503	0.6002	0.1141	0.63	1.0
P 3	0.6496	0.3955	0.8964	0.71	1.0
P 4	-0.0044	0.6504	0.5961	0.63	1.0
O 1	0.5787	0.5965	0.9299	1.58	1.0
O 2	0.0369	0.7735	0.4253	1.18	1.0
O 3	0.5851	0.6279	0.7143	1.34	1.0
O 4	0.4803	0.6232	0.4771	0.87	1.0
O 5	0.9112	0.6126	0.0934	1.5	1.0
O 6	0.8792	0.651	0.2222	1.11	1.0
Ο7	0.8516	0.5192	0.1478	0.87	1.0
O 8	0.7528	0.6233	-0.0102	1.11	1.0
O 9	0.6387	0.4745	0.8498	1.18	1.0
O 10	0.5918	0.3403	0.785	1.03	1.0
O 11	0.7491	0.3707	0.9848	0.87	1.0
O 12	0.6227	0.3894	0.9709	1.18	1.0
O 13	0.0852	0.6474	0.7371	1.26	1.0
O 14	-0.0463	0.7283	0.5554	0.87	1.0
O~15	0.9297	0.5921	0.571	1.26	1.0
O 16	0.014	0.6254	0.5161	0.79	1.0
N 1	0.1204	0.501	0.6262	1.03	1.0
N $2$	0.6261	0.5053	0.6242	1.11	1.0
N 3	0.7586	0.2534	0.1335	1.03	1.0
N 4	0.7341	0.7513	0.1062	1.18	1.0
C 1	0.7169	0.4716	0.7168	1.11	1.0
C 2	0.2119	0.5328	0.7085	1.11	1.0
C 3	0.7604	0.2203	0.2269	0.87	1.0
C4	0.7403	0.7825	0.204	1.03	1.0

CRYSTAL DATA:	P6/mmm (No.	191)	
	$a=13.783~{\rm \AA}$	$b=13.783~{\rm \AA}$	c = 11.190  Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray single cry	vstal refinement,	$R_{\rm w} = 0.077$

REFERENCE:	H. Gerke and H. Gies,
	Z. Kristallogr. 166 11–22 (1984).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.4186	0.2093	0.2252	2.12	1.0
$Si\ 2$	0.3868	0.0	0.3627	2.36	1.0
Si 3	0.2628	0.1314	0.0	1.63	1.0
Si 4	0.3333	0.6667	0.1384	1.95	1.0
O 1	0.1052	0.3933	0.3031	6.49	1.0
O 2	0.5429	0.2715	0.8164	5.56	1.0
O 3	0.3405	0.1702	0.1139	4.38	1.0
O 4	0.3601	0.0	0.5	4.49	1.0
O 5	0.1865	0.0	0.0	4.0	1.0
O 6	0.5	0.0	0.3451	7.25	1.0
O 7	0.3333	0.6667	0.0	10.14	1.0
C 1	0.333	0.667	0.356	10.26	0.1
C 2	0.381	0.762	0.402	10.26	0.1
C 3	0.309	0.618	0.436	10.26	0.1
C 4	0.230	0.760	0.500	10.26	0.1
C 5	0.0	0.5	0.036	10.26	0.1
C 6	0.092	0.636	0.0	10.26	0.1
C 7	0.122	0.531	0.0	10.26	0.1
C 8	0.0	0.431	0.0	10.26	0.1
C 9	0.140	0.570	0.122	10.26	0.1
C 10	0.0	0.0	0.296	10.26	0.1
C 11	0.038	0.010	0.380	10.26	0.1
C 12	0.040	0.080	0.458	10.26	0.1
C 13	0.041	0.082	0.316	10.26	0.1
C 14	0.085	0.0	0.398	10.26	0.1
C 15	0.0	0.0	0.049	10.26	0.1
C 16	0.199	0.398	0.462	10.26	0.1

Thermal parameter  $U_{33}$  for O1 was changed from 0.7570 to 0.0757 when computing  $B_{iso}$ .

REFINED COMPOSITION:	$ Co_2C_3 $	$ _{55} $ [Si ₆₄	$O_{128}]$			
CRYSTAL DATA:	$Pc (Na)$ $a = 14$ $\alpha = 90$ X-ray	o. 7) un .9701 Å ^{o°} Rietvelc	ique axi b = 8 $\beta = 1$ l refinen	is <b>b</b> , cell 4761  Å $102.65^{\circ}$ nent, $R_{\rm F}$	choice c = $\gamma =$ = 0.04	1 30.0278 Å 90° .1, $R_{\rm wp} = 0.134$
REFERENCE:	T. Wes $J. Am.$	ssels, Cl <i>Chem.</i>	n. Baerl <i>Soc.</i> 12	ocher, L. <b>21</b> 6242–	B. Mo 6247 (1	Cusker and E. J. Creyghton, 1999).
	J. $Am$ . Atom Si 1 Si 2 Si 3 Si 4 Si 5 Si 6 Si 7 Si 8 Si 9 Si 10 Si 11 Si 12 Si 13 Si 14 Si 15 Si 16 Si 17 Si 18 Si 19 Si 20 Si 10 Si 11 Si 12 Si 10 Si 11 Si 12 Si 13 Si 14 Si 15 Si 10 Si 11 Si 12 Si 10 Si 11 Si 12 Si 13 Si 14 Si 15 Si 10 Si 11 Si 12 Si 13 Si 14 Si 15 Si 10 Si 11 Si 12 Si 13 Si 14 Si 15 Si 10 Si 11 Si 12 Si 10 Si 11 Si 12 Si 13 Si 14 Si 15 Si 16 Si 17 Si 10 Si 10	$\begin{array}{c} Chem. \\ x \\ 0.096 \\ 0.076 \\ 0.124 \\ 0.240 \\ 0.410 \\ 0.608 \\ 0.793 \\ 0.912 \\ 0.929 \\ 0.868 \\ 0.769 \\ 0.585 \\ 0.398 \\ 0.206 \\ 0.902 \\ 0.108 \\ 0.081 \\ 0.076 \\ 0.127 \\ 0.222 \end{array}$	Soc. 12 y 0.180 0.313 0.180 0.305 0.176 0.306 0.183 0.307 0.182 0.309 0.176 0.309 0.176 0.308 0.190 0.316 0.318 0.190 0.316 0.318 0.180 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.190 0.316 0.318 0.319 0.316 0.318 0.319 0.316 0.318 0.319 0.316 0.318 0.319 0.316 0.318 0.319 0.316 0.318 0.319 0.316 0.318 0.319 0.316 0.318 0.318 0.319 0.318 0.318 0.319 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.575 0.807 0.575 0.807	$\begin{array}{c}z\\0.1066\\0.1986\\0.2943\\0.3824\\0.4374\\0.4689\\0.4654\\0.3992\\0.3045\\0.2072\\0.1199\\0.0659\\0.040\\0.041\\0.0631\\0.4432\\0.1046\\0.1994\\0.2936\\0.2936\end{array}$	$\begin{array}{c} 6247 (1) \\ B_{\rm iso} \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ $	$\begin{array}{c} \text{occ} \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.$
	$\begin{array}{c} {\rm Si} \ 20 \\ {\rm Si} \ 21 \\ {\rm Si} \ 22 \\ {\rm Si} \ 23 \\ {\rm Si} \ 24 \\ {\rm Si} \ 25 \\ {\rm Si} \ 26 \\ {\rm Si} \ 27 \\ {\rm Si} \ 26 \\ {\rm Si} \ 27 \\ {\rm Si} \ 28 \\ {\rm Si} \ 29 \\ {\rm Si} \ 30 \\ {\rm Si} \ 31 \\ {\rm Si} \ 32 \\ {\rm O} \ 1 \\ {\rm O} \ 2 \\ {\rm O} \ 3 \\ {\rm O} \ 4 \\ {\rm O} \ 5 \\ {\rm O} \ 6 \\ {\rm O} \ 7 \end{array}$	$\begin{array}{c} 0.239\\ 0.418\\ 0.604\\ 0.798\\ 0.914\\ 0.931\\ 0.867\\ 0.762\\ 0.587\\ 0.386\\ 0.194\\ 0.890\\ 0.110\\ 0.169\\ 0.108\\ 0.131\\ 0.101\\ 0.209\\ 0.033\\ 0.125 \end{array}$	0.678 0.808 0.687 0.810 0.679 0.797 0.670 0.809 0.313 0.181 0.685 0.318 0.278 0.208 0.265 0.494 0.230 0.230 0.995	0.3836 0.4366 0.4663 0.4672 0.4024 0.3052 0.2096 0.1211 0.5659 0.5374 0.040 0.5625 0.4458 0.0863 0.1608 0.2484 0.1903 0.3331 0.3097 0.287	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.32 0.32 0.32 0.32 0.32 0.32 0.32	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$

O 8

0.348 0.283

continued...

 $0.3979 \quad 0.32 \quad 1.0$ 

DON

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
O 9	0.191	0.220	0.4183	0.32	1.0
O 10	0.215	0.491	0.3798	0.32	1.0
O 11	0.513	0.230	0.443	0.32	1.0
O 12	0.375	0.202	0.4835	0.32	1.0
0 13	0.689	0.237	0.4472	0.32	1.0
0 14	0.624	0.261	0.5218	0.32	1.0
0 15	0.601	0 496	0.4626	0.32	1.0
0 16	0.001 0.851	0.100 0.210	0.4274	0.32	1.0
0.10	0.839	0.210 0.279	0.5109	0.02 0.32	1.0
0.18	0.000	0.215 0.251	0.3468	0.52 0.32	1.0
$O_{10}$	0.030 0.707	0.201 0.007	0.0400 0.4778	0.32 0.32	1.0
0.19	0.191	0.331	0.4110	0.32 0.32	1.0
0.20 0.21	0.001	0.494	0.402 0.9591	0.32	1.0
0.21	0.070	0.200	0.2001	0.32 0.22	1.0
022	0.919	0.990	0.3020 0.1720	0.32	1.0
0.23	0.191	0.197	0.1750	0.32	1.0
0.24	0.907	0.294	0.195	0.32	1.0
$O_{25}$	0.831	0.489	0.2009	0.32	1.0
0 26	0.664	0.227	0.1035	0.32	1.0
0 27	0.833	0.285	0.0962	0.32	1.0
0.28	0.489	0.247	0.0739	0.32	1.0
O 29	0.598	0.741	0.5166	0.32	1.0
O 30	0.590	0.502	0.5718	0.32	1.0
O 31	0.314	0.288	0.0503	0.32	1.0
O 32	0.382	0.996	0.5496	0.32	1.0
O 33	0.186	0.499	0.0267	0.32	1.0
O 34	0.112	0.995	0.0982	0.32	1.0
O 35	0.853	0.725	0.5119	0.32	1.0
O 36	0.994	0.221	0.0794	0.32	1.0
O 37	0.929	0.497	0.5648	0.32	1.0
O 38	0.019	0.282	0.4218	0.32	1.0
O 39	0.140	0.216	0.497	0.32	1.0
O 40	0.146	0.707	0.0822	0.32	1.0
O 41	0.095	0.780	0.1582	0.32	1.0
O 42	0.140	0.730	0.2469	0.32	1.0
O 43	0.212	0.756	0.334	0.32	1.0
O 44	0.034	0.750	0.3059	0.32	1.0
O 45	0.346	0.700	0.4027	0.32	1.0
O 46	0.185	0.760	0.4177	0.32	1.0
O 47	0.518	0.757	0.4306	0.32	1.0
O 48	0.406	0.218	0.988	0.32	1.0
O 49	0.401	0.992	0.4223	0.32	1.0
O 50	0.695	0.749	0.4535	0.32	1.0
O 51	0.848	0.780	0.4262	0.32	1.0
O 52	0.903	0.736	0.3507	0.32	1.0
$O_{53}$	0.864	0.721	0.2612	0.32	1.0
$O_{54}$	0.799	0.786	0.1748	0.32	1.0
$O_{55}$	0.969	0.689	0.2014	0.32	1.0
O 56	0.655	0.232	0 6092	0.32	1.0
0.50	0.000 0.817	0.202	0.5052 0.5948	0.32	1.0
0 58	0.780	0.991	0.1064	0.32	1.0
~ ~ ~		0.001	0.1001		֥0

continued...

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
O 59	0.484	0.252	0.5629	0.32	1.0
O 60	0.303	0.269	0.5536	0.32	1.0
O 61	0.975	0.203	0.5788	0.32	1.0
O 62	0.153	0.211	0.9993	0.32	1.0
O 63	0.083	0.993	0.4353	0.32	1.0
O 64	0.019	0.702	0.4307	0.32	1.0
Co	0.502	0.258	0.2542	1.82	1.0
C 1	0.518	0.060	0.218	5.53	1.0
C 2	0.577	0.054	0.262	5.53	1.0
C 3	0.523	0.062	0.295	5.53	1.0
C 4	0.429	0.071	0.271	5.53	1.0
C 5	0.426	0.070	0.224	5.53	1.0
C 6	0.558	0.063	0.346	11.05	1.0
C 7	0.681	0.030	0.271	11.05	1.0
C 8	0.546	0.050	0.172	11.05	1.0
C 9	0.340	0.070	0.186	11.05	1.0
C 10	0.347	0.068	0.294	11.05	1.0
C 11	0.543	0.450	0.222	5.53	1.0
C 12	0.584	0.453	0.270	5.53	1.0
C~13	0.512	0.457	0.294	5.53	1.0
C 14	0.427	0.456	0.262	5.53	1.0
C~15	0.446	0.452	0.217	5.53	1.0
C 16	0.525	0.473	0.345	11.05	1.5
C~17	0.686	0.457	0.291	11.05	1.5
C 18	0.594	0.456	0.184	11.05	1.5
C 19	0.376	0.462	0.172	11.05	1.5
C 20	0.333	0.466	0.272	11.05	1.5

The occupancies of C16 – C20 were set to 1.5 to simulate a  $\rm CH_3$  group.

- CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 13.244 Å b = 13.244 Å c = 15.988 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.122
  - REFERENCE: B. Rüdinger, E. Tillmanns and G. Hentschel, Mineralogy and Petrology 48 147–152 (1993).

Atom	x	y	z	$B_{\rm iso}$	occ
Κ	0.105	0.210	0.25	5.0	0.3333
Ca 1	0.0	0.0	0.0	0.5	1.0
$\operatorname{Ca} 2$	0.33333	0.66667	0.130	6.9	1.0
$\operatorname{Sr}$	0.33333	0.66667	0.9119	2.4	0.5
Si $1$	0.4215	0.3313	0.1538	1.09	0.5125
$\mathrm{Si}\ 2$	0.2476	0.0	0.0	0.36	0.5125
Al 1	0.4215	0.3313	0.1538	1.09	0.4875
Al 2	0.2476	0.0	0.0	0.36	0.4875
O 1	0.1127	0.225	0.003	0.5	1.0
O 2	0.6818	0.000	0.9158	1.2	1.0
O 3	0.958	0.327	0.25	2.1	1.0
O 4	0.2295	0.459	0.864	1.6	1.0
O 5	0.4590	0.918	0.862	1.8	1.0
$H_2O 1$	0.33333	0.66667	0.75	5.0	1.0
$H_2O~2$	0.413	0.826	0.25	3.5	1.0
$H_2O 3$	0.587	0.174	0.965	3.0	0.5
$H_2O 4$	0.218	0.436	0.159	3.6	1.0
$H_2O5$	0.0	0.0	0.643	1.4	1.0

REFINED COMPOSITION:	$ (H_2O)_{39.5} $ [Si _{26.6} Al _{9.4} O ₇₂ ]
----------------------	---------------------------------------------------------------------------

- CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 13.28 Å b = 13.28 Å c = 15.21 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray powder refinement, R = 0.19
  - REFERENCE: W. M. Meier and M. Groner, J. Solid State Chem. **37** 204–218 (1981).

Atom	x	y	z	$B_{\rm iso}$	occ
$Si\ 1$	0.233	0.0	0.0	0.9	0.739
Si $2$	0.425	0.093	0.146	2.4	0.739
Al 1	0.233	0.0	0.0	0.9	0.261
Al 2	0.425	0.093	0.146	2.4	0.261
O 1	0.309	-0.003	0.088	0.8	1.0
O 2	0.212	0.106	0.006	0.5	1.0
O 3	0.478	0.239	0.117	3.2	1.0
O 4	0.399	0.081	0.25	2.6	1.0
O 5	0.536	0.072	0.106	2.0	1.0
$H_2O 1$	0.6667	0.3333	-0.003	5.0	0.87
$H_2O~2$	0.461	-0.078	0.25	2.0	0.5
$H_2O 3$	0.454	0.227	-0.122	5.0	0.91
$H_2O 4$	0.0	0.0	-0.184	0.6	1.19
$H_2O~5$	0.068	0.136	0.75	0.9	0.7
$H_2O~6$	0.35	0.175	0.75	5.0	1.21
$H_2O~7$	0.708	0.354	-0.073	2.1	0.49

- - CRYSTAL DATA:  $P2_12_12$  (No. 18) a = 9.537 Å b = 9.651 Å c = 6.509 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron single crystal refinement,  $R_{\rm wp} = 0.070$ ,  $R_{\rm F^2} = 0.055$ 
    - REFERENCE: Å. Kvick and J. V. Smith, J. Chem. Phys. **79** 2356–2362 (1983).

Atom	x	y	z	$B_{\rm iso}$	occ
Ba	0.5	0.0	0.63117	1.24	0.974
Si $1$	0.0	0.0	0.01365	0.55	1.0
Si $2$	-0.17568	0.09407	0.38762	0.57	1.0
Al	0.09245	0.17139	0.62657	0.42	1.0
O 1	0.17414	0.33126	0.63273	0.68	1.0
O 2	-0.05301	0.19639	0.46728	0.67	1.0
O 3	0.19836	0.03763	0.53741	0.78	1.0
O 4	0.03649	0.13362	0.87695	1.16	1.0
O 5	-0.13505	0.03586	0.15743	1.03	1.0
H 1	0.13081	0.26044	0.05620	3.03	0.844
H 2	0.23738	0.36941	0.06351	6.97	0.844
O 6	0.17627	0.32248	0.14994	1.73	0.844
H 3	0.30048	0.08839	0.04942	6.68	0.909
H 4	0.41511	0.20440	0.03767	4.22	0.909
O 7	0.37851	0.12200	-0.02375	3.2	0.909

## REFINED COMPOSITION: $|Na_{8.3}(H_2O)_6|$ [Si_{76.03}Al_{19.97}O₁₉₂]

- CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 17.3864 Å b = 17.3864 Å c = 28.3459 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.181$ ,  $R_{wp} = 0.206$ ,  $R_{\rm F} = 0.074$ 
  - REFERENCE: Ch. Baerlocher, L. B. McCusker and R. Chiappetta, Microporous Materials 2 269–280 (1994).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 2	0.589	0.177	0.047	2.527	0.25
Na 3	0.66667	0.33333	0.627	2.527	0.325
Na 4	0.3571	0.179	0.388	2.527	0.333
Si $1$	0.3734	0.0962	0.0167	0.869	0.792
$\mathrm{Si}\ 2$	0.4275	0.034	0.1069	0.869	0.792
Si 3	0.4874	0.1546	-0.0730	0.869	0.792
Si 4	0.4867	0.1521	0.1961	0.869	0.792
Al 1	0.3734	0.0962	0.0167	0.869	0.208
Al 2	0.4275	0.034	0.1069	0.869	0.208
Al 3	0.4874	0.1546	-0.0730	0.869	0.208
Al 4	0.4867	0.1521	0.1961	0.869	0.208
O 1	0.457	0.130	-0.0187	1.5	1.0
O 2	0.292	0.0	0.0	1.5	1.0
O 3	0.340	0.170	0.018	1.5	1.0
O 4	0.403	0.093	0.0713	1.5	1.0
O 5	0.425	0.069	0.1601	1.5	1.0
O 6	0.356	-0.072	0.1103	1.5	1.0
O 7	0.528	0.056	0.094	1.5	1.0
O 8	0.478	0.239	-0.092	1.5	1.0
O 9	0.594	0.188	-0.074	1.5	1.0
O 10	0.472	0.236	0.181	1.5	1.0
O 11	0.591	0.1818	0.187	1.5	1.0
O 12	0.453	0.117	0.25	1.5	1.0
$H_2O$	0.709	0.291	0.080	2.527	0.5

REFINED COMPOSITION:	Na ₂₀ 0	$C_{60}O_{24}(H)$	$[_{2}O)_{22.6}$	[Si _{76.03} A	l _{19.97} (	$D_{192}]$
CRYSTAL DATA:	$P6_3/m$ $a = 17$ $\alpha = 90$ X-ray	nmc (No. 7.3741 Å 0° Rietveld	b = 17 b = 17 $\beta = 90$ refinem	7.3741 Å 0° lent, <i>R</i> _{exp}	$c = 2$ $\gamma =$ $0 = 0.0$	28.3646 Å 120° 37, $R_{\rm wp} = 0.186, R_{\rm F} = 0.068$
REFERENCE:	Ch. B Microg	aerlochei porous M	r, L. B. Iaterials	McCuske <b>2</b> 269–28	r and 80 (199	R. Chiappetta, 94).
А	tom	x	y	z	$B_{\rm iso}$	occ
S	i 1	0.370	0.096	0.018	1.34	0.792
А	l 1	0.370	0.096	0.018	1.34	0.208
S	i 2	0.429	0.037	0.108	1.34	0.792
А	12	0.429	0.037	0.108	1.34	0.208
S	i 3	0.488	0.155	-0.070	1.34	0.792
А	13	0.488	0.155	-0.070	1.34	0.208
S	i 4	0.489	0.154	0.195	1.34	0.792
А	14	0.489	0.154	0.195	1.34	0.208
0	1	0.459	0.130	-0.015	1.11	1.0
0	2	0.288	0.0	0.0	1.11	1.0
0	3	0.333	0.167	0.015	1.11	1.0
0	) 4 . <del>.</del>	0.396	0.088	0.073	1.11	1.0
0	5	0.427	0.069	0.162	1.11	1.0
0	0	0.301	-0.071	0.105	1.11 1 11	1.0
0		0.331 0.472	0.005	0.095 0.097	1.11	1.0
0		0.475 0.504	0.230	-0.007	1.11	1.0
0	10	$0.094 \\ 0.478$	0.100	-0.075 0.170	1.11	1.0
	10	0.470	0.233	0.175	1 11	1.0
	12	0.052 0.460	0.103 0.127	0.100 0.25	1 11	1.0
	13	0.409	0.591	0.25	4.97	1.0
Ő	14	0.561	0.781	0.205	4.97	0.5
Ö	15	0.103	0.206	0.094	4.97	0.5
О	16	0.170	0.085	0.137	4.97	0.5
С	1	0.498	0.630	0.235	4.97	0.75
С	2	0.511	0.689	0.192	4.97	0.75
С	3	0.176	0.190	0.149	4.97	1.0
Н	$_{2}O 1$	0.717	0.283	0.073	4.97	0.667
Н	$_{2}O\ 2$	0.333	-0.333	0.003	4.97	0.65
Н	$_{2}O 3$	0.106	0.007	0.044	4.97	0.5
Ν	a 1	0.333	0.667	0.111	3.0	0.5
N	a 2	0.667	0.333	0.156	3.0	0.5
N	a 3	0.344	0.172	0.110	3.0	0.5
N	a 4	0.0	0.0	0.132	3.0	0.5
N	ab	0.333	0.667	0.25	3.0	1.0
N	a 6	-0.404	0.192	0.034	3.0	0.5

REFINED COMPOSITION:	$ Na_{1.04}Ca_{2.56}(H_2O)_{15.75} $ [Si _{17.76} Al _{6.24} O ₄₈ ] Teigarhorn, Iceland					
CRYSTAL DATA:	C12/m a = 9.0 $\alpha = 90$ X-ray s	n 1 (No. )8 Å ° single cr	12) uni $b = 1^{\circ}$ $\beta = 1^{\circ}$ systal re	que axis 7.74 Å 24.54° finemen	s <b>b</b> , cel c = $\gamma =$ t, $R_w =$	ll choice 1 = 10.25 Å = 90° = 0.16
REFERENCE:	A. J. Perrotta, Mineral. Mag. <b>36</b> 480–490 (1967).					
	Atom	x	<i>u</i>	z	Biso	OCC
	Na	0 760	0.0	0.251	26	0.26
	Ca	0.760	0.0	0.251	$\frac{2.0}{2.6}$	0.64
	Si 1	0.001	0.088	0.161	0.6	0.74
	Si 2	0.293	0.208	0.390	0.8	0.74
	Si 3	0.707	0.197	0.097	1.1	0.74
	Al 1	0.001	0.088	0.161	0.6	0.26
	Al 2	0.293	0.208	0.390	0.8	0.26
	Al 3	0.707	0.197	0.097	1.1	0.26
	O 1	0.021	0.0	0.215	0.8	1.0
	O 2	0.0	0.100	0.0	2.0	1.0
	O 3	0.812	0.117	0.132	1.7	1.0
	O 4	0.170	0.134	0.309	1.5	1.0
	O 5	0.5	0.180	0.0	3.1	1.0
	O 6	0.5	0.179	0.5	1.1	1.0
	O 7	0.75	0.25	0.0	4.6	1.0
	O 8	0.773	0.233	0.261	4.7	1.0
	O 9	0.25	0.25	0.5	4.6	1.0
	$H_2O 1$	0.724	0.0	0.502	4.9	0.875

0.559

0.078

0.082

0.0

0.5

0.0

0.281

4.9

4.0

3.3

0.875

0.875

0.875

REFINED COMPOSITION:	$ K_2Na_{1.86}Ca_{1.3}Mg_{0.7}(H_2O)_{6.12} $ [Si ₂₇ Al ₉ O ₇₂ ]
	Wenatchee, Washington, U.S.A.

CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 13.27 Å b = 13.27 Å c = 15.05 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.15

REFERENCE: J. A. Gard and J. M. Tait, in Proceedings of the Third International Conference on Molecular Sieves; Recent Progress Reports, Zurich, Ed. by J. B. Uytterhoeven (Leuven University Press) 94–99 (1973).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.3333	0.6667	0.14	3.0	0.30
Na 2	0.5	0.0	0.0	3.1	0.11
Κ	0.0	0.0	0.25	1.98	1.0
Mg	0.66667	0.33333	0.2030	3.0	0.175
Ca 1	0.3333	0.6667	0.14	3.0	0.07
$\operatorname{Ca} 2$	0.5	0.0	0.0	3.1	0.04
Ca 3	0.66667	0.33333	0.0730	3.6	0.195
Si $1$	0.00021	0.23350	0.10446	0.90	0.75
Si 2	0.0935	0.4245	0.2500	1.10	0.75
Al 1	0.00021	0.23350	0.10446	0.90	0.25
Al 2	0.0935	0.4245	0.2500	1.10	0.25
O 1	0.0267	0.3493	0.1610	2.42	1.0
O 2	0.0979	0.1957	0.1264	1.65	1.0
O 3	0.1258	0.2516	0.6339	1.90	1.0
O 4	0.2638	0.0	0.0	2.45	1.0
O 5	0.2293	0.4585	0.25	2.1	1.0
O 6	0.4603	0.9206	0.25	2.8	1.0
$H_2O 1$	0.4890	0.2450	0.25	4.6	0.34
$H_2O~2$	0.2490	0.4970	0.0160	1.9	0.11
$H_2O3$	0.8950	0.4480	0.0950	4.2	0.23

# REFINED COMPOSITION: $|C_{24}O_{4.14}|$ [Al₁₈P₁₈O₇₂]

CRYSTAL DATA:	$P6_3/m$ (No. 17	(6)	
	a = 13.2371  Å	b = 13.2371 Å	c = 14.7708  Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray single cry	vstal refinement,	$R_{\rm w} = 0.081$

REFERENCE: J. J. Pluth, J. V. Smith and J. M. Bennett, Acta Cryst. C42 283–286 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.7708	0.9983	0.1180	2.76	1.0
Al 2	0.0999	0.4214	0.2500	1.9	1.0
P 1	0.9989	0.2369	0.0938	1.97	1.0
P 2	0.5675	0.9079	0.2500	1.42	1.0
O 1	0.0365	0.3435	0.1529	3.0	1.0
O 11	0.6373	0.9669	0.1649	2.13	1.0
O 2	0.0826	0.1910	0.1053	3.16	1.0
O 3	0.1432	0.2640	0.6244	3.16	1.0
O 4	0.2773	0.0030	0.9970	3.32	1.0
O 5	0.2468	0.4693	0.2500	2.6	1.0
O 6	0.4584	0.9171	0.2500	2.05	1.0
O 7	0.1721	0.1876	0.2500	3.47	0.69
C 1	0.3770	0.7930	0.9599	33.1	1.0
C 2	0.4590	0.7490	0.9920	33.1	1.0

### REFINED COMPOSITION: [Si₄₈O₉₆]

.

CRYSTAL DATA: Pnma (No. 62) a = 9.7998 Å b = 12.4116 Å c = 22.8606 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.056$ ,  $R_{\rm wp} = 0.0611$ 

REFERENCE: R. Millini, G. Perego, L. Carluccio, G. Bellussi, D. E. Cox, B. J. Campbell and A. K. Cheetham, in *Proc. of the 12th International Zeolite Conference*, Ed. by M. M. J. Treacy, B. K. Marcus, J. B. Higgins and M. E. Bisher (Materials Research Society: Warrendale) vol. I 541–548 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.3402	0.8726	0.8634	1.97	1.0
$\mathrm{Si}\ 2$	0.6431	0.8742	0.5312	1.97	1.0
Si 3	0.885	0.5148	0.9184	1.82	1.0
$\mathrm{Si}\;4$	0.1522	0.8753	0.6532	2.13	1.0
Si $5$	0.9631	0.1242	0.809	1.34	1.0
Si 6	0.2262	0.4812	0.7616	1.5	1.0
O 1	0.3061	0.75	0.8436	2.92	1.0
O 2	0.2695	0.8974	0.9252	3.16	1.0
O 3	0.4999	0.8899	0.8714	3.32	1.0
O 4	0.2792	0.953	0.8154	6.08	1.0
O 5	0.639	0.75	0.5129	2.84	1.0
O 6	0.6641	0.9451	0.473	2.84	1.0
O 7	0.5035	0.902	0.5622	3.4	1.0
O 8	0.9441	0.4377	0.8693	4.26	1.0
O 9	0.7618	0.5839	0.8935	3.47	1.0
O 10	0.1818	0.75	0.669	4.97	1.0
O 11	0.1698	0.5614	0.7136	6.63	1.0
O 12	0.9527	0.25	0.8208	3.16	1.0
O 13	0.3481	0.4091	0.7358	3.87	1.0
O 14	0.1074	0.4034	0.7828	4.82	1.0

#### REFINED COMPOSITION: |O_{36.16}| [Si₁₁₂O₂₂₄]

CRYSTAL DATA: Cmme (No. 67) a = 13.695 Å b = 22.326 Å c = 20.178 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld limited refinement. No *R*-factor reported.

REFERENCE: N. A. Briscoe, D. W. Johnson, M. D. Shannon, G. T. Kokotailo and L. B. McCusker, *Zeolites* 8 74–76 (1988).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.115	0.2500	0.123	1.184	1.0
$Si\ 2$	0.187	0.3703	0.0630	1.184	1.0
Si 3	0.289	0.4315	0.185	1.184	1.0
Si 4	0.0000	0.448	0.053	1.184	1.0
Si $5$	0.0000	0.528	0.181	1.184	1.0
Si 6	0.117	0.2500	0.277	1.184	1.0
Si 7	0.191	0.3739	0.308	1.184	1.0
Si 8	0.287	0.4302	0.431	1.184	1.0
Si 9	0.0000	0.450	0.308	1.184	1.0
Si 10	0.0000	0.534	0.432	1.184	1.0
O 1	0.0000	0.2500	0.113	2.369	1.0
O 2	0.158	0.3068	0.089	2.369	1.0
O 3	0.139	0.2500	0.199	2.369	1.0
O 4	0.2500	0.363	0.0000	2.369	1.0
O 5	0.245	0.405	0.118	2.369	1.0
O 6	0.094	0.407	0.044	2.369	1.0
O 7	0.2500	0.5000	0.196	2.369	1.0
O 8	0.405	0.431	0.176	2.369	1.0
O 9	0.260	0.389	0.246	2.369	1.0
O 10	0.0000	0.5000	0.0000	2.369	1.0
O 11	0.0000	0.477	0.126	2.369	1.0
O 12	0.0000	0.497	0.251	2.369	1.0
O 13	0.0000	0.2500	0.289	2.369	1.0
O 14	0.164	0.3065	0.309	2.369	1.0
O 15	0.094	0.409	0.303	2.369	1.0
O 16	0.244	0.391	0.374	2.369	1.0
O 17	0.2500	0.5000	0.424	2.369	1.0
O 18	0.2500	0.403	0.5000	2.369	1.0
O 19	0.404	0.425	0.427	2.369	1.0
O 20	0.0000	0.485	0.376	2.369	1.0
O 21	0.0000	0.5000	0.5000	2.369	1.0
O 51	0.2500	0.2000	0.5000	3.948	1.01
O 52	0.4000	0.2500	0.3820	3.948	1.27
O 53	0.5000	0.1250	0.067	3.948	0.53
O 54	0.5000	0.1860	0.2980	3.948	0.68
O 55	0.5000	0.2020	0.1760	3.948	0.63
O 56	0.0000	0.1830	0.4500	3.948	0.4

Extra-framework atoms O51–O56 were refined with oxygen scattering factors. In editions of the *International Tables For Crystallography* published after 1995, space group symbol *Cmme* replaces *Cmma*.

- CRYSTAL DATA:  $Fd\overline{3}m$  (No. 227) origin at centre  $(\overline{3}m)$ a = 24.74 Å b = 24.74 Å c = 24.74 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.13
  - REFERENCE: W. H. Baur, American Mineralogist **49** 697–704 (1964).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.0699	0.0699	0.0699	2.6	0.5
Ca	0.0699	0.0699	0.0699	2.6	0.5
Si	0.12544	0.94655	0.03626	1.2	0.7
Al	0.12544	0.94655	0.03626	1.2	0.3
O 1	0.1742	0.1742	0.9680	2.8	1.0
O 2	0.1773	0.1773	0.3232	2.5	1.0
O 3	0.2527	0.2527	0.1435	2.5	1.0
O 4	0.1053	0.8947	0.0	2.8	1.0
$H_2O~1$	0.1673	0.1673	0.1673	3.2	1.0
$H_2O~2$	0.272	0.272	0.272	3.9	0.333

REFINED COMPOSITION:	$ Na_{92.9} $	[Si103.68Al88.32	$O_{384}]$
----------------------	---------------	------------------	------------

- CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre ( $\overline{3}$ ) a = 25.099 Å b = 25.099 Å c = 25.099 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.046
  - REFERENCE: D. H. Olson, Zeolites **15** 439–443 (1995).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.0	0.0	0.0	3.18	0.18
Na 2	0.0454	0.0454	0.0454	0.87	0.66
Na 3	0.056	0.056	0.056	1.26	0.25
Na 4	0.2292	0.2292	0.2292	2.53	0.97
$\operatorname{Na} 5$	0.423	0.326	0.158	2.32	0.11
Na 6	0.432	0.280	0.164	1.68	0.11
$\operatorname{Na}61$	0.465	0.317	0.158	1.68	0.09
Si $1$	-0.05381	0.12565	0.03508	1.41	1.0
$Si\ 2$	-0.05524	0.03639	0.12418	1.46	0.08
Al	-0.05524	0.03639	0.12418	1.46	0.92
O 1	-0.1099	0.0003	0.1056	2.47	1.0
O 2	-0.0011	-0.0028	0.1416	2.45	1.0
O 3	-0.0346	0.0758	0.0711	2.61	1.0
O 4	-0.0693	0.0726	0.1800	2.37	1.0

REFINED COMPOSITION:  $|Na_{40.32}(H_2O)_{171.84}|$  [Si_{103.68}Al_{88.32}O₃₈₄]

- CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre ( $\overline{3}$ ) a = 25.028 Å b = 25.028 Å c = 25.028 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.09
  - REFERENCE: D. H. Olson, J. Phys. Chem. **74** 2758–2764 (1970).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.0	0.0	0.0	2.53	0.54
Na 2	0.060	0.060	0.060	0.5	0.24
Na 3	0.230	0.230	0.230	0.5	0.39
Na 4	0.238	0.238	0.238	0.5	0.36
Si 1	-0.05291	0.12457	0.03509	1.16	1.0
Si 2	-0.05352	0.03671	0.12309	1.04	0.08
Al	-0.05352	0.03671	0.12309	1.04	0.92
01	-0.1099	0.0002	0.1054	2.2	1.0
O 2	-0.0025	-0.0041	0.1445	1.76	1.0
O 3	-0.0321	0.0730	0.0680	2.18	1.0
O 4	-0.0706	0.0772	0.1761	2.11	1.0
$H_2O~1$	0.074	0.074	0.074	0.61	0.36
$H_2O~2$	0.093	0.086	0.176	1.66	0.27
$H_2O$ 3	0.245	0.245	0.245	0.87	0.24
$H_2O$ 4	0.281	0.298	0.275	0.95	0.13
$H_2O~5$	0.353	0.345	0.186	3.58	0.31
$H_2O~6$	0.239	0.240	0.392	3.58	0.29
$H_2O~7$	0.174	0.204	0.422	1.55	0.18
$H_2O 8$	0.212	0.387	0.288	2.82	0.17
$H_2O$ 9	0.312	0.381	0.200	1.92	0.10
$H_2O 10$	0.258	0.412	0.204	2.42	0.14

REFINED COMPOSITION: |Al_{5.6}O_{22.4}| [Si_{175.7}Al_{16.3}O₃₈₄]

- CRYSTAL DATA:  $Fd\overline{3}m$  (No. 227) origin at centre  $(\overline{3}m)$ a = 24.188 Å b = 24.188 Å c = 24.188 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron Rietveld refinement,  $R_{\rm wp} = 0.1041$ ,  $R_{\rm I} = 0.0561$ 
  - REFERENCE: J. B. Parise, D. R. Corbin, L. Abrams and D. E. Cox, *Acta Cryst.* C40 1493–1497 (1984).

Atom	x	y	z	$B_{\rm iso}$	occ
Si	0.1257	0.9460	0.0359	3.1	0.9153
Al 1	0.1257	0.9460	0.0359	3.1	0.0847
Al 2	0.1250	0.1250	0.1250	3.0	0.7
O 1	0.1076	-0.1076	0.0000	4.5	1.0
O 2	0.2539	0.2539	0.1406	4.5	1.0
O 3	0.1747	0.1747	0.9634	4.5	1.0
O 4	0.1798	0.1798	0.3217	4.5	1.0
O 5	0.085	0.085	0.085	3.0	0.7

Occupancy of Al2 was constrained to equal that of O5 so that the unit cell population of O5 is four times that of Al2.

### REFINED COMPOSITION: [Si_{188.16}O₃₈₄]

CRYSTAL DATA:  $Fd\overline{3}m$  (No. 227) origin at centre  $(\overline{3}m)$ a = 24.2576 Å b = 24.2576 Å c = 24.2576 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron Rietveld refinement,  $R_{exp} = 0.022$ ,  $R_{wp} = 0.031$ 

REFERENCE: J. J. Hriljac, M. M. Eddy, A. K. Cheetham, J. A. Donohue and G. J. Ray, J. Solid State Chem. **106** 66–72 (1993).

Atom	x	y	z	$B_{\rm iso}$	occ
Si	-0.05392	0.12530	0.03589	0.37	0.98
O 1	0.0	-0.10623	0.10623	1.16	1.0
O 2	-0.00323	-0.00323	0.14066	1.42	1.0
O 3	0.07570	0.07570	-0.03577	1.33	1.0
O 4	0.07063	0.07063	0.32115	0.74	1.0

REFINED	COMPOSITION:	Li _{87.36}	[Si ₉₆ Al ₉₆ O ₃₈₄ ]
10111111	COMP CONTIN		[~-3030 - 304]

- $\begin{array}{lll} \text{CRYSTAL DATA:} & Fd\overline{3} \mbox{ (No. 203) origin at centre } (\overline{3}\,) \\ & a = 25.6957 \mbox{ \AA } b = 25.6957 \mbox{ \AA } c = 25.6957 \mbox{ \AA } \\ & \alpha = 90.0^{\circ} \qquad \beta = 90.0^{\circ} \qquad \gamma = 90.0^{\circ} \\ & \text{X-ray and neutron Rietveld refinement, } R_{\rm p} = 0.057, R_{\rm wp} = 0.069 \end{array}$ 
  - REFERENCE: M. Feuerstein and R. F. Lobo, Chemistry of Materials 2197–2204 (1998).

Atom	x	y	z	$B_{\rm iso}$	occ
Si	-0.0480	0.1246	0.0376	1.50	1.0
Al	-0.0511	0.0378	0.1224	1.50	1.0
O 1	-0.1045	0.0028	0.0972	2.13	1.0
O 2	0.0001	-0.0007	0.1533	2.13	1.0
O 3	-0.0220	0.0724	0.0702	2.13	1.0
O 4	-0.0742	0.0812	0.1711	2.13	1.0
Li 1	0.0466	0.0466	0.0466	4.58	0.978
${\rm Li}\ 2$	0.2232	0.2232	0.2232	2.92	1.047
Li 3	0.387	0.401	0.122	7.82	0.235

- CRYSTAL DATA: Immm (No. 71) a = 19.156 Å b = 14.127 Å c = 7.489 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.11
  - REFERENCE: P. A. Vaughan, Acta Cryst. **21** 983–990 (1966).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.4285	0.0	0.0	3.0	0.24
Mg	0.0	0.0	0.500	3.29	1.0
Si $1$	0.1548	0.0	0.0	1.74	0.84
$\mathrm{Si}\ 2$	0.0841	0.2024	0.0	1.55	0.84
Si 3	0.2727	0.0	0.2905	2.0	0.84
Si4	0.3232	0.2019	0.2067	2.08	0.84
Al 1	0.1548	0.0	0.0	1.74	0.16
Al 2	0.0841	0.2024	0.0	1.55	0.16
Al 3	0.2727	0.0	0.2905	2.0	0.16
Al 4	0.3232	0.2019	0.2067	2.08	0.16
O 1	0.0	0.2131	0.0	3.84	1.0
O 2	0.2528	0.0	0.5000	3.76	1.0
O 3	0.1025	0.0882	0.0	5.63	1.0
O 4	0.2039	0.0	0.1776	5.21	1.0
O 5	0.2500	0.2500	0.2500	4.5	1.0
O 6	0.1610	0.2833	0.5000	3.82	1.0
O 7	0.1155	0.2497	0.1796	4.42	1.0
O 8	0.3202	0.0907	0.2459	3.79	1.0
$H_2O~1$	0.0	0.0	0.2389	3.66	1.0
$H_2O~2$	0.0912	0.0691	0.5000	7.53	0.5
$H_2O 3$	0.0347	0.1403	0.5000	9.21	0.5

- REFINED COMPOSITION: [Si₃₆O₇₂] Dealuminated, synthetic powder. CRYSTAL DATA: *Pnnm* (No. 58)
  - $\begin{array}{ll} a = 14.07025 \text{ \AA } b = 7.41971 \text{ \AA } c = 18.7202 \text{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \text{Combined X-ray and neutron Rietveld refinement, } R_{\rm wp} = 0.123 \end{array}$
  - REFERENCE: R. E. Morris, S. J. Weigel, N. J. Henson, L. M. Bull, M. T. Janicke, B. F. Chmelka and A. K. Cheetham, J. Amer. Chem. Soc. **116** 11849–11855 (1994).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0	0.0	0.15462	0.95	1.0
$\mathrm{Si}\ 2$	-0.0012	0.2905	0.27439	1.03	1.0
Si 3	0.19990	0.0037	0.08373	1.26	1.0
Si 4	0.2029	0.2255	0.33150	1.26	1.0
$\mathrm{Si}\;5$	0.7950	0.1894	0.68200	0.47	1.0
O 1	0.0	0.5	0.2479	1.97	1.0
O 2	0.0099	0.1788	0.2027	3.00	1.0
O 3	0.0899	0.0016	0.1039	2.29	1.0
O 4	0.7804	-0.0202	0.6560	1.89	1.0
O 5	0.2090	0.0377	0.0	0.87	1.0
O 6	0.2494	0.2851	0.2580	2.45	1.0
O 7	0.2403	0.1829	0.1248	1.66	1.0
O 8	0.7393	0.1675	0.8994	2.92	1.0
O 9	0.0879	0.2462	0.3291	2.21	1.0
O 10	0.9040	0.2477	0.6846	2.21	1.0

Coordinates converted from Pmnn (cab) setting.

REFINED COMPOSITION:	$ Ca_{30.72}S_{22}O_{70}(H_2O)_6 $ [Si ₃₀ Al ₃₀ O ₁₂₀ ] Sacrofano, Latium, Italy					
CRYSTAL DATA:	: P321 (No. 150)					
	a = 1	a = 12.916  Å $b = 12.916  Å$		.916 Å	c = 26543 Å	
	$\alpha = 9$	0°	$\beta = 12.510 \text{ M}$ $\beta = 90^{\circ}$		v = 20.010  m $v = 120^{\circ}$	
	X_rav	single cr	p = 00 vstal refi	, nement	R' = 0	20 0596
	A-ray single crystal remember, $\kappa = 0.0590$					
REFERENCE:	P. Ballirano, E. Bonaccorsi, A. Maras and S. Merlino, Canadian Mineralogist <b>38</b> 657–668 (2000).					
	Atom	x	y	z	$B_{\rm iso}$	occ
	Si 1	0.5834	0.6684	0.9018	1.25	1.0
	Al 1	0.4190	0.3332	0.0978	1.07	1.0
	Al 2	0.5866	0.6658	0.1963	1.50	1.0
	Si 2	0.4158	0.3323	0.8038	0.96	1.0
	Al 3	0.5927	0.6770	0.6028	0.95	1.0
	Si 3	0.4162	0.3365	0.3964	1.10	1.0
	Al 4	0.7511	0.7511	0.0000	1.42	1.0
	Si 4	0.2472	0.2472	0.0000	1.03	1.0
	Si 5	0.7486	0.7495	0.2976	1.03	1.0
	Al 5	0.2540	0.2515	0.7026	1.18	1.0
	Si 6	0.7485	0.7485	0.5000	1.11	1.0
	Al 6	0.2544	0.2544	0.5000	0.95	1.0
	01	0.4462	0.2180	0.1051	5.13	1.0
	02	0.8750	0.7478	0.2876	2.21	1.0
	03	0.2425	0.1159	0.5098	1.97	1.0
	04	0.3220 0.6710	0.0000	0.5408	2.21 1.07	1.0
	0.5	0.0710	0.0020 0.6760	0.0462 0.5470	1.97 1.74	1.0
	00	0.0590	0.0700	0.5470	1.74 1 74	1.0
	0.8	0.5550	0.3502 0.6500	0.4304 0.1495	3.87	1.0
	0 9	0.3480	0.0500 0.3510	0.1495 0.8495	474	1.0
	O 10	0.4501	0.2340	0.3901	1.74	1.0
	0 11	0.6660	0.6860	0.9481	5.68	1.0
	O 12	0.3270	0.3070	0.0468	6.63	1.0
	O 13	0.4420	0.5490	0.1995	2.76	1.0
	O 14	0.5410	0.0786	0.3940	2.05	1.0
	O 15	0.6560	0.6730	0.2534	2.13	1.0
	O 16	0.3440	0.3200	0.7537	4.18	1.0
	O 17	0.8880	0.7821	0.6994	2.37	1.0
	O 18	0.4275	0.2200	0.8161	2.92	1.0
	O 19	0.9157	0.4540	0.0863	5.13	1.0
	O 20	0.1200	0.2330	0.0106	5.84	1.0
	S 1	0.3730	0.6760	0.0546	5.05	1.0
	S 2	0.3430	0.7060	0.7415	6.16	1.0
	S 3	0.0250	0.0230	0.1561	6.32	1.0
	S4	0.3333	0.6667	0.3199	2.31	1.0
	$\mathbf{S}$ b	0.3333	0.6667	0.4884	1.90	1.0
	$H_2O$	0.0090	0.0390	0.6040	8.69	1.0
	Ca I	0.6667	0.3333	0.8189	2.92	1.0

continued...

... continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
$\operatorname{Ca} 2$	0.0000	0.0000	0.4900	15.79	0.50
$Ca\ 3$	0.0000	0.0000	0.7218	2.68	0.36
Ca 31	0.0000	0.0000	0.7477	2.68	0.18
Ca 32	0.0000	0.0000	0.7009	2.68	0.22
Ca 4	0.0000	0.0000	0.0318	4.74	0.27
Ca 41	0.0000	0.0000	0.0000	4.74	0.07
$Ca\ 5$	0.6667	0.3333	0.3733	2.18	1.0
Ca 6	0.6667	0.3333	0.0635	4.03	0.37
Ca~61	0.6667	0.3333	0.1339	4.03	0.25
$Ca\ 1$	0.5030	0.5030	0.0000	3.71	0.42
$Ca \ 11$	0.4500	0.5440	0.0150	3.71	0.14
$\operatorname{Ca} 2$	0.7815	0.5649	0.5960	2.28	0.91
$Ca\ 3$	0.4909	0.5140	0.3017	3.13	0.66
Ca 4	0.5015	0.5015	0.5000	2.24	0.81
$Ca\ 5$	0.8490	0.6967	0.8973	3.24	0.29
Ca 51	0.8060	0.5860	0.9164	3.24	0.12
Ca 52	0.8730	0.7600	0.8870	3.24	0.15
Ca 53	0.8290	0.6500	0.9030	3.24	0.11
Ca 6	0.8340	0.6655	0.2001	2.68	0.33
Ca~61	0.7720	0.5560	0.2169	2.68	0.15
Ca 62	0.8730	0.7260	0.1849	2.68	0.13
Ca~63	0.7950	0.6050	0.2139	2.68	0.12
O 21	0.6170	0.3200	0.9054	9.47	1.0
O 22	0.3750	0.6030	0.0207	12.63	1.0
O 23	0.4880	0.7360	0.0760	12.63	1.0
O 24	0.4010	0.7860	0.7078	7.90	1.0
O~25	0.7300	0.4700	0.2250	5.53	1.0
O 26	0.7280	0.3990	0.2290	9.47	1.0
O 27	0.0460	0.1260	0.1310	6.32	1.0
O 28	0.1130	0.0780	0.1840	14.21	1.0
O 29	0.0450	0.0420	0.1130	10.26	1.0
O 30	0.3333	0.6667	0.2650	7.34	1.0
O 31	0.3960	0.7890	0.3390	4.18	1.0
O 32	0.3333	0.6667	0.5433	4.58	1.0
O 33	0.3970	0.7910	0.4698	3.32	1.0

The Ca cation sites are believed to be mixed with Na and K. The Ca occupancies are adjusted in order to simulate the effective scattering from the site.
- - CRYSTAL DATA:  $P112_1/a$  (No. 14) unique axis **c**, cell choice 1 a = 9.843 Å b = 10.023 Å c = 10.616 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 92.417^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.04$ 
    - REFERENCE: K. F. Fischer and V. Schramm, In *Molecular Sieve Zeolites - I (ACS Adv. Chem. Ser. No. 101)*, Ed. by E. M. Flanigen and L. B. Sand (American Chemical Society: Washington, DC) 250–258 (1971).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.3537	0.7192	0.0764	1.39	0.92
Si 1	0.18142	0.4147	0.11288	0.55	1.0
Si 2	0.16038	0.9082	0.87012	0.48	1.0
Si 3	0.16921	0.09656	0.11329	0.32	0.2
Al 1	0.16921	0.09656	0.11329	0.32	0.8
Al 2	0.149	0.59053	0.8669	0.52	1.0
O 1	0.9996	0.0787	0.1562	1.74	1.0
O 2	0.2125	0.2624	0.0763	1.85	1.0
O 3	0.0254	0.4361	0.1485	0.99	1.0
O 4	0.3037	0.245	0.4027	1.48	1.0
O 5	0.2136	0.9994	0.9861	0.85	1.0
O 6	0.2595	0.0449	0.2437	0.82	1.0
O 7	0.2777	0.4645	0.2288	0.91	1.0
O 8	0.2253	0.5107	0.9944	1.21	1.0
$H_2O 1$	0.5023	0.2596	0.1048	2.22	0.88
$H_2O~2$	0.5410	0.5914	0.1262	3.62	1.0
$H_2O 3$	0.5020	0.9113	0.1174	2.13	0.95
$H_2O 4$	0.2306	0.7732	0.2369	7.72	0.61
$H_2O~5$	0.4028	0.7407	0.3180	4.11	0.48
$H_2O 6$	0.1326	0.7620	0.1794	17.25	0.4

REFINED COMPOSITION:	$ Na_{3.6}K_{3.76}(H_2O)_{9.86} $ [Si ₈ Al ₈ O ₃₂ ] Hoewenneg, Hegau, Germany
CRYSTAL DATA:	I121 (No. 5) unique axis <b>b</b> , cell choice

- L DATA: I121 (No. 5) unique axis **b**, cell choice 3 a = 10.226 Å b = 10.422 Å c = 9.884 Å  $\alpha = 90^{\circ}$   $\beta = 88.315^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.033$
- REFERENCE: A. Alberti and G. Vezzalini, Acta Cryst. **B35** 2866–2869 (1979).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.4312	0.2559	0.6716	2.53	0.9
Κ	0.3071	-0.0040	0.9692	2.09	0.94
Si $1$	0.1523	-0.0133	0.3261	0.46	1.0
Si $2$	0.1534	0.2615	0.8263	0.40	1.0
Al 1	0.1546	0.2491	0.1546	0.43	1.0
Al 2	0.1582	0.0027	0.6512	0.44	1.0
O 1	0.0010	-0.0471	0.3037	1.21	1.0
O 2	-0.0030	0.2956	0.2047	1.14	1.0
O 3	0.2031	0.1401	0.7354	0.96	1.0
O 4	0.1810	0.0304	0.4785	1.18	1.0
O 5	0.1712	0.2264	0.9833	1.13	1.0
O 6	0.1989	0.1018	0.2263	1.00	1.0
O 7	0.2620	0.3610	0.2184	1.09	1.0
O 8	0.7558	0.3812	0.2177	0.73	1.0
$H_2O 1$	0.3435	0.2507	0.4539	2.65	0.85
$H_2O~2$	0.4779	0.0682	0.2179	2.76	0.85
$H_2O$ 3	0.0	0.3191	0.5	2.70	1.0
$H_2O4$	0.5	0.4729	0.5	2.35	0.53

REFINED COMPOSITION:	$ Na_{0.8}Ca_{2.82}(H_2O)_{12.08} $ [Si _{10.4} Al _{5.6} O ₃₂ ] Goble, Oregon, U.S.A.
CRYSTAL DATA:	$ \begin{array}{l} I\overline{4}m2 \mbox{ (No. 119)} \\ a = 9.9266 \mbox{ Å } b = 9.9266 \mbox{ Å } c = 10.3031 \mbox{ Å} \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \mbox{ X-ray Rietveld refinement, } R_{\rm exp} = 0.047, R_{\rm wp} = 0.127, R_{\rm F^2} = 0.111 \end{array} $
REFERENCE:	G. Artioli, American Mineralogist <b>77</b> 189–196 (1992).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.0	0.281	0.223	6.32	0.10
Ca 1	0.0	0.352	0.094	8.69	0.197
$\operatorname{Ca} 2$	0.0	0.238	0.107	8.69	0.155
Si 1	0.1607	0.1607	0.5	3.08	0.65
Si 2	0.3421	0.1579	0.25	4.03	0.65
Al 1	0.1607	0.1607	0.5	3.08	0.35
Al 2	0.3421	0.1579	0.25	4.03	0.35
O 11	0.1746	0.0	0.5351	2.68	1.0
O 12	0.3078	0.0	0.2192	2.53	1.0
O 2	0.2922	0.2488	0.1244	6.71	1.0
$H_2O~1$	0.0	0.0	0.159	9.24	1.0
$H_2O~21$	0.105	0.395	0.25	2.05	0.14
$H_2O~22$	0.161	0.433	0.234	2.05	0.24
$H_2O 3$	0.0	0.173	0.981	16.58	0.39

REFINED COMPOSITION:	$ Na_{2.6}K_{1.7}(H_2O)_{14.9} $ [Si ₁₀ Al ₆ O ₃₂ ] Antrim District, Northern Ireland
CRYSTAL DATA:	$\begin{array}{l} Pmn2_1 \mbox{ (No. 31)} \\ a = 10.108 \mbox{ \AA} \ \ b = 9.766 \mbox{ \AA} \ \ c = 10.171 \mbox{ \AA} \\ \alpha = 90^\circ \qquad \beta = 90^\circ \qquad \gamma = 90^\circ \\ \mbox{X-ray Rietveld refinement, } R_{\rm wp} = 0.136, R_{\rm F} = 0.126 \end{array}$
REFERENCE:	L. B. McCusker and Ch. Baerlocher, Z. Kristallogr. <b>171</b> 281–289 (1985).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.247	0.228	0.284	9.16	0.65
Κ	0.500	-0.071	0.615	9.16	0.85
Si $1$	0.156	0.432	-0.191	2.05	0.625
$\mathrm{Si}\ 2$	0.154	0.110	-0.242	2.05	0.625
Si 3	0.345	0.073	0.000	2.05	0.625
Si4	0.348	0.389	0.048	2.05	0.625
Al 1	0.156	0.432	-0.191	2.05	0.375
Al 2	0.154	0.110	-0.242	2.05	0.375
Al 3	0.345	0.073	0.000	2.05	0.375
Al 4	0.348	0.389	0.048	2.05	0.375
O 1	0.186	0.275	-0.241	1.82	1.0
O 2	0.000	0.441	-0.162	1.82	1.0
O 3	0.200	0.538	-0.309	1.82	1.0
O 4	0.254	0.459	-0.061	1.82	1.0
O 5	0.000	0.074	-0.197	1.82	1.0
O 6	0.198	0.048	-0.394	1.82	1.0
O 7	0.254	0.046	-0.138	1.82	1.0
O 8	0.312	0.226	0.059	1.82	1.0
O 9	0.500	0.073	-0.026	1.82	1.0
O 10	0.500	0.414	0.009	1.82	1.0
$H_2O~1$	0.500	0.243	0.321	9.16	1.1
$H_2O 2$	0.000	0.395	0.146	9.16	1.45
$H_2O 3$	0.000	0.314	0.306	9.16	0.9
$H_2O 4$	0.341	0.271	0.559	9.16	1.275
$H_2O~5$	0.500	0.338	0.600	9.16	1.45

## REFINED COMPOSITION: $|(C_6H_{16}N)_2|$ [Al₈P₈O₃₂]

- CRYSTAL DATA: I11 2/b (No. 15) unique axis **c**, cell choice 3 a = 10.2192 Å b = 10.2198 Å c = 10.0126 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90.987^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.049$ 
  - REFERENCE: J. J. Pluth, J. V. Smith and J. M. Bennett, J. Am. Chem. Soc. **111** 1692–1698 (1989).

Atom	x	y	z	$B_{\rm iso}$	occ
Al	0.14938	0.10057	0.12505	1.76	1.0
Р	0.34269	0.09267	0.37490	1.72	1.0
O 1	0.1756	0.2667	0.0794	3.36	1.0
O 2	0.4833	0.0742	0.3297	3.37	1.0
O 3	0.2514	0.0604	0.2608	4.07	1.0
O 4	0.3101	0.0016	0.4896	4.07	1.0
N 1	0.001	-0.018	0.434	1.11	0.125
H 1	-0.077	-0.007	0.384	1.11	0.125
H 2	0.075	-0.001	0.378	1.11	0.125
C 1	0.009	-0.391	0.418	1.11	0.125
H 3	0.007	-0.451	0.345	1.11	0.125
H 4	-0.065	-0.408	0.474	1.11	0.125
H 5	0.087	-0.402	0.469	1.11	0.125
C 2	0.04	-0.250	0.366	1.03	0.125
H 6	0.078	-0.233	0.310	1.03	0.125
H7	-0.074	-0.239	0.366	1.03	0.125
C 3	0.006	-0.154	0.484	3.24	0.125
H 8	0.084	-0.165	0.534	3.24	0.125
H 9	-0.068	-0.170	0.540	3.24	0.125
C 4	0.004	0.075	0.547	11.05	0.125
$H\ 10$	-0.070	0.058	0.603	11.05	0.125
$H \ 11$	0.082	0.063	0.597	11.05	0.125
C 5	-0.001	0.216	0.495	3.24	0.125
H 12	0.073	0.233	0.439	3.24	0.125
H 13	-0.079	0.227	0.445	3.24	0.125
C 6	0.001	0.312	0.613	10.26	0.125
H 14	-0.002	0.400	0.581	10.26	0.125
$H\ 15$	0.079	0.301	0.663	10.26	0.125
H 16	-0.073	0.295	0.669	10.26	0.125
N 2	0.232	0.754	0.319	11.05	0.125
$H\ 17$	0.246	0.679	0.373	11.05	0.125
H 18	0.247	0.831	0.370	11.05	0.125
C 7	-0.141	0.765	0.332	11.05	0.125
H 19	-0.200	0.771	0.405	11.05	0.125
H 20	-0.160	0.689	0.282	11.05	0.125
H 21	-0.150	0.840	0.277	11.05	0.125
C 8	0.000	0.760	0.386	12.63	0.125
H 22	0.009	0.685	0.441	12.63	0.125
H 23	0.019	0.837	0.436	12.63	0.125
C 9	0.097	0.752	0.268	3.08	0.125

continued...

... continued from previous page

x	y	z	$B_{\rm iso}$	occ
0.085	0.824	0.210	3.08	0.125
0.081	0.672	0.220	3.08	0.125
0.325	0.754	0.205	11.05	0.125
0.307	0.679	0.150	11.05	0.125
0.315	0.831	0.154	11.05	0.125
0.466	0.748	0.258	3.08	0.125
0.482	0.819	0.317	3.08	0.125
0.478	0.668	0.304	3.08	0.125
0.563	0.756	0.140	12.63	0.125
0.650	0.753	0.173	12.63	0.125
0.551	0.836	0.094	12.63	0.125
0.547	0.685	0.081	12.63	0.125
	$\begin{array}{c} x \\ 0.085 \\ 0.081 \\ 0.325 \\ 0.307 \\ 0.315 \\ 0.466 \\ 0.482 \\ 0.478 \\ 0.563 \\ 0.650 \\ 0.551 \\ 0.547 \end{array}$	$\begin{array}{cccc} x & y \\ 0.085 & 0.824 \\ 0.081 & 0.672 \\ 0.325 & 0.754 \\ 0.307 & 0.679 \\ 0.315 & 0.831 \\ 0.466 & 0.748 \\ 0.482 & 0.819 \\ 0.478 & 0.668 \\ 0.563 & 0.756 \\ 0.650 & 0.753 \\ 0.551 & 0.836 \\ 0.547 & 0.685 \\ \end{array}$	$\begin{array}{ccccccc} x & y & z \\ 0.085 & 0.824 & 0.210 \\ 0.081 & 0.672 & 0.220 \\ 0.325 & 0.754 & 0.205 \\ 0.307 & 0.679 & 0.150 \\ 0.315 & 0.831 & 0.154 \\ 0.466 & 0.748 & 0.258 \\ 0.482 & 0.819 & 0.317 \\ 0.478 & 0.668 & 0.304 \\ 0.563 & 0.756 & 0.140 \\ 0.650 & 0.753 & 0.173 \\ 0.551 & 0.836 & 0.094 \\ 0.547 & 0.685 & 0.081 \\ \end{array}$	$\begin{array}{cccccccc} x & y & z & B_{\rm iso} \\ 0.085 & 0.824 & 0.210 & 3.08 \\ 0.081 & 0.672 & 0.220 & 3.08 \\ 0.325 & 0.754 & 0.205 & 11.05 \\ 0.307 & 0.679 & 0.150 & 11.05 \\ 0.315 & 0.831 & 0.154 & 11.05 \\ 0.466 & 0.748 & 0.258 & 3.08 \\ 0.482 & 0.819 & 0.317 & 3.08 \\ 0.478 & 0.668 & 0.304 & 3.08 \\ 0.563 & 0.756 & 0.140 & 12.63 \\ 0.650 & 0.753 & 0.173 & 12.63 \\ 0.551 & 0.836 & 0.094 & 12.63 \\ 0.547 & 0.685 & 0.081 & 12.63 \\ \end{array}$

The x-coordinate for C2 has been changed from 0.004 to 0.04. Otherwise, C2 is too close to (0 - 1/4 z).

REFINED COMPOSITION: |Na_{5.92}(H₂O)_{11.28}| [Si_{9.92}Al_{6.08}O₃₂]

CRYSTAL DATA:	$I\overline{4}$ (No. 82)		
	a=10.043 Å	b=10.043 Å	c=10.043 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray twinned	crystal refinemen	nt, $R = 0.05$

Atom	x	y	z	$B_{\rm iso}$	occ
Na 4	0.0140	0.1895	0.4940	4.4	0.32
$\operatorname{Na} 5$	0.3590	0.0825	0.2210	4.0	0.42
Si $1$	0.1438	0.1692	-0.0181	1.1	0.62
Si $2$	0.1683	0.3579	0.2329	0.9	0.62
Al 1	0.1438	0.1692	-0.0181	1.1	0.38
Al 2	0.1683	0.3579	0.2329	0.9	0.38
O 1	0.1890	0.0215	0.0410	0.5	1.0
O 2	0.1885	0.2895	0.0880	1.3	1.0
O 3	0.0090	0.3460	0.2985	2.5	1.0
O 4	0.2830	0.2845	0.3300	2.8	1.0
$H_2O~1$	0.0	0.0	0.3250	5.9	0.42
$H_2O~2$	0.2195	0.0240	0.3515	2.6	0.70
$H_2O$ 3	0.2930	0.0020	0.3520	4.0	0.50

REFINED COMPOSITION:	$ Ca_4(H_2O)_{26.4} $ [Si ₁₆ Al ₈ O ₄₈ ]
	Nova Scotia, Canada

CRYSTAL DATA:  $P6_3/mmc$  (No. 194) a = 13.75 Å b = 13.75 Å c = 10.05 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.17

REFERENCE:	K. Fischer,
	Neues Jahrbuch für Mineralogie Monatshefte 1 1–13 (1966).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.3333	0.6667	0.073	6.0	1.0
Si	0.441	0.106	0.093	0.9	0.6667
Al	0.441	0.106	0.093	0.9	0.3333
O 1	-0.202	-0.404	0.063	2.0	1.0
O 2	0.575	0.150	0.064	2.3	1.0
O 3	0.411	0.067	0.250	2.3	1.0
O 4	0.354	0.0	0.0	2.3	1.0
$H_2O~1$	0.20	0.54	0.2500	3.5	0.25
$H_2O~2$	0.22	0.44	0.99	9.0	0.5
$H_2O 3$	0.43	0.86	0.97	9.0	0.5
$H_2O 4$	0.17	0.34	0.2500	5.0	0.5
$H_2O~5$	0.08	0.16	0.89	4.0	0.5
$H_2O 6$	0.10	0.20	0.06	6.5	0.2

## REFINED COMPOSITION: [Si₃₂O₆₄]

CRYSTAL DATA: C222 (No. 21)  $a = 16.4206 \text{ Å} \quad b = 20.0540 \text{ Å} \quad c = 5.0464 \text{ Å}$   $\alpha = 90.0^{\circ} \qquad \beta = 90.0^{\circ} \qquad \gamma = 90.0^{\circ}$ X-ray powder diffraction.

REFERENCE: J. Plevert, Y. Kubota, T. Honda, T. Okubo and Y. Sugi, J. Chem. Soc., Chem. Commun. 2363–2364 (2000).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.3074	0.1879	0.478	1.97	1.0
Si $2$	0.1818	0.0767	0.527	1.97	1.0
Si 3	0.0937	0.1222	0.016	1.97	1.0
Si 4	0.0964	0.2819	-0.002	1.97	1.0
O 1	0.3549	0.1874	0.754	2.37	1.0
O 2	0.384	0.2092	0.307	2.37	1.0
O 3	0.25	0.25	0.522	2.37	1.0
O 4	0.2644	0.1170	0.477	2.37	1.0
O 5	0.1537	0.0785	0.834	2.37	1.0
O 6	0.212	0.0	0.5	2.37	1.0
O 7	0.1151	0.1023	0.317	2.37	1.0
O 8	0.0	0.1006	0.0	2.37	1.0
O 9	0.1021	0.2021	-0.013	2.37	1.0
O 10	0.0	0.297	0.0	2.37	1.0

- - CRYSTAL DATA: P12₁1 (No. 4) unique axis **b**  a = 7.401 Å b = 17.439 Å c = 7.293 Å  $\alpha = 90^{\circ}$   $\beta = 105.44^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.049$ 
    - REFERENCE: R. C. Rouse and D. R. Peacor, American Mineralogist **71** 1494–1501 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.6557	0.2721	0.1969	1.78	1.0
Si $1$	0.3374	0.4732	0.6282	1.18	1.0
Si $2$	0.3168	0.1294	0.5997	1.12	1.0
Si 3	0.0219	0.2599	0.5249	1.03	1.0
Si 4	0.1044	0.0578	0.8612	1.08	1.0
Si 5	0.0892	0.3877	0.8325	1.07	1.0
Si 6	0.2394	0.0045	0.2768	1.06	1.0
Al 1	0.7482	0.1285	0.5887	1.0	1.0
Al 2	0.0682	0.3982	0.2632	1.02	1.0
O 1	0.7228	0.0612	0.4105	2.0	1.0
O 2	0.5336	0.1478	0.6346	1.87	1.0
O 3	0.8372	0.2097	0.5064	1.33	1.0
O 4	0.9065	0.1001	0.7936	1.78	1.0
O 5	0.2607	0.4392	0.8023	1.77	1.0
O 6	0.2666	0.4226	0.4408	1.51	1.0
O 7	0.5594	0.4662	0.7062	2.12	1.0
O 8	0.2017	0.2065	0.5155	1.6	1.0
O 9	0.2657	0.1069	0.7949	1.65	1.0
O 10	0.2515	0.0596	0.4581	1.86	1.0
O 11	0.0811	0.3051	0.7261	1.68	1.0
O 12	0.9698	0.3179	0.3431	1.58	1.0
O 13	0.9052	0.4718	0.2174	2.09	1.0
O 14	0.1728	0.0585	0.0904	1.98	1.0
O 15	0.1202	0.3741	0.0505	1.91	1.0
O 16	0.9022	0.4346	0.7315	2.06	1.0
$H_2O~1$	0.3512	0.2234	0.0964	4.83	1.0
$H_2O~2$	0.6565	0.2989	0.8717	4.81	1.0
$H_2O$ 3	0.5102	0.3063	0.4504	3.5	1.0
$H_2O$ 4	0.7574	0.1530	0.1048	3.92	1.0
$H_2O5$	0.5650	0.4074	0.1595	3.73	1.0

- - CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 17.767 Å b = 17.958 Å c = 7.431 Å  $\alpha = 90^{\circ}$   $\beta = 115.93^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.07$ 
    - REFERENCE: E. Galli, G. Gottardi, H. Mayer, A. Preisinger and E. Passaglia, Acta Cryst. **B39** 189–197 (1983).

Atom	x	y	z	$B_{\rm iso}$	occ
K 1	0.079	0.0	0.281	19.1	0.34
${ m K}$ 2	0.071	0.0	0.110	10.6	0.36
K 3	0.241	0.500	0.061	3.4	0.74
K4	0.210	0.500	-0.033	4.6	0.19
${ m K}$ 5	0.032	0.500	0.190	9.6	0.49
Si $1$	0.1794	0.1686	0.0978	1.0	0.74
Si $2$	0.2146	0.4108	0.5063	1.1	0.74
Si 3	0.2083	0.1912	0.7161	1.0	0.74
Si $4$	0.0668	0.2983	0.4176	1.1	0.74
Si $5$	0.0	0.2173	0.0	1.3	0.74
Al 1	0.1794	0.1686	0.0978	1.0	0.26
Al 2	0.2146	0.4108	0.5063	1.1	0.26
Al 3	0.2083	0.1912	0.7161	1.0	0.26
Al 4	0.0668	0.2983	0.4176	1.1	0.26
Al 5	0.0	0.2173	0.0	1.3	0.26
O 1	0.1981	0.5000	0.4565	2.3	1.0
O 2	0.2330	0.1213	0.6144	2.7	1.0
O 3	0.1882	0.1535	0.8902	3.0	1.0
O 4	0.2304	0.1008	0.2473	2.5	1.0
O 5	0.0	0.3257	0.5000	3.2	1.0
O 6	0.0805	0.1614	0.0499	2.6	1.0
O 7	0.1226	0.2296	0.5515	3.2	1.0
O 8	0.0142	0.2709	0.1891	3.4	1.0
O 9	0.2153	0.2492	0.1928	2.4	1.0
O 10	0.1208	0.3708	0.4225	2.8	1.0
$H_2O~1$	0.408	0.092	0.049	9.7	1.0
$H_2O~2$	0.008	0.099	0.414	8.0	0.5
$H_2O 3$	0.365	0.500	0.334	6.7	0.45
$H_2O$ 4	0.419	0.500	0.207	10.3	0.55
$H_2O~5$	0.0	0.500	0.500	10.9	1.0

REFINED COMPOSITION:	$ Na_{1.84}K_{1.76}Mg_{0.2}Ca_{1.24}(H_2O)_{21.36} $ [Si _{29.84} Al _{6.16} O ₇₂ ]
	Agoura, California, U.S.A.

CRYSTAL DATA:	C12/m1 (No.	12) unique axis	$\mathbf{b}$ , cell choice 1
	$a=17.662~{\rm \AA}$	b=17.911 Å	$c=7.407~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 116.40^\circ$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement,	$R_{\rm w} = 0.088$

REFERENCE:	K. Koyama and Y. Takeuchi,
	Z. Kristallogr. 145 216–239 (1977).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.1428	0.0	0.667	5.49	0.36
$\operatorname{Na} 2$	0.0393	0.5	0.210	3.13	0.10
Κ	0.2413	0.5	0.049	5.1	0.44
Mg	0.0	0.0	0.5	1.1	0.10
$\operatorname{Ca} 1$	0.1428	0.0	0.667	5.49	0.06
$\operatorname{Ca} 2$	0.0393	0.5	0.210	3.13	0.25
Si $1$	0.17906	0.16943	0.0963	1.07	0.83
Si $2$	0.21334	0.41099	0.5040	1.1	0.69
Si 3	0.20846	0.19034	0.7153	1.01	0.87
Si 4	0.06623	0.29837	0.4148	1.09	0.89
Si $5$	0.0	0.21651	0.0	1.11	0.9
Al 1	0.17906	0.16943	0.0963	1.07	0.17
Al 2	0.21334	0.41099	0.5040	1.1	0.31
Al 3	0.20846	0.19034	0.7153	1.01	0.13
Al 4	0.06623	0.29837	0.4148	1.09	0.11
Al 5	0.0	0.21651	0.0	1.11	0.1
O 1	0.1959	0.5	0.4574	2.39	1.0
O 2	0.2336	0.1204	0.6144	2.47	1.0
O 3	0.1850	0.1551	0.8559	2.64	1.0
O 4	0.2333	0.1041	0.2509	2.37	1.0
O 5	0.0	0.3232	0.5	2.64	1.0
O 6	0.0808	0.1627	0.0555	1.96	1.0
O 7	0.1268	0.2317	0.5492	3.05	1.0
O 8	0.0122	0.2702	0.1856	2.48	1.0
O 9	0.2123	0.2520	0.1860	2.31	1.0
O 10	0.1188	0.3718	0.4148	2.42	1.0
$H_2O 1$	0.211	0.500	-0.033	6.2	0.38
$H_2O~2$	0.084	0.0	0.888	14.6	0.44
$H_2O$ 3	0.0777	0.4206	0.964	9.5	1.0
$H_2O$ 4	0.0	0.5	0.5	7.4	1.0
$H_2O~5$	0.0	0.095	0.5	22.1	0.76
$H_2O~6$	0.073	0.0	0.249	19.1	0.84
$H_2O~7$	0.096	0.0	0.756	10.2	0.42

### REFINED COMPOSITION: [Si₃₂O₆₄]

- CRYSTAL DATA: I12/m1 (No. 12) unique axis **b**, cell choice 3 a = 18.65243 Å b = 13.49597 Å c = 7.63109 Å  $\alpha = 90.0^{\circ}$   $\beta = 101.9781^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.0767$ ,  $R_{\rm p} = 0.0558$ ,  $R_{\rm b} = 0.0644$ 
  - REFERENCE: P. A. Barrett, M. A. Camblor, A. Corma, R. H. Jones and L. A. Villaescusa, *Chemistry of Materials* **9** 1713–1715 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	-0.01265	0.11371	0.2918	1.60	1.0
Si $2$	0.249813	0.11336	0.6215	1.78	1.0
Si 3	0.14687	0.11588	0.2469	1.38	1.0
Si 4	0.16169	0.20243	-0.1058	1.84	1.0
O 5	0.31979	0.17940	0.6417	1.30	1.0
O 6	-0.07340	0.18435	0.1910	1.30	1.0
O 7	0.0	0.12865	0.5	1.30	1.0
O 8	0.06025	0.13926	0.2230	1.30	1.0
O 9	0.15762	0.0	0.2024	1.30	1.0
O 10	0.18823	0.13830	0.4442	1.30	1.0
O 11	-0.03438	0.0	0.2395	1.30	1.0
O 12	0.21031	0.13257	0.7932	1.30	1.0
O 13	0.27006	0.0	0.6233	1.30	1.0
O 14	0.17722	0.17880	0.0971	1.30	1.0

REFINED COMPOSITION:	$[Si_{64}O_{128}]$
CRYSTAL DATA:	$\begin{array}{l} P4_2/mmc~({\rm No.~131})\\ a=12.8528~{\rm \AA}~~b=12.8528~{\rm \AA}~~c=25.2136~{\rm \AA}\\ \alpha=90.0^\circ~~\beta=90.0^\circ~~\gamma=90.0^\circ\\ {\rm X}\text{-ray Rietveld refinement},~R_{\rm p}=0.0827,~R_{\rm wp}=0.1076,~R_{\rm b}=0.0.0626 \end{array}$

REFERENCE: L. A. Villaescusa, P. A. Barrett and M. A. Camblor, Angew. Chem., Int. ed. **38** 1997–2000 (1999).

Atom	x	y	z
Si $1$	0.1192	0.1146	0.06251
$\mathrm{Si}\ 2$	0.3062	0.2511	0.90459
$Si\ 3$	0.5	0.1167	0.06146
Si4	0.3822	0.3849	0.18813
$\mathrm{Si}\ 5$	0.3793	0.388	0.0
O 1	0.1426	0.1313	0.0
O 2	0.1512	0.0	0.0788
O 3	0.0	0.1379	0.0742
O 4	0.2002	0.1888	0.087
O 5	0.3996	0.1685	0.9116
O 6	0.3197	0.3334	0.9486
O 7	0.3205	0.3027	0.8453
O 8	0.5	0.0	0.0759
O 9	0.5	0.1373	0.0
O 10	0.5	0.3733	0.0
O 11	0.3327	0.5	0.0
O 12	0.3584	0.3584	0.25
O 13	0.5	0.3626	0.1782
O 14	0.3552	0.5	0.1725

# REFINED COMPOSITION: [Si₆₄O₁₂₈]

CRYSTAL DATA:	<i>Cmcm</i> (No. 63	)	
	$a=20.622~{\rm \AA}$	b = 9.7242  Å	c=19.623 Å
	$\alpha=90.0^\circ$	$\beta=90.0^\circ$	$\gamma = 90.0^{\circ}$
	X-ray Rietveld	refinement, $R_{\rm wp}$	$P_{p} = 0.086, R_{p} = 0.062$

REFERENCE: M.A. Camblor, A. Corma, P. Lightfoot, L.A. Villaescusa and P.A. Wright, Angew. Chem., Int. ed. **36** 2659–2661 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.32018	-0.0430	0.1701	1.10	1.0
Si $2$	0.07561	0.4067	0.0561	1.10	1.0
Si 3	0.2641	0.2255	0.1121	1.10	1.0
Si 4	0.15302	0.1551	0.0036	1.10	1.0
O 1	0.3427	-0.0581	0.2500	0.40	1.0
O 2	0.2675	-0.1485	0.1491	0.40	1.0
O 3	0.0996	0.5000	0.0000	0.40	1.0
O 4	0.0978	0.2516	0.0287	0.40	1.0
O 5	0.0000	0.4105	0.0718	0.40	1.0
O 6	0.2148	0.1587	0.0569	0.40	1.0
O 7	0.3870	-0.0628	0.1288	0.40	1.0
O 8	0.2913	0.1093	0.1625	0.40	1.0
O 9	0.3275	0.2871	0.0695	0.40	1.0
O 10	0.1308	0.0000	0.0000	0.40	1.0

## REFINED COMPOSITION: |Na₃H₂O| [Si₃Al₃O₁₂]

CRYSTAL DATA:	$Pmc2_1$ (No. 2)	6)	
	$a=7.503~{\rm \AA}$	b = 8.233 Å	c=5.230 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement	, R = 0.039

REFERENCE: A. Rheinhardt, E. Hellner and H. Ahsbahs, Fortsch. der Mineralogie **60** 175–176 (1982).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.5000	0.1774	0.466	1.9	1.0
Na 2	0.0000	0.419	0.106	4.9	0.5
Si 1	0.5000	0.3942	-0.015	0.9	0.5
Si $2$	0.2173	0.1060	0.000	0.9	0.5
Al 1	0.5000	0.3942	-0.015	0.9	0.5
Al 3	0.2173	0.1060	0.000	0.9	0.5
O 1	0.0000	0.1420	0.014	1.8	1.0
O 2	0.5000	0.5628	0.170	1.8	1.0
O 3	0.2849	0.0326	0.718	2.0	1.0
O 4	0.3204	0.1833	0.061	1.8	1.0
$H_2O~1$	0.0000	0.330	0.514	2.9	0.25
$H_2O 2$	0.0000	0.470	0.538	3.9	0.25

- CRYSTAL DATA:  $Im\overline{3}m$  (No. 229) a = 18.671 Å b = 18.671 Å c = 18.671 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.09$ 
  - REFERENCE: J. B. Parise, R. D. Shannon, E. Prince and D. E. Cox, Z. Kristallogr. 165 175–190 (1983).

Atom	x	y	z	$B_{\rm iso}$	occ
K 1	0.0	0.2500	0.5000	3.9	0.78
K 2	0.150	0.150	0.150	3.9	0.22
$\mathbf{Cs}$	0.0	0.0	0.314	4.7	0.81
Si	0.0825	0.2023	0.3211	1.1	0.76
Al	0.0825	0.2023	0.3211	1.1	0.24
O 1	0.1280	0.1280	0.3145	2.0	1.0
O 2	0.2522	0.2522	0.4081	1.3	1.0
O 3	0.0	0.1783	0.3369	1.7	1.0
O 4	0.2500	0.1085	0.3915	1.7	1.0

- REFINED COMPOSITION:  $|Ca_4(H_2O)_{18}|$  [Si₁₆Al₈O₄₈] Nasik, India
  - CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 14.8538 Å b = 13.1695 Å c = 7.5421 Å  $\alpha = 90^{\circ}$   $\beta = 110.323^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.115$ ,  $R_{\rm p} = 0.090$ ,  $R_{\rm F^2} = 0.046$ 
    - REFERENCE: G. Artioli and K. Ståhl, Zeolites 13 249–255 (1993).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.2601	0.5	0.737	3.4	1.0
Si $1$	0.2368	0.3838	0.156	1.89	1.0
Si $2$	0.0763	0.3834	0.325	2.13	1.0
Al	0.1315	0.3080	0.737	2.61	1.0
O 1	0.260	0.5	0.219	0.79	1.0
O 2	0.2084	0.3744	0.919	1.66	1.0
O 3	0.1384	0.3838	0.552	0.55	1.0
O 4	0.146	0.3454	0.203	2.92	1.0
O 5	0.3205	0.3185	0.248	0.79	1.0
O 6	0.043	0.5	0.267	0.71	1.0
O 7	0.013	0.3083	0.743	2.53	1.0
$H_2O~1$	0.029	0.171	0.0	2.45	0.5
$H_2O~2$	0.401	0.5	0.026	5.92	1.0
$H_2O~5$	0.5	0.467	0.5	3.16	0.5
$H_2O 8$	0.1426	0.129	0.332	4.03	1.0

REFINED COMPOSITION:	: $ Ca_4H_{25.184}O_{13.36} $ [Si _{16.4} Al _{7.6} O ₄₈ ] Teigahorn, Berufjördur, Iceland					
CRYSTAL DATA:	C12/m a = 14.6 $\alpha = 90^{\circ}$ Neutron	$\begin{array}{ccc} 1 & (\text{No. 12}) \\ 890 & \text{Å} & b \\ & \beta \\ \text{single crv} \end{array}$	unique axi = 13.061 Å = 112.01° stal refinem	s <b>b</b> , cell c = 7 $\gamma = 9$ nent, $R_{F2}$	choice 1 7.574 Å 90° = 0.084;	At $T = 15K$ .
REFERENCE:	G. Artic Zeolites	li, J. V. S <b>9</b> 377–391	mith and Å (1989).	. Kvick,	,	
Ato	m x	y	z	$B_{\rm iso}$	occ	
Si 1	0.23	810 0.38	77 0 1551	15 0 74	1.0	
Si 2	0.08	$281  0.38^{\circ}$	285 0.3265	51 0.71	1.0	
Si 3	0.12	-982 - 0.309	0.7319	0.76	0.05	
Al	0.12	982 0.309	0.7319	0.76	0.95	
O 1	0.25	981 0.5	0.2265	58 0.9	1.0	
O 2	0.21	108 0.37	669  0.9271	17 0.96	1.0	
O 3	0.14	973 0.38	130 0.5533	30 1.01	1.0	
O 4	0.14	659 0.338	896 0.2066	64 0.94	1.0	
O 5	0.33	598 0.31	686 0.2683	34 0.94	1.0	
O 6	0.05	002 0.5	0.2610	0.9 0.9	1.0	
O 7	0.01	0.31	005 0.7179	91 1.06	1.0	
Ca	0.27	540 0.5	0.7577	76 1.06	1.0	
O 1	1 0.41	$286  ext{ } 0.5  ext{ }$	0.0357	70 2.64	0.130	
O 1	2 0.41	189  0.45	514 0.0514	47 1.78	0.311	
O 1	3 0.5	0.43	199  0.5	1.97	0.450	
01	4 0.38	145  0.42	560    0.6240	07 1.57	0.327	
01	5 0.37	528  0.38	162 0.6589	90  2.39	0.200	
O 1	6 0.39	527  0.379	0.7708	87 2.91	0.286	
01	7 0.40	290  0.380	0.00000000000000000000000000000000000	35 1.38	0.143	
01	8 0.41	917  0.37	517 0.9830	)1 1.55	0.113	
H 1	0.473	394 0.43	341 0.0373	31 3.13	0.224	
H 2	0.47	J76 0.5	0.0589	96 3.65	0.080	
H 3	0.45	125 0.470	0.1123	39 3.86	0.123	
	0.40	0.38	935 0.1268	54 4.03	0.132	
H 5	0.41	532 0.420	0.1013	3.55	0.224	
	0.44	$(14 \ 0.38)$	924 0.4174 0.46 0.5965	$\frac{11}{2.73}$	0.433	
	0.37	143  0.370	0.5207	(3 3.43)	0.430	
	0.30	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	154 0.5500	30  3.12	0.009 0.214	
П 9 Н 1	0.42	100 0.47	104 0.5900	$10 \ 2.41$	0.314 0.140	
и п П 1 П 1	0 0.42 1 0.41	716 0.394	104 0.0021 596 0.7310	2.10 2.10 27 $2.26$	0.140 0.145	
н п Н 1	2 0.41	165 0.33	303 0.7318 303 0.7369	>i 2.50 >6 3.30	0.145	
н п Н 1	$\frac{2}{3}$ 0.44	262 0.30	505 0.7502 594 0.7410	18   4.91	0.100	
H 1	4 0.37	0.32 0.300	567 0.8161	11 259	0.120 0.215	
H 1	$\frac{1}{5}$ 0.40	0.33 $0.33$	226 0.8243	37 3.38	0.090	
H 1	6 0.47	481 0.39	229 0.8994	48 3.75	0.101	
H 1	7 0.41	649 0.31	0.9017	70 3.35	0.141	

- CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 15.058 Å b = 13.197 Å c = 15.273 Å  $\alpha = 90^{\circ}$   $\beta = 112.20^{\circ}$   $\gamma = 90^{\circ}$ 
  - REFERENCE: A. M. Chippindale and R. I. Walton, J. Chem. Soc., Chem. Commun. 2453–2454 (1994).

Atom	x	y	z	$B_{\rm iso}$	occ
$\operatorname{Ga} 1$	0.56738	0.10568	0.65382	2.07	0.6667
Co 1	0.56738	0.10568	0.65382	2.07	0.3333
$\operatorname{Ga} 2$	0.73158	-0.12692	0.57730	2.04	0.6667
Co 2	0.73158	-0.12692	0.57730	2.04	0.3333
$Ga\ 3$	0.63532	0.19004	0.36767	2.1	0.6667
Co 3	0.63532	0.19004	0.36767	2.1	0.3333
P 1	0.5716	-0.1306	0.6573	2.17	1.0
P 2	0.7317	0.1144	0.5759	2.1	1.0
P 3	0.6368	0.1869	0.8647	2.2	1.0
O 1	0.6270	-0.1711	0.6002	3.61	1.0
O 2	0.7156	0.1423	0.9528	2.53	1.0
O 3	0.5295	-0.0264	0.6227	3.46	1.0
O 4	0.7126	0.1169	0.4706	3.28	1.0
O 5	0.7572	0.0068	0.6151	2.48	1.0
O 6	0.8178	0.1799	0.6299	3.25	1.0
O 7	0.4905	-0.2056	0.6435	2.68	1.0
O 8	0.6349	0.1218	0.7831	3.3	1.0
O 9	0.6598	0.2974	0.8514	3.2	1.0
O 10	0.6379	-0.1243	0.7616	3.44	1.0
O 11	0.4594	0.1869	0.6233	3.38	1.0
O 12	0.6437	0.1546	0.5907	3.41	1.0
C 1	0.170	0.0043	0.139	5.7	1.0
Ν	0.124	-0.080	0.144	9.07	1.0
C 2	0.124	0.096	0.130	7.49	1.0
C 3	0.031	0.100	0.123	7.94	1.0
C 4	-0.012	0.010	0.135	10.94	1.0
C 5	0.035	-0.081	0.144	8.69	1.0
H~11	0.2373	0.0011	0.1413	6.47	1.0
$\mathrm{H}\ 111$	0.1579	-0.1462	0.1486	9.19	1.0
H 21	0.1594	0.1600	0.1290	8.35	1.0
H 31	-0.0055	0.1653	0.1099	7.82	1.0
H 41	-0.0774	0.0124	0.1370	11.99	1.0
H 51	0.0042	-0.1460	0.1501	9.69	1.0

REFINED COMPOSITION:	$ Ca_{7.8}Na_{2.16}K_{0.72}(H_2O)_{46.08} $ [Si _{35.1} Al _{18.9} O ₁₀₈ ]
	Nurri, Nuoro, Sardinia, Italy

- CRYSTAL DATA:  $R\overline{3}m$  (No. 166) hexagonal setting a = 13.338 Å b = 13.338 Å c = 23.014 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.07
  - REFERENCE: S. Merlino, E. Galli and A. Alberti, *Tschermaks Mineral. Petrogr. Mitt.* **22** 117–129 (1975).

Atom	x	y	z	$B_{\rm iso}$	occ
$\operatorname{Na} 2$	0.0	0.0	0.2782	3.4	0.12
Na 3	0.0	0.0	0.4095	9.4	0.12
Na 4	0.0	0.0	0.4498	0.7	0.06
$\operatorname{Na} 5$	0.0	0.0	0.5	0.7	0.12
K 2	0.0	0.0	0.2782	3.4	0.06
K 3	0.0	0.0	0.4095	9.4	0.06
Ca 1	0.0	0.0	0.1389	3.48	1.0
$\operatorname{Ca} 2$	0.0	0.0	0.2782	3.4	0.12
$Ca\ 3$	0.0	0.0	0.4095	9.4	0.12
Ca 4	0.0	0.0	0.4498	0.7	0.06
Si $1$	0.0001	0.2322	0.0697	1.39	0.65
Si 2	0.2396	0.0	0.5	1.32	0.65
Al 1	0.0001	0.2322	0.0697	1.39	0.35
Al 2	0.2396	0.0	0.5	1.32	0.35
O 1	0.0339	0.3493	0.1079	2.72	1.0
O 2	0.0920	-0.0920	0.0827	2.98	1.0
O 3	0.1275	-0.1275	-0.0910	3.45	1.0
O 4	0.2643	0.0	0.0	3.83	1.0
O 5	0.2219	-0.2219	0.1793	2.98	1.0
$H_2O 1$	0.2567	-0.2567	-0.1241	4.8	1.0
$H_2O\ 2$	0.1222	-0.1222	0.2852	8.0	0.74
$H_2O$ 3	0.2547	-0.2547	0.0187	6.5	0.54
$H_2O4$	0.5429	-0.5429	-0.0445	5.7	0.28

### REFINED COMPOSITION: $|(C_{10}N)_6|$ [Si₅₄O₁₀₈]

- CRYSTAL DATA:  $R\overline{3}m$  (No. 166) hexagonal setting a = 13.2251 Å b = 13.2251 Å c = 22.2916 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{wp} = 0.104$ ,  $R_{F} = 0.060$ 
  - REFERENCE: L. B. McCusker, *Mat. Sci. Forum Vol.* **133-136** 423–434 (1993). And L. B. McCusker, Private communication (1995).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.2327	0.0006	0.0694	0.95	1.0
Si $2$	0.33333	-0.0943	0.16667	0.95	1.0
O 1	0.2641	0.0	0.0	1.18	1.0
O 2	0.0956	-0.0956	0.0795	1.82	1.0
O 3	0.2492	0.1246	0.0890	1.26	1.0
O 4	0.4460	-0.1080	0.1544	1.11	1.0
O 5	0.3121	-0.0340	0.1078	1.03	1.0
C 1	0.0	0.0	0.2190	5.37	1.0
C 2	0.0635	0.1270	0.2449	5.37	1.0
C 3	0.0651	0.1302	0.3130	5.37	1.0
C 4	0.1248	0.0624	0.3386	5.37	1.0
Ν	0.1254	0.2508	0.3320	5.37	0.333

The y-value of O4 has been corrected to 2x - 1, rather than 1 - 2x.

CRYSTAL DATA: $P\overline{6}$ (No. 174) a = 12.8701 Å $b = 12.8701$ Å $c = 16.096$ Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 120^{\circ}$ X-ray single crystal refinement, $R_{\rm p} = 0.0365$ , $R_{\rm wp} = 0.0829$ REFERENCE: P. Ballirano, S. Merlino and E. Bonaccorsi,	
REFERENCE: P. Ballirano, S. Merlino and E. Bonaccorsi,	
Canadian Mineralogist $34$ 1021–1030 (1996).	
Atom $x$ $y$ $z$ $B_{iso}$ occ	
Si 1 0 9954 0 7437 0 0 0 61 1 0	
Al 1 0.3339 0.4088 0.833 0.64 1.0	
Si 2 $0.6718$ $0.0822$ $0.6637$ $0.59$ 1.0	
Al 2 0.3364 0.4097 0.5 0.56 1.0	
Si 3 $0.5852$ $0.6661$ $0.8329$ $0.61$ $1.0$	
Al 3 0.7378 0.7488 0.0 0.6 1.0	
Si 4 0.5873 0.67 0.5 0.57 1.0	
Al 4 $0.9282$ $0.3431$ $0.6635$ $0.62$ $1.0$	
O 1 0.8771 0.1258 0.0 1.97 1.0	
O 2 0.1025 0.8798 0.0 1.63 1.0	
O 3 $0.9943$ $0.6706$ $0.9182$ $1.5$ $1.0$	
$O \ 4 \qquad 0.6631  0.6698  0.9119  1.6  1.0$	
$ O \ 5 \qquad 0.2179  0.7886  0.8253 \qquad 1.65  1.0 $	
$ O \ 6 \qquad 0.4501  0.5552  0.8386 \qquad 1.65  1.0 $	
$ O \ 7 \qquad 0.3463  0.331 \qquad 0.7491 \qquad 1.41  1.0 $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ O \ 9 \qquad 0.5464 \qquad 0.4367 \qquad 0.6545 \qquad 1.34 \qquad 1.0 $	
O 10 0.7933 0.2105 0.6632 2.1 1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ca 4 0.0007 0.0005 0.0010 1.01 0.0000 Ca 5 0.6667 0.2222 0.2426 0.222 0.5	
Ca = 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.0007 + 0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
K 11 0.007 0.143 0.0 1.04 0.102 K 2 0.1125 0.8864 0.6651 2.1 0.684	
K 2 = 0.1125 = 0.0004 = 0.0051 = 5.1 = 0.004 K 22 = 0.145 = 0.851 = 0.675 = 3.1 = 0.074	
$K_{22} = 0.145 = 0.051 = 0.013 = 5.1 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014 = 0.014$	
K 33 0 816 0 101 0 847 1 96 0 058	
K = 0.5543 + 0.4458 + 0.0 + 2.67 + 0.822	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Cl 3 0.3333 0.6667 0.3335 5.86 1.0	
S 1 0.0 0.0 0.7971 1.36 0.5	

continued...

### $\ldots$ continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
S~11	0.977	0.013	0.7874	2.67	0.167
$S\ 2$	0.0357	0.017	0.5	2.75	0.333
S 3	0.6667	0.3333	0.8568	3.24	1.0
O 21	0.0	0.0	0.886	7.94	0.5
O 22	0.1213	0.0582	0.7676	5.83	0.667
O 23	0.056	0.094	0.723	9.11	0.167
O 24	0.119	0.054	0.845	6.82	0.333
O 25	0.119	0.058	0.426	5.12	0.333
O 26	0.11	0.051	0.479	10.65	0.333
O 27	0.6667	0.3333	0.2409	2.76	0.5
O 28	0.7285	0.4595	0.8789	2.89	0.667
O 29	0.692	0.298	0.211	7.35	0.167
O 30	0.728	0.288	0.913	10.11	0.333

REFINED COMPOSITION:	Na ₁₂ Synth	$_{.5}(\mathrm{H}_{2}\mathrm{O})_{14}$	. ₃₂   [Si ₁₂ . erial	Al ₁₂ O ₄₈ ]		
CRYSTAL DATA:	$P6_{3}m$ $a = 1$ $\alpha = 9$ X-ray	ac (No. 18 2.906 Å 90° Rietveld	b = 12, $\beta = 90$ refinement	.906 Å $_{ m o}^{ m o}$ ent, $R_{ m wp}$	$c = 1$ $\gamma = 1$ $= 0.15$	0.541 Å 20° 4, $R_{\rm F} = 0.084, R_{\rm exp} = 0.136$
REFERENCE:	P. A. Ph.D	Schicker, . Thesis N	lo. 8494,	ETH Zu	urich (1	1988).
1	Atom	x	y	z	$B_{\rm iso}$	OCC
I	Na 1	0.897	0.449	-0.018	11.2	0.98

Na 1	0.897	0.449	-0.018	11.2	0.98
Na 2	0.846	0.1539	-0.24	5.5	0.73
Na 3	0.0	0.0	-0.45	0.0	0.52
Na 4	0.6667	0.3333	-0.66	1.5	0.60
Si 1	0.250	-0.002	0.0	1.5	0.5
Al 1	0.250	-0.002	0.0	1.5	0.5
Si 2	0.414	0.084	0.248	1.9	0.5
Al 2	0.414	0.084	0.248	1.9	0.5
O 1	0.220	0.110	-0.006	4.4	1.0
O 2	0.358	0.025	0.102	2.1	1.0
O 3	0.458	0.229	0.257	5.8	1.0
O 4	0.529	0.058	0.267	4.1	1.0
O 5	0.125	-0.125	0.035	14.3	1.0
O 6	0.312	0.007	0.354	3.5	1.0
$H_2O~1$	0.749	0.251	-0.22	12.9	0.87
$H_2O~2$	0.774	0.387	-0.442	13.7	0.88
$H_2O 3$	0.0	0.0	-0.61	0.5	0.53
$H_2O 4$	0.0	0.0	-0.24	0.0	0.52
$H_2O~5$	0.6667	0.3333	0.06	11.5	0.86

REFINED COMPOSITION:	$ Na_{12}K_4(H_2O)_{18} $ [Si ₂₈ Be ₈ O ₇₂ ] Mt. Karnasurt, Lovezero Pluton, Russia					
CRYSTAL DATA:	$Pma_{2}^{2}$ $a = 3$ $\alpha = 9$ $X = 9$	2 (No. 28 9.576 Å 90°	) b = 6.93 $\beta = 90^{\circ}$	308 Å	$c = 7.1$ $\gamma = 90^{\circ}$ $= 0.1$	$526 \text{ \AA}$
REFERENCE:	S. Me	erlino,	ystai rein	lement, A	$_{\rm w} = 0.0$	09
	Eur.	J. Minera	al. $2 809 -$	817 (1990	).	
A	tom	x	y	z	$B_{\rm iso}$	occ
N	a 1	0.25	0.6098	0.2437	1.95	1.0
N	a 2	0.25	0.6217	0.7683	1.97	1.0
N	a 3	0.1283	0.8542	0.6990	2.18	1.0
N	a 4	0.0069	0.2840	0.8652	6.10	1.0
K		0.3860	0.0417	0.1828	1.98	1.0
Si	1	0.0000	0.0504	0.1020 0.2770	0.73	1.0
Si	2	0.2113	0.0497	0.7179	0.84	1.0
Si	3	0.1952	0.3671	-0.0008	0.77	1.0
Si	4	0.1248	0.5026	-0.0269	0.89	1.0
Si	5	0.1210 0.0582	0.5020 0.5267	0.0200 0.1399	0.00	1.0
Si	6	0.0002	0.0201	0.1000 0.4469	0.79	1.0
Si	7	0.0000	0.2000 0.8202	0.4100 0.4588	0.15	1.0
B	e 1	0.1805	0.0202 0.7820	0.0050	0.01 0.47	1.0
B	61 69	0.1000 0.0670	0.1020 0.5415	0.0000 0.7334	1.00	1.0
0	1	0.0010 0.25	-0.0310	0.1004 0.2723	0.61	1.0
ů O	$\frac{1}{2}$	0.20 0.2103	0.0010	0.2125 0.1857	1 35	1.0
Ő	2	0.2100	-0.0960	0.1001	$1.00 \\ 1.12$	1.0
0	J 4	0.1000	0.0900	0.1901 0.5007	1.12 1.33	1.0
0	5	0.2020	0.0303	0.3007 0.7287	$1.00 \\ 1.00$	1.0
0	5	0.20 0.2106	-0.0524 0.2624	0.1201 0.8147	1.20 1.14	1.0
0	0	0.2100 0.1858	0.2024 0.1014	0.8030	1.14 1 15	1.0
0	8	0.1000	-0.1014 0.5870	0.8030	$1.13 \\ 0.77$	1.0
0	0	0.2000	0.3356	0.0011 0.0027	0.11	1.0
0	9 10	0.1040 0.1400	0.3300 0.7199	0.0021 0.0041	$1.00 \\ 1.95$	1.0
0	11	0.1403 0.0070	0.1122 0.4563	0.1463	1.20 1.00	1.0
0	11	0.0979 0.1057	0.4303 0.4735	0.1403 0 7704	1.00 1.34	1.0
0	12	0.1007	0.4755	0.1194	1.04 1.09	1.0
0	10	0.0555	0.3008 0.7205	0.2495	1.22	1.0
0	15	0.0000	0.1200 0.5530	0.2000 0.0671	1.05	1.0
0	16	0.0440	0.0009	0.0071	1.40	1.0
0	17	0.0014	0.0001	0.4220	1 51	1.0
0	18	-0.0493 -0.0060	0.0102	0.0140	1.01 1.49	1.0
0	10	0.0000	0.2190	0.0009	1.40	1.0
U TT	19	0.0070	-0.2001	0.0041 0.5199	0.00 0.17	1.0
	201	0.2110	0.0040	0.0120 0.4947	2.11 9.90	1.0
H: TT	202	0.1438	0.0908	0.4247	2.38 2.70	1.0
	203	0.1290 0.0744	0.1020	0.0409	2.70 2.01	1.0
	204	0.0744	0.0010	0.0190	9.91 9.91	1.0
H	$_{2}$ O 5	0.0	0.0	0.0134	8.03	1.0

REFINED COMPOSITION:  $|Na_{64}(H_2O)_{326.71}|$  [Si₉₆Al₉₆O₃₈₄]

CRYSTAL DATA:	$Fm\overline{3}c$ (No. 22	6)	
	$a=24.61~{\rm \AA}$	$b=24.61~{\rm \AA}$	$c=24.61~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cr	rystal refinement,	$R_{\rm w} = 0.04$
REFERENCE:	V. Gramlich a	nd W. M. Meier,	

LILLINOL.		ι,
	Z. Kristallogr. 133 134–149 (	1971).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.1064	0.1064	0.1064	7.74	1.0
Si	0.0	0.0929	0.1844	1.16	1.0
Al	0.0	0.1864	0.0902	1.0	1.0
O 1	0.0	0.1116	0.2473	2.55	1.0
O 2	0.0	0.1463	0.1476	2.08	1.0
O 3	0.0538	0.0583	0.1704	2.45	1.0
O 4	0.02	0.03	0.064	25.0	0.115
O 5	0.03	0.02	0.064	25.0	0.115
O 6	0.1598	0.1598	0.1598	18.16	0.91
Ο7	0.1155	0.167	0.262	33.43	0.325
O 8	0.167	0.1155	0.262	33.43	0.325
O 9	0.041	0.210	0.235	34.74	0.22
O 10	0.210	0.041	0.235	34.74	0.22
O 11	0.25	0.25	0.25	61.59	1.88

Extra-framework atoms O5–O11 were assumed to have oxygen scattering factors.

REFINED COMPOSITION: |Na_{91.78}| [Si₉₆Al₉₆O₃₈₄]

CRYSTAL DATA:	$Fm\overline{3}c$ (No. 226	3)	
	$a=24.555~{\rm \AA}$	$b=24.555~{\rm \AA}$	c=24.555 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement,	$R_{\rm w} = 0.023$

REFERENCE: J. J. Pluth and J. V. Smith, J. Am. Chem. Soc. **102** 4704–4708 (1980).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.09960	0.09960	0.09960	3.79	0.972
$\operatorname{Na} 2$	0.0	0.2165	0.2111	6.35	0.242
$\operatorname{Na} 3$	0.2500	0.1060	0.1060	4.34	0.066
Si	0.0	0.09316	0.18499	1.89	1.0
Al	0.0	0.18715	0.09042	1.98	1.0
O 1	0.0	0.11367	0.24663	3.17	1.0
O 2	0.0	0.14459	0.14591	3.68	1.0
O 3	0.05379	0.05865	0.17152	2.98	1.0

REFINED COMPOSITION:	$ K_{7.56}Tl_{3.8}(H_2O)_{22.46} $ [Si ₂₄ Al ₁₂ O ₇₂ ] Murun Massif, Russia
CRYSTAL DATA:	$\begin{array}{l} P6/mmm \mbox{ (No. 191)} \\ a = 18.5432 \mbox{ Å } b = 18.5432 \mbox{ Å } c = 7.5310 \mbox{ Å } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 120^{\circ} \\ \mbox{ X-ray powder refinement, } R_{\rm wp} = 0.20, R_{\rm p} = 0.17 \end{array}$

REFERENCE: G. Artioli and Å. Kvick, Eur. J. Mineral. 2 749–759 (1990).

Atom	x	y	z	$B_{\rm iso}$	occ
K 1	0.33333	0.66667	0.0	5.53	0.18
K 2	0.33333	0.66667	0.5	1.18	0.38
K 21	0.33333	0.66667	0.427	1.18	0.31
K 3	0.297	0.0	0.0	3.63	0.517
Tl 3	0.315	0.0	0.0	3.63	0.483
K 4	0.5	0.0	0.5	3.24	0.699
Tl 4	0.5	0.0	0.5	3.24	0.301
Si $1$	0.0924	0.3546	0.5	2.53	0.667
Si 2	0.1672	0.4975	0.215	4.9	0.667
Al 1	0.0924	0.3546	0.5	2.53	0.333
Al 2	0.1672	0.4975	0.215	4.9	0.333
O 1	0.0	0.272	0.5	0.79	1.0
O 2	0.158	0.316	0.5	4.74	1.0
O 3	0.260	0.520	0.288	5.53	1.0
O 4	0.1038	0.4125	0.326	1.82	1.0
O 5	0.4092	0.818	0.213	4.74	1.0
O 6	0.156	0.483	0.0	1.18	1.0
$H_2O~1$	0.11	0.0	0.0	7.11	0.40
$H_2O~2$	0.134	0.0	0.37	7.11	0.91
$H_2O 3$	0.28	0.14	0.0	2.37	0.25
$H_2O 4$	0.28	0.14	0.26	7.9	0.19
$H_2O~5$	0.0	0.0	0.172	7.9	0.70
$H_2O~6$	0.560	0.280	0.0	7.9	0.66

The presence of thallium atoms at the K3 and K4 sites in the larger cavities of the zeolite framework is considered to be an artifact of heavy liquid separation.

REFINED COMPOSITION:	$ Na_5K_{4.7}(H_2O)_{20.8} $ [Si ₂₇ Al ₉ O ₇₂ ]
	Synthetic material

CRYSTAL DATA:	P6/mmm (No.	191)	
	$a=18.40~{\rm \AA}$	$b=18.40~{\rm \AA}$	$c=7.52~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^{\circ}$
	X-ray powder re	efinement, $R_{\rm F} =$	0.13

REFERENCE:	R. M. Barrer and H. Villiger,
	Z. Kristallogr. 128 352–270 (1969).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.3333	0.6667	0.0	4.0	0.7
Na 2	0.0	0.303	0.0	2.0	0.6
K 1	0.3333	0.6667	0.5	1.0	1.0
K 2	0.0	0.5	0.5	3.0	0.9
Si 1	0.0946	0.3595	0.5	1.2	0.75
Si 2	0.1662	0.4989	0.2137	0.6	0.75
Al 1	0.0946	0.3595	0.5	1.2	0.25
Al 2	0.1662	0.4989	0.2137	0.6	0.25
O 1	0.0	0.2674	0.5	1.0	1.0
O 2	0.1646	0.3292	0.5	1.0	1.0
O 3	0.2620	0.5240	0.260	2.5	1.0
O 4	0.1004	0.4078	0.330	1.0	1.0
O 5	0.4261	0.8522	0.275	1.3	1.0
O 6	0.1360	0.4691	0.0	0.8	1.0
$H_2O~1$	0.0700	0.1400	0.5	4.0	0.7
$H_2O~2$	0.0	0.09	0.5	7.0	0.25
$H_2O 3$	0.0	0.0	0.5	15.0	0.5
$H_2O 4$	0.0	0.135	0.243	4.0	0.25
$H_2O~5$	0.092	0.184	0.203	5.0	0.25
$H_2O 6$	0.0	0.0	0.189	10.0	0.7
$H_2O~7$	0.116	0.232	0.0	6.0	0.7
$H_2O 8$	0.0	0.195	0.0	5.0	0.5

REFINED COMPOSITION:  $|Na_{426.6}(H_2O)_{393.6}|$  [Si₃₈₄Al₃₈₄O₁₅₃₆]

- CRYSTAL DATA:  $Fd\overline{3}$  (No. 203) origin at centre  $(\overline{3})$ a = 36.95 Å b = 36.95 Å c = 36.95 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.051
  - REFERENCE: Y. F. Shepelev, Y. I. Smolin, I. K. Butikova and V. I. Tarasov, Doklady Akad. Nauk SSSR **272** 1133–1137 (1975).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.0420	0.0420	0.0420	3.0	1.0
Na 2	0.2312	0.2132	0.2132	0.8	0.56
Na 3	0.2337	0.2337	0.2337	3.0	0.26
Na 4	0.6964	0.6964	0.6964	2.4	0.77
Na 5	0.4184	0.4184	0.4184	3.0	0.53
Na 6	0.4322	0.4322	0.4322	3.5	0.21
$\operatorname{Na}7$	0.4564	0.4564	0.4564	3.3	0.09
Na 8	0.1770	0.0742	0.8278	2.1	0.46
Na 9	0.1895	0.0621	0.8156	2.4	0.24
Na 10	0.2006	0.0501	0.7983	2.6	0.23
Na 11	0.1805	0.0705	0.4323	2.7	1.0
Na 12	0.2723	0.1111	0.3621	2.8	0.6
Na 13	0.2541	0.1110	0.3615	0.9	0.25
Na 14	0.2311	0.1084	0.3640	3.0	0.15
Si $1$	0.2481	0.0633	0.6252	0.4	1.0
Si 2	0.3103	0.1213	0.7456	0.5	1.0
Si 3	0.1717	0.0154	0.9540	0.4	1.0
Si 4	0.2230	0.0852	0.2858	0.7	1.0
Al 1	0.3141	-0.0016	0.8749	0.5	1.0
Al 2	0.2484	0.1221	0.8066	0.5	1.0
Al 3	0.2965	0.0164	0.0794	0.4	1.0
Al 4	0.2850	0.0853	0.2273	0.7	1.0
01	0.2151	0.0365	0.6145	1.6	1.0
O 2	0.1613	0.0917	0.7357	1.0	1.0
O 3	0.3857	0.0308	0.0360	1.7	1.0
O 4	0.2580	0.0866	0.5894	1.3	1.0
O 5	0.1135	0.0417	0.4616	1.4	1.0
O 6	0.1982	0.0495	0.9583	1.6	1.0
O 7	0.3626	0.0346	0.7917	1.4	1.0
O 8	0.3261	0.0877	0.5060	1.8	1.0
O 9	0.2529	0.0944	0.8444	1.4	1.0
O 10	0.3209	0.0698	0.2537	1.9	1.0
O 11	0.2160	0.1228	0.9583	1.7	1.0
O 12	0.2652	0.0686	0.9861	1.8	1.0
O 13	0.2454	0.1656	0.8233	1.9	1.0
O 14	0.1723	0.0018	0.2433	2.0	1.0
O 15	0.2803	0.0436	0.3807	1.7	1.0
O 16	0.2839	0.0653	0.1852	1.8	1.0
$H_2O 1$	0.2685	0.2685	0.2685	7.3	0.89
$H_2O 2$	0.3699	0.0673	0.1659	2.6	0.17

continued...

### $\ldots$ continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
$H_2O 3$	0.3693	0.0758	0.1748	3.8	0.63
$H_2O 4$	0.3679	0.0911	0.1828	2.3	0.2
$H_2O~5$	0.0754	0.0754	0.0754	6.3	0.4
$H_2O 6$	0.3268	0.1250	0.6250	5.5	0.86
$H_2O~7$	0.1558	0.0849	0.8880	5.4	0.6
$H_2O 8$	0.1471	0.1066	0.8896	4.6	0.36
$H_2O 9$	0.3553	0.0276	0.3912	6.3	0.38
$H_2O~10$	0.3496	0.0471	0.3987	3.4	0.61
$H_2O~11$	0.2063	0.0449	0.1043	3.8	0.29

REFINED COMPOSITION:	$\begin{aligned} & \mathrm{Na}_{0.3}\mathrm{K}_{2.52}\mathrm{Ca}_{1.06}\mathrm{Mg}_2(\mathrm{H}_2\mathrm{O})_{31.48}  \; [\mathrm{Si}_{26.28}\mathrm{Al}_{9.72}\mathrm{O}_{72}] \\ &\mathrm{Mont \; Semiol, \; Loire, \; France} \end{aligned}$						
CRYSTAL DATA:	$\begin{array}{lll} P6_{3}/mmc \; (\text{No. 194}) \\ a = 18.392 \; \text{\AA} & b = 18.392 \; \text{\AA} & c = 7.646 \; \text{\AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 120^{\circ} \\ \text{X-ray single crystal refinement, } R_{\rm w} = 0.05 \end{array}$						
REFERENCE:	RENCE: E. Galli, <i>Rend. Soc. Ital. Mineral. Petrol.</i> <b>31</b> 599–612 (1975).						
А	tom	x	y	z	$B_{\rm iso}$	occ	
Ν	a	0.5	0.0	0.0	4.61	0.05	
K	-	0.5	0.0	0.0	4.61	0.42	
Μ	ſg	0.3333	0.6667	-0.25	2.71	1.0	
С	a 1	0.5	0.0	0.0	4.61	0.03	
С	a 2	0.0	0.0	0.072	23.2	0.22	
Si	i 1	0.1584	0.4902	0.25	1.05	0.73	
Si	i 2	0.3536	0.0933	0.0444	1.05	0.73	
А	l 1	0.1584	0.4902	0.25	1.05	0.27	
Α	12	0.3536	0.0933	0.0444	1.05	0.27	
О	1	0.2589	0.5178	0.25	2.38	1.0	
О	2	0.4249	0.8498	0.25	1.9	1.0	

0.3822

0.4352

0.1614

0.2741

0.467

0.3333

0.271

0.566

0.028

0.088

0.076

0.1004

0.1114

0.3228

0.934

0.542

0.355

0.148

0.176

0.152

0.6667

0.0

0.25

-0.0721

-0.0016

0.661

0.016

-0.25

0.25

0.030

0.25

-0.25

0.0

2.14

2.27

1.96

2.37

6.4

4.3

5.4

6.9

7.7

21.8

31.2

1.0

1.0

1.0

1.0

0.5

1.0

0.44

0.44

0.23

0.89

0.45

O 3

O 4

O 5

O 6

 $H_2O\ 1$ 

 ${\rm H_2O}\ 2$ 

 $H_2O$  3

 $H_2O~4$ 

 $H_2O~5$ 

 $H_2O~6$ 

 ${
m H}_2{
m O}$  7

REFINED	COMPOSITION:	$[Si_{34}O_{68}]$
---------	--------------	-------------------

CRYSTAL DATA:	$P6_3/m$ (No. 17)	76)	
	$a=13.175~{\rm \AA}$	b = 13.175  Å	c=15.848 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 120^\circ$
	DLS refinement	t	

REFERENCE: S. L. Lawton and W. J. Rohrbaugh, Science **247** 1319–1322 (1990).

Atom	x	y	z
Si $1$	0.6667	0.3333	0.3495
$\mathrm{Si}\ 2$	0.6713	0.1500	0.4700
Si 3	0.4522	0.1161	0.5682
Si 4	0.5266	0.2118	0.75
O 1	0.6667	0.3333	0.25
O 2	0.6623	0.2169	0.3878
O 3	0.5793	0.1388	0.5411
O 4	0.4217	0.1984	0.5101
O 5	0.4540	0.1495	0.6663
O 6	0.6506	0.2126	0.75
O 7	0.6443	0.0200	0.4453

#### REFINED COMPOSITION: [Si₉₆O₁₉₂]

CRYSTAL DATA:  $I\overline{4}m2$  (No. 119) a = 20.067 Å b = 20.067 Å c = 13.411 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.13$ 

REFERENCE: C. A. Fyfe, H. Gies, G. T. Kokotailo, C. Pasztor, H. Strobl and D. E. Cox, J. Am. Chem. Soc. **111** 2470–2474 (1989).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0777	0.0777	0.0000	0.34	1.0
Si $2$	0.1212	0.1860	0.1451	1.64	1.0
Si $3$	0.0775	0.2219	0.3569	1.29	1.0
Si $4$	0.2801	0.1882	0.1403	0.39	1.0
Si $5$	0.3053	0.0768	-0.0079	0.28	1.0
Si 6	0.1938	0.1938	0.5	1.1	1.0
Si $7$	0.0761	0.3819	0.3589	-0.20	1.0
O 1	0.0873	0.0	0.0279	3.30	1.0
O 2	0.1067	0.1179	0.0975	2.83	1.0
O 3	0.0926	0.1856	0.2550	1.71	1.0
O 4	0.2018	0.1993	0.1506	1.79	1.0
O 5	0.3309	0.1186	0.0889	1.62	1.0
O 6	0.3003	0.0	0.0247	0.77	1.0
O 7	0.3095	0.1905	0.25	3.27	1.0
O 8	0.1204	0.1931	0.4478	0.24	1.0
O 9	0.2511	0.1927	0.4252	1.43	1.0
O 10	0.0905	0.3010	0.3497	1.16	1.0
O 11	0.0	0.2090	0.3875	3.49	1.0
O 12	0.0	0.3960	0.3871	-0.34	1.0
O 13	0.0926	0.2437	0.0900	1.59	1.0
O 14	0.1295	0.4078	0.4348	0.03	1.0
O 15	0.0875	0.4125	0.25	-1.59	1.0

0.0

0.25

0.0

0.0

2.76

5.81

39.37

13.74

1.0

1.0

1.0

1.0

REFINED COMPOSITION:	<ul><li> C₈  [Si₄₆O₉₂]</li><li>Mt. Hamilton, California, U.S.A.</li></ul>					
CRYSTAL DATA:	$\begin{array}{ll} Pm\overline{3}n \ (\text{No. 223}) \\ a = 13.436 \ \text{\AA} & b = 13.436 \ \text{\AA} & c = 13.436 \ \text{\AA} \\ \alpha = 90^{\circ} & \beta = 90^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement, } R_{\rm w} = 0.04 \end{array}$					
REFERENCE:	CE: H. Gies, Z. Kristallogr. <b>164</b> 247–257 (1983).					
A	Atom	x	y	z	$B_{\rm iso}$	occ
S	Si 1	0.0	0.3098	0.1142	1.71	1.0
S	Si 2	0.1826	0.1826	0.1826	1.72	1.0
S	Si 3	0.25	0.0	0.5	1.43	1.0
(	2 1	0.0963	0.2465	0.1360	4.88	1.0
(	O 2	0.0	0.4056	0.1813	4.78	1.0

0.3423

0.25

0.25

0.0

0.0

0.25

0.5

0.0

C1 represents guest molecules  $\mathrm{N}_2$  and  $\mathrm{CO}_2$  collapsed to a site.

O 3

O4

C 1  $\,$ 

C 2  $\,$
REFINED COMPOSITION:	$\begin{array}{l}  \mathrm{Na}_{0.68}\mathrm{K}_{5.28}\mathrm{Ca}_{1.844}\mathrm{Ba}_{0.444}(\mathrm{H}_{2}\mathrm{O})_{19.44}  \; [\mathrm{Si}_{22.72}\mathrm{Al}_{9.28}\mathrm{O}_{64}] \\ \mathrm{Cupaello,\; Italy} \end{array}$			
CRYSTAL DATA:	<i>Immm</i> (No. 71)			
	a = 14.116  A $b = 14.229  A$ $c = 9.946  A$			
	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$			
	X-ray single crystal refinement, $R = 0.09$			

REFERENCE:	E. Galli, G. Gottardi and D. Pongiluppi,
	Neues Jahrb. Miner. Monatsh. 1 1–9 (1979).

Atom	x	y	z	$B_{\rm iso}$	occ
Na 3	0.5	0.5	0.275	12.0	0.054
Na 4	0.390	0.363	0.0	12.0	0.022
$\operatorname{Na} 5$	0.333	0.380	0.0	12.0	0.036
K 1	0.156	0.5	0.0	3.8	0.419
K 2	0.5	0.192	0.0	3.8	0.419
K 3	0.5	0.5	0.275	12.0	0.09
K 4	0.390	0.363	0.0	12.0	0.136
K 5	0.333	0.380	0.0	12.0	0.06
$Ca\ 3$	0.5	0.5	0.275	12.0	0.147
Ca 4	0.390	0.363	0.0	12.0	0.059
Ca~5	0.333	0.380	0.0	12.0	0.098
$\operatorname{Ba} 1$	0.156	0.5	0.0	3.8	0.041
$\mathrm{Ba}\;2$	0.5	0.192	0.0	3.8	0.041
$\operatorname{Ba} 3$	0.5	0.5	0.275	12.0	0.009
$\operatorname{Ba} 4$	0.390	0.363	0.0	12.0	0.004
$\operatorname{Ba} 5$	0.333	0.380	0.0	12.0	0.006
Si $1$	0.1097	0.2473	0.1563	1.0	0.71
Si $2$	0.2816	0.1102	0.1596	1.0	0.71
Al 1	0.1097	0.2473	0.1563	1.0	0.29
Al 2	0.2816	0.1102	0.1596	1.0	0.29
O 1	0.1235	0.2830	0.0	1.8	1.0
O 2	0.3089	0.1177	0.0	1.5	1.0
O 3	0.0	0.2155	0.1839	1.8	1.0
O 4	0.2767	0.0	0.2096	1.9	1.0
O 5	0.1765	0.1568	0.1924	2.3	1.0
O 6	0.3661	0.1638	0.2454	2.6	1.0
$H_2O~1$	0.5	0.0	0.0	6.8	1.0
$H_2O\ 2$	0.0	0.5	0.158	4.9	1.0
$H_2O$ 3	0.385	0.5	0.159	9.8	0.6
$H_2O$ 4	0.5	0.5	0.0	3.7	0.2
$H_2O~5$	0.459	0.274	0.0	5.8	0.2
$H_2O~6$	0.251	0.464	0.0	3.6	0.21
$\rm H_2O~7$	0.446	0.420	0.062	11.2	0.2
$H_2O 8$	0.443	0.5	0.5	12.0	0.44

REFINED COMPOSITION:  $|(Ba_3Cl_2O)_4|$  [Si_{21.34}Al_{10.66}O₆₄]

CRYSTAL DATA: I 4/m mm (No. 139) a = 14.194 Å b = 14.194 Å c = 9.234 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.14

REFERENCE: L. P. Solov'eva, S. V. Borisov and V. V. Bakakin, Sov. Phys. – Crystallogr. 16 1035–1038 (1972).

Atom	x	y	z	$B_{\rm iso}$	occ
$\mathrm{Ba}\;1$	0.1816	0.5	0.5	5.0	1.0
Ba 2	0.5	0.5	0.288	14.5	1.0
Cl	0.375	0.375	0.5	5.1	1.0
$O^{2-}$	0.0	0.5	0.25	4.8	1.0
Si	0.2386	0.3917	0.157	2.2	0.6667
Al	0.2386	0.3917	0.157	2.2	0.3333
O 1	0.193	0.390	0.0	3.6	1.0
O 2	0.350	0.350	0.156	4.6	1.0
O 3	0.158	0.342	0.25	7.0	1.0
O 4	0.257	0.5	0.213	3.3	1.0

		ľ	V	ĺ	

REFINED COMPOSITION:	$ (C_{12}N)_4 $ [Sig	$_{96}O_{192}]$			
CRYSTAL DATA:	$Pnma \text{ (No. 6)} \\ a = 20.022 \text{ Å} \\ \alpha = 90^{\circ} \\ \text{X-ray single of } $	b = 19.3 $\beta = 90^{\circ}$ crystal refin	$\begin{array}{cccc} 899 \ { m \AA} & c \\ \gamma & \gamma \\ { m nement}, \ R_{ m w} \end{array}$	= 13.3 $= 90^{\circ}$ $_{T} = 0.04$	83 Å 44
REFERENCE:	H. van Konir Acta Cryst. 1	ngsveld, H. <b>B43</b> 127–13	van Bekku 32 (1987).	m and	J. C. Jansen,
Ate	om x	11	z	$B_{ico}$	occ
Q; 1	0 42238	9 0.05650	~	$\frac{1}{1}$ 30	1.0
Si a	0.42236	0.03030 0.02772	-0.33338	1.39 1.63	1.0
	2 0.30710 3 0.27011	0.02112 0.06127	-0.18930	$1.00 \\ 1.50$	1.0
	0.27911 0.12215	0.00127 0.06208	0.03120 0.02670	1.02 1.43	1.0
	0.12210	0.00298 0.02722	0.02070 0.18551	1.40	1.0
Sie	3 0.07120	0.02122	-0.32818	1.20 1 /1	1.0
Si C	0.10041	-0.17250	-0.32718	1.41	1.0
	0.42203	-0.17200	-0.32718	$1.40 \\ 1.57$	1.0
Sic	0.30110	-0.13010	0.03100	1.07	1.0
Si 1	0.27054	-0 17310	0.00109 0.02979	$1.50 \\ 1.52$	1.0
Si 1	10 0.12000 11 0.07044	-0 13037	-0 18200	1.52 1.52	1.0
Si 1	12 0.07044	-0.17327	-0.31933	1.52 1.58	1.0
0.1	0.3726	0.0534	-0 2442	3.87	1.0
	2 0.3084	$0.0001 \\ 0.0587$	-0.0789	3.16	1.0
$O^{2}$	0 2007	0.0592	0.0289	5.05	1.0
O	0.0969	0.0611	-0.0856	3.47	1.0
O 5	5 0.1149	0.0541	-0.2763	2.68	1.0
0 6	0.2435	0.0553	-0.2460	3.63	1.0
07	0.3742	-0.1561	-0.2372	3.71	1.0
O 8	0.3085	-0.1552	-0.0728	3.47	1.0
Og	0.1980	-0.1554	0.0288	3.16	1.0
01	0.0910	-0.1614	-0.0777	4.58	1.0
O 1	0.1169	-0.1578	-0.2694	3.79	1.0
01	0.2448	-0.1594	-0.2422	4.34	1.0
01	0.3047	-0.0510	-0.1866	5.61	1.0
01	4 0.0768	-0.0519	-0.1769	3.71	1.0
O 1	0.4161	0.1276	-0.3896	3.47	1.0
O 1	0.4086	-0.0017	-0.4136	3.63	1.0
O 1	0.4020	-0.1314	-0.4239	3.16	1.0
O 1	0.1886	0.1298	-0.3836	2.84	1.0
O 1	0.1940	0.0007	-0.4082	3.55	1.0
O 2	0.1951	-0.1291	-0.4190	3.4	1.0
O 2	-0.0037	0.0502	-0.2080	2.61	1.0
O 2	-0.0040	-0.1528	-0.2078	3.16	1.0
O 2	0.4192	-0.2500	-0.3540	3.47	1.0
O 2	0.1884	-0.2500	-0.3538	2.68	1.0
O 2	0.2883	-0.2500	0.0579	2.61	1.0
O 2	0.1085	-0.2500	0.0611	2.37	1.0
Ν	0.4762	0.250	-0.1095	5.45	1.0
C 1	0.495	0.233	-0.221	4.58	0.3

continued...

... continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
C 2	0.568	0.250	-0.241	7.66	0.6
C 3	0.578	0.250	-0.362	7.74	0.6
C 4	0.399	0.274	-0.100	5.05	0.3
C 5	0.355	0.228	-0.150	10.74	0.3
C 6	0.278	0.250	-0.147	8.21	0.6
C 7	0.505	0.319	-0.089	5.13	0.3
C 8	0.473	0.334	-0.019	6.55	0.3
C 9	0.496	0.412	0.045	6.95	0.5
$C \ 10$	0.508	0.199	-0.032	9.55	0.5
C 11	0.490	0.124	-0.045	8.61	0.5
C 12	0.529	0.088	0.033	5.68	0.5
C 21	0.413	0.229	-0.166	6.55	0.2
C 22	0.355	0.272	-0.150	10.74	0.2
C 23	0.285	0.250	-0.195	8.69	0.4
C 24	0.534	0.279	-0.185	5.29	0.2
C 25	0.546	0.225	-0.263	5.76	0.2
C 26	0.601	0.250	-0.332	10.19	0.4
C 27	0.468	0.315	-0.060	4.82	0.2
C 28	0.516	0.335	0.020	4.82	0.2

c = 13.369 Å

 $B_{\rm iso}$ 

0.26

0.29

0.29

0.29

0.26

0.26

0.29

0.29

0.26

0.29

0.29

0.29

0.26

0.29

0.29

0.29

0.26

0.29

0.26

0.32

0.29

0.29

0.32

0.26

0.79

0.63

0.92

0.63

0.66

0.89

0.89

0.79

0.76

0.89

0.87

0.95

1.03

0.74

0.82

0.87

occ

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

#### **REFINED COMPOSITION:** $[Si_{96}O_{192}]$ CRYSTAL DATA: $P12_1/n1$ (No. 14) unique axis **b**, cell choice 2 b = 20.107 Åa = 19.879 Å $\alpha = 90^{\circ}$ $\beta = 90.67^{\circ}$ $\gamma = 90^{\circ}$ X-ray single crystal refinement, $R_{\rm w} = 0.045$ **REFERENCE:** H. van Koningsveld, J. C. Jansen and H. van Bekkum, Zeolites 10 235–242 (1990). Atom xyzSi 10.055460.42056 -0.31990Si $\mathbf{2}$ 0.03090 0.31368-0.16358Si 3 0.062490.27960 0.05346Si 40.062330.123950.03674Si 50.028040.07678 -0.15797Si 6 0.055850.19556 -0.31331Si 7-0.171480.42542 -0.31930Si 8 -0.126530.31225-0.17388Si 9-0.175900.273250.03597 Si 10 -0.176340.11895 0.03436Si 11 -0.129390.07156 -0.17516Si 12 -0.165280.19079 -0.31408Si 13 0.442970.42837-0.33456Si 14 0.473050.31237 -0.18814Si 15 0.438890.277040.02940 Si 16 0.435630.121550.03380Si 17 0.473150.07096 -0.17844-0.31743Si 18 0.437780.18737Si 19 0.67204 0.42389-0.31417Si 20 0.63130 0.31278 -0.16836Si 21 0.668920.273120.04608 Si 22 0.670070.118670.03868Si 23 0.630820.07268-0.17757Si 24 0.68070 0.19446-0.29789010.37790.0588-0.2194O20.06620.3106-0.0564 $O_{3}$ 0.04720.20180.0465O40.06710.1032-0.0784O50.04430.1230-0.2693 $O_6$ 0.2483-0.22480.0477O7-0.15330.3769-0.2289O 8 -0.16690.3050-0.0725O 9 -0.15580.19600.0316O 10 -0.16890.0885-0.0753O 11 -0.15110.1208-0.2630O 12-0.13760.2483-0.2424

O 13

O 14

O 15

O 16

-0.0485

-0.0509

0.1253

-0.0041

0.3189

0.0781

0.4145

0.3923

continued...

-0.1490

-0.1529

-0.3771

-0.3892

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
O 17	-0.1340	0.4022	-0.4186	0.71	1.0
O 18	0.1298	0.2003	-0.3583	0.63	1.0
O 19	0.0026	0.2099	-0.4008	0.82	1.0
O 20	-0.1275	0.1948	-0.4188	0.68	1.0
O 21	0.0515	0.0032	-0.2041	0.58	1.0
O 22	-0.1475	-0.0023	-0.2098	0.68	1.0
O 23	-0.2501	0.4239	-0.3413	0.82	1.0
O 24	-0.2435	0.1987	-0.3356	0.68	1.0
O 25	-0.2525	0.2822	0.0676	0.61	1.0
O 26	-0.2526	0.1101	0.0697	0.53	1.0
O 27	0.4503	0.3799	-0.2408	0.92	1.0
O 28	0.4480	0.3143	-0.0754	0.68	1.0
O 29	0.4318	0.1991	0.0094	0.82	1.0
O 30	0.4478	0.0812	-0.0669	0.84	1.0
O 31	0.4351	0.1206	-0.2527	0.63	1.0
O 32	0.4401	0.2505	-0.2451	0.79	1.0
O 33	0.6590	0.3797	-0.2169	0.74	1.0
O 34	0.6459	0.3148	-0.0508	0.58	1.0
O 35	0.6513	0.1961	0.0270	0.68	1.0
O 36	0.6559	0.0822	-0.0653	0.92	1.0
O 37	0.6678	0.1232	-0.2504	0.92	1.0
O 38	0.6694	0.2497	-0.2144	0.84	1.0
O 39	0.5530	0.3054	-0.1913	1.05	1.0
O 40	0.5519	0.0851	-0.1834	0.84	1.0
O 41	0.3714	0.4186	-0.3885	0.89	1.0
O 42	0.5015	0.4154	-0.4135	0.76	1.0
O 43	0.6320	0.3938	-0.4087	0.74	1.0
O 44	0.3711	0.1900	-0.3847	0.66	1.0
O 45	0.5032	0.1862	-0.3863	0.74	1.0
O 46	0.6326	0.2074	-0.3914	0.92	1.0
O 47	0.4576	-0.0039	-0.2104	0.66	1.0
O 48	0.6481	-0.0013	-0.2120	0.71	1.0

REFINED COMPOSITION: [	$[Si_{36}O_{72}]$
------------------------	-------------------

CRYSTAL DATA:	<i>Imm2</i> (No. 44)		
	a=7.4510 Å	b = 14.1711  Å	c=18.767 Å
	$\alpha=90^\circ$	$\beta=90^\circ$	$\gamma=90^\circ$
	DLS refinement		

REFERENCE: J. L. Schlenker, J. B. Higgins and E. W. Valyocsik, Zeolites 10 293–296 (1990).

Atom	x	y	z
Si $1$	0.0	0.0	0.0
$\mathrm{Si}\ 2$	0.0	0.2043	0.9486
Si 3	0.0	0.6998	0.7986
Si 4	0.2941	0.0	0.1176
Si $5$	0.2057	0.1963	0.1848
Si 6	0.2939	0.7017	0.0427
$\mathrm{Si}\ 7$	0.0	0.5	0.8668
Si 8	0.2945	0.5	0.9848
O 1	0.0	0.0915	0.9503
O 2	0.1754	0.0	0.0473
O 3	0.0	0.2369	0.8678
O 4	0.1755	0.2405	0.9876
O 5	0.8255	0.7253	0.7524
O 6	0.0	0.5912	0.8173
O 7	0.5	0.0	0.0946
O 8	0.2531	0.0916	0.1632
O 9	0.0	0.2031	0.2079
O 10	0.2441	0.2688	0.1221
O 11	0.5	0.7234	0.0276
O 12	0.5	0.5	0.9611
O 13	0.1748	0.5	0.9149
O 14	0.2570	0.5917	0.0319

- REFINED COMPOSITION: |K_{4.24}(H₂O)₄| [Si_{11.3}Al_{4.7}O₃₂] Pollena, Mt. Somma-Vesuvius, Italy
  - CRYSTAL DATA:  $I 4_1/a m d$  (No. 141) origin at centre (2/m)a = 7.141 Å b = 7.141 Å c = 17.307 Å $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray powder refinement of idealized substructure, R = 0.10
    - REFERENCE: R. C. Rouse, P. J. Dunn, J. D. Grice, J. L. Schlenker and J. B. Higgins, American Mineralogist **75** 1415–1420 (1990).

Atom	x	y	z	$B_{\rm iso}$	occ
Κ	0.000	0.000	0.500	1.97	0.53
Si	0.000	0.463	0.090	0.39	0.706
Al	0.000	0.463	0.090	0.39	0.294
O 1	0.000	0.250	0.116	1.18	1.0
O 2	0.186	0.436	0.875	1.18	1.0
O 3	0.000	0.000	0.000	1.18	1.0
$H_2O$	0.000	0.250	0.342	1.18	0.5

- - CRYSTAL DATA: Cmcm (No. 63) a = 18.11 Å b = 20.53 Å c = 7.528 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.07
    - REFERENCE: V. Gramlich, PhD dissertation, ETH, Zurich, (1971). And V. Gramlich, Private communication.

Atom	x	y	z	$B_{\rm iso}$	occ
Na 1	0.0	0.5	0.0	2.50	1.0
Na 2	0.0	0.4335	0.75	4.95	1.0
Si $1$	0.19897	0.42771	0.5418	1.37	1.0
$Si\ 2$	0.19656	0.19092	0.5454	1.49	1.0
Si 3	0.0871	0.3840	0.25	1.21	0.5
Si4	0.0866	0.2280	0.25	1.32	0.5
Al 3	0.0871	0.3840	0.25	1.21	0.5
Al 4	0.0866	0.2280	0.25	1.32	0.5
O 1	0.1232	0.4170	0.4292	3.09	1.0
O 2	0.1226	0.1946	0.4262	2.95	1.0
O 3	0.2632	0.3776	0.4887	3.63	1.0
O 4	0.0974	0.3057	0.25	3.61	1.0
O 5	0.1694	0.1946	0.75	3.62	1.0
O 6	0.1769	0.4212	0.75	2.66	1.0
O 7	0.2324	0.5	0.5	2.35	1.0
O 8	0.25	0.25	0.5	4.72	1.0
O 9	0.0	0.4071	0.25	2.17	1.0
O 10	0.0	0.2061	0.25	3.00	1.0
$H_2O 1$	0.040	0.303	0.75	16.32	0.5
$H_2O~2$	0.0	0.181	0.75	13.84	1.0
$H_2O 3$	0.0	0.094	0.502	21.32	1.0
$H_2O~4$	0.109	0.030	0.75	17.5	1.0
$H_2O5$	0.0	-0.009	0.25	22.84	0.25

REFINED COMPOSITION:	Pb _{10.} Moon	$_{68}(\mathrm{H}_{2}\mathrm{O})_{2}$	$26.5O_4$ [Same, To	$i_{36.38}Al_{11}$ nopah, A	$_{0.02}O_{100}$	)] 5.A.
CRYSTAL DATA:	$Cm2r$ $a = 1$ $\alpha = 9$ X-ray	n (No. 3 9.432 Å 0° single cr	8) <b>bca</b> set b = 19. $\beta = 90$ rystal refi	tting 702 Å °	c = 7 $\gamma = 9$ $R_{\rm w} = 0$	.538 Å 0° ).051
REFERENCE:	R. C. Amer	Rouse an rican Min	nd D. R. eralogist	Peacor, <b>79</b> 175–1	.84 (19	94).
$\operatorname{At}$	om	x	$\boldsymbol{v}$	z	$B_{\rm iso}$	occ
Ph	<u>, 1</u>	0.0975	0 1044	0.500	2.25	0.83
Ph	$\mathbf{b} 2$	0.0977	0.8988	0.0	1.83	0.245
Pb	53	0.0	0.9662	0.2377	2.29	0.622
Pb	<b>o</b> 4	0.0	0.0359	0.2516	3.4	0.175
Si	1	0.1790	0.2907	0.2956	1.17	0.736
Si	2	0.3211	0.2169	0.2043	1.38	0.735
Si	3	0.2546	0.9283	0.2076	1.18	0.736
Si	4	0.1395	0.9238	0.500	1.0	0.736
Si	5	0.1342	0.0843	0.0	1.1	1.0
Si	6	0.2554	0.0779	0.2885	1.26	0.736
Si	7	0.0794	0.2311	0.0	1.6	0.736
Si	8	0.0817	0.7763	0.500	1.1	0.736
Al	1	0.1790	0.2907	0.2956	1.17	0.264
Al	2	0.3211	0.2169	0.2043	1.38	0.264
Al	3	0.2546	0.9283	0.2076	1.18	0.264
Al	4	0.1395	0.9238	0.500	1.0	0.234
Al	6	0.2554	0.0779	0.2885	1.26	0.234
Al	7	0.0794	0.2311	0.0	1.6	0.234
Al	8	0.0817	0.7763	0.500	1.1	0.234
0	1	0.1801	0.9200	0.3250	2.9	1.0
0	2	0.0810	0.144	0.0	2.3	1.0
0	3 4	0.0932	0.9910	0.500	3.8 1.4	1.0
	4 5	0.0002	0.0000	0.000	1.4 9.9	1.0
	5 6	0.3443	0.2307	0.0	$\frac{2.2}{1.7}$	1.0
0	0 7	0.1020 0.3134	0.0004 0.1342	0.1011 0.2417	2.3	1.0
Ö	8	$0.0104 \\ 0.1607$	0.1042 0.2769	0.500	$\frac{2.0}{3.5}$	1.0
$\mathbf{O}$	9	0.0863	0.0162	0.0	2.4	1.0
Ő	10	0.1865	0.3708	0.2641	2.0	1.0
Ō	11	0.2500	0.2536	0.2506	3.6	1.0
Ο	12	0.1164	0.2604	0.1761	3.0	1.0
Ο	13	0.3832	0.2424	0.3218	3.3	1.0
Ο	14	0.2897	0.0030	0.2460	2.5	1.0
Ο	15	0.2278	0.9219	0.0	2.5	1.0
О	16	0.2340	0.0838	0.500	2.0	1.0
О	17	0.0	0.2530	0.0	2.5	1.0
О	18	0.0	0.7557	0.500	2.6	1.0
$H_2$	O 19	0.0	0.0828	0.3098	2.2	0.925
$\mathrm{H}_2$	O 20	0.0	0.231	0.500	2.6	0.95

continued...

... continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
$H_2O~21$	0.085	0.561	0.0	2.6	0.6
$H_2O~22$	0.0	0.501	0.099	2.6	0.5
$H_2O~23$	0.061	0.594	0.500	2.6	0.275
$H_2O~24$	0.077	0.456	0.241	2.6	0.175
$H_2O~25$	0.074	0.457	0.385	2.6	0.2
$H_2O$ 26	0.079	0.871	0.0	2.6	0.575
$H_2O~27$	0.070	0.151	0.500	2.6	0.175
$H_2O$ 28	0.0	0.933	0.215	2.6	0.475

Interrupted mordenite framework. O3 and O9 are terminal oxygens, where the framework is not fully connected.

8]
8

- CRYSTAL DATA:  $R\overline{3}m$  (No. 166) rhombohedral setting a = 11.841 Å b = 11.841 Å c = 11.841 Å  $\alpha = 93.29^{\circ}$   $\beta = 93.29^{\circ}$   $\gamma = 93.29^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.0533$ ,  $R_{\rm wp} = 0.0704$ 
  - REFERENCE: D. F. Shantz, A. Burton and R. F. Lobo, Microporous and Mesoporous Materials **31** 61–73 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	-0.0002	0.1797	0.2725	0.58	1.0
Si $2$	0.0002	0.1795	0.1129	0.58	1.0
Si $3$	0.0	0.3073	0.0	0.58	1.0
O 1	0.093	0.1861	0.295	1.43	1.0
O 2	0.9232	0.0768	0.2889	1.43	1.0
O 3	0.9845	0.2469	0.32	1.43	1.0
O 4	-0.0012	0.2058	0.1927	1.43	1.0
O 5	0.0755	0.151	0.1005	1.43	1.0
O 6	0.0205	0.2648	0.0667	1.43	1.0
Ο7	0.9044	0.0955	0.09	1.43	1.0
K 1	-0.6667	-0.3333	0.2355	6.59	0.5
K 2	0.0	0.0	0.0057	6.9	0.344
K 3	-0.6667	-0.3333	0.2829	1.7	0.167
С	0.5504	-0.2694	0.1662	10.0	1.0
O 8	-0.5198	-0.3338	0.1231	9.86	0.5
Η	-0.5346	-0.0692	0.1486	12.0	4.0

Typographic errors in the published coordinates for O2 and O6 have been corrected.

# REFINED COMPOSITION: [Si₄₄O₈₈]

CRYSTAL DATA:	C12/m1 (No.	12) unique axis l	<b>b</b> , cell choice 1	
	a=9.5000 Å	b=30.7096 Å	$c=7.3133~{\rm \AA}$	
	$\alpha=90.0^\circ$	$\beta=91.7113^\circ$	$\gamma = 90.0^{\circ}$	
	X-ray synchroti	ron Rietveld refir	nement, $R_{\rm p} = 0.0729,  R_{\rm p}$	$R_{\rm wp} = 0.0916, R_{\rm b} = 0.0302$

REFERENCE: P. A. Barrett, M.-J. Diaz-Cabanas and M. A. Camblor, Chemistry of Materials **11** 2919–2927 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0	0.08356	0.0	0.41	1.0
$\mathrm{Si}\ 2$	0.191	0.15359	-0.1667	1.25	1.0
Si 3	-0.0048	0.22858	-0.2913	0.29	1.0
Si 4	-0.1271	0.04862	-0.371	0.73	1.0
Si $5$	-0.3049	0.19803	-0.1822	0.47	1.0
Si 6	-0.3391	0.12303	-0.4749	0.24	1.0
O 1	-0.0756	0.05227	-0.1609	1.62	1.0
O 2	-0.5	0.10684	-0.5	1.62	1.0
O 3	0.0	0.23506	-0.5	1.62	1.0
O 4	0.0	0.06345	-0.5	1.62	1.0
O 5	0.2923	0.17606	-0.0075	1.62	1.0
O 6	-0.2593	0.08102	-0.4062	1.62	1.0
Ο7	0.0624	0.269	-0.1981	1.62	1.0
O 8	0.1281	0.11111	-0.0804	1.62	1.0
O 9	-0.2807	0.13899	-0.6705	1.62	1.0
O 10	0.0798	0.18695	-0.2331	1.62	1.0
O 11	-0.1766	0.0	-0.4029	1.62	1.0
O 12	-0.1646	0.22635	-0.223	1.62	1.0
O 13	-0.3268	0.16144	-0.3269	1.62	1.0

# REFINED COMPOSITION: $|N_{24}|$ [Si₁₃₆O₂₇₂]

CRYSTAL DATA:	$Fd\overline{3}$ (No. 203)	origin at centre	$(\overline{3})$
	$a=19.402~{\rm \AA}$	$b=19.402~{\rm \AA}$	c=19.402 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement,	$R_{\rm w} = 0.06$

REFERENCE: H. Gies, Z. Kristallogr. **167** 73–82 (1984).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0676	0.0676	0.3700	2.04	1.0
Si 2	0.2164	0.2164	0.2164	1.53	1.0
Si 3	0.125	0.125	0.125	1.42	1.0
O 1	0.0932	0.4065	-0.0001	4.97	1.0
O 2	0.0433	0.2995	0.4505	6.24	1.0
O 3	0.125	0.3734	0.125	4.29	1.0
O 4	0.1704	0.1704	0.1704	9.32	1.0
N 1	0.0	0.0	0.0	20.0	1.0
N 2	0.625	0.625	0.625	20.0	1.0

### REFINED COMPOSITION: $|(NH_4F)_{1.72}|$ [Si₂₄O₄₈]

CRYSTAL DATA: P12₁1 (No. 4) unique axis **b**  a = 11.129 Å b = 5.025 Å c = 21.519 Å  $\alpha = 90^{\circ}$   $\beta = 89.85^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.033$ ,  $R_{wp} = 0.085$ ,  $R_{F} = 0.089$ 

REFERENCE: B. Marler, C. Deroche, H. Gies, C. A. Fyfe, H. Grondey, G. T. Kokotailo, Y. Feng, S. Ernst, J. Weitkamp and D. E. Cox, J. Appl. Cryst. **26** 636–644 (1993).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	-0.009	-0.02	0.4578	1.10	1.0
Si $2$	0.726	-0.082	0.425	1.10	1.0
Si 3	0.228	-0.112	0.384	1.10	1.0
Si 4	0.312	0.00	0.251	1.10	1.0
Si 5	0.476	0.503	0.249	1.10	1.0
Si 6	0.346	0.390	0.434	1.10	1.0
Si $7$	0.600	0.417	0.378	1.10	1.0
Si 8	-0.010	-0.10	0.0422	1.10	1.0
Si 9	0.726	-0.012	0.077	1.10	1.0
Si 10	0.232	-0.077	0.118	1.10	1.0
Si 11	0.355	0.424	0.063	1.10	1.0
Si 12	0.603	0.487	0.120	1.10	1.0
O 1	0.012	0.27	0.487	1.03	1.0
O 2	0.866	-0.02	0.422	1.03	1.0
O 3	0.093	-0.09	0.408	1.03	1.0
O4	0.683	-0.04	0.495	1.03	1.0
O 5	0.655	0.122	0.381	1.03	1.0
O 6	0.231	-0.05	0.311	1.03	1.0
O 7	0.317	0.085	0.419	1.03	1.0
O 8	0.368	0.292	0.254	1.03	1.0
O 9	0.564	0.49	0.308	1.03	1.0
O 10	0.486	0.44	0.423	1.03	1.0
O 11	0.866	-0.07	0.079	1.03	1.0
O 12	0.100	-0.05	0.089	1.03	1.0
O 13	0.679	-0.03	0.008	1.03	1.0
O 14	0.226	-0.03	0.192	1.03	1.0
O~15	0.553	0.43	0.189	1.03	1.0
O 16	0.497	0.46	0.071	1.03	1.0
O 17	0.708	0.28	0.103	1.03	1.0
O 18	0.322	0.130	0.086	1.03	1.0
O 19	-0.001	0.11	-0.014	1.03	1.0
O 20	0.701	0.621	0.401	1.03	1.0
O 21	0.269	0.584	0.392	1.03	1.0
O 22	0.422	0.797	0.246	1.03	1.0
O 23	0.652	0.786	0.120	1.03	1.0
O 24	0.285	0.632	0.106	1.03	1.0
$\mathbf{F}$	0.938	0.55	0.215	31.58	0.86
Ν	0.89	0.06	0.261	31.58	0.86

# REFINED COMPOSITION: [Si₅₆O₁₁₂]

- CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 24.8633 Å b = 5.01238 Å c = 24.3275 Å  $\alpha = 90^{\circ}$   $\beta = 107.7215^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.058$ ,  $R_{wp} = 0.181$ ,  $R_{I} = 0.069$ 
  - REFERENCE: C. A. Fyfe, H. Gies, G. T. Kokotailo, B. Marler and D. E. Cox, *J. Phys. Chem.* **94** 3718–3721 (1990).

Atom	x	y	z
Si 1	0.4402	0.5319	0.4129
Si $2$	0.0678	-0.0708	0.4589
Si 3	0.3754	0.0320	0.3609
Si 4	0.1338	0.4218	0.4484
Si $5$	0.2836	0.0822	0.4275
Si 6	0.2139	0.5853	0.3832
Si 7	0.2869	0.0100	0.2463
O 1	0.4280	0.5053	0.4730
O 2	0.5034	0.4725	0.4225
O 3	0.4245	0.8220	0.3872
O 4	0.3301	-0.0045	0.3956
O 5	0.0841	-0.3624	0.4513
O 6	0.3452	-0.0218	0.2972
O 7	0.2504	0.2441	0.2629
O 8	0.2602	0.3716	0.4078
O 9	0.1554	0.5101	0.3911
O 10	0.1853	0.4480	0.5026
O 11	0.2997	0.0905	0.1886
O 12	0.3995	0.3370	0.3702
O 13	0.1069	0.1372	0.4394
O 14	0.2343	0.8828	0.4093

Overall thermal parameter  $B_{\rm iso} = 0.01$  was used in the refinement.

- CRYSTAL DATA: P6/mmm (No. 191) a = 14.2081 Å b = 14.2081 Å c = 24.945 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement.  $R_{exp} = 0.103$ ,  $R_{wp} = 0.159$ ,  $R_{F} = 0.065$ 
  - REFERENCE: M. A. Camblor, A. Corma, M.-J. Diaz-Cabanas and Ch. Baerlocher, J. Phys. Chem. B 102 44–51 (1998).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.6667	0.3333	0.0633	1.10	1.0
Si $2$	0.4685	0.2342	0.1356	1.10	1.0
Si 3	0.3904	0.0000	0.1607	1.10	1.0
Si 4	0.6667	0.3333	0.2108	1.10	1.0
Si $5$	0.6667	0.3333	0.3404	1.10	1.0
Si 6	0.3895	0.0000	0.2872	1.10	1.0
Si $7$	0.4215	0.2108	0.3470	1.10	1.0
Si 8	0.2544	0.1272	0.4407	1.10	1.0
O 1	0.6667	0.3333	0.0000	1.50	1.0
O 2	0.5411	0.2705	0.0822	1.50	1.0
O 3	0.3942	0.1048	0.1348	1.50	1.0
O 4	0.5453	0.2726	0.1882	1.50	1.0
O 5	0.6667	0.3333	0.2755	1.50	1.0
O 6	0.3763	0.0000	0.2239	1.50	1.0
O 7	0.5000	0.0000	0.1449	1.50	1.0
O 8	0.5000	0.0000	0.3021	1.50	1.0
O 9	0.3945	0.1063	0.3116	1.50	1.0
O 10	0.5469	0.2735	0.3638	1.50	1.0
O 11	0.3536	0.1768	0.4014	1.50	1.0
O 12	0.1835	0.0000	0.4300	1.50	1.0
O 13	0.3017	0.1508	0.5000	1.50	1.0

REFINED COMPOSITION:	Na ₁₆ Aussi	$(H_2O)_{16} $ g, Bohen	[Si ₂₄ Al ₁ nia	₆ O ₈₀ ]		
CRYSTAL DATA:	$Fdd2$ $a = 1$ $\alpha = 9$ X-ray	(No. 43) 8.30 Å 90° r single cr	b = 18 $\beta = 90$ rystal ref	3.63 Å )° inement,	$c = 6$ $\gamma = 9$ $R_{\rm wp} = 0$	5.60 Å 90° = 0.08
REFERENCE:	<ul> <li>W. M. Meier,</li> <li>Z. Kristallogr. 113 430–444 (1960).</li> </ul>					
	Atom	x	y	z	$B_{\rm iso}$	occ
	Na	0.2208	0.0305	0.6120	2.00	1.0
	<b>C</b> • 1	0.0	0.0	0.0		1 0

1100111	w	9	~	D 180	000
Na	0.2208	0.0305	0.6120	2.00	1.0
Si $1$	0.0	0.0	0.0	1.07	1.0
Si $2$	0.1532	0.2112	0.6181	1.0	1.0
Al	0.0376	0.0936	0.6119	1.12	1.0
O 1	0.0227	0.0683	0.8594	1.81	1.0
O 2	0.0704	0.1824	0.6011	1.10	1.0
O 3	0.0986	0.0346	0.4997	1.55	1.0
O 4	0.2063	0.1526	0.7166	1.24	1.0
O 5	0.1799	0.2272	0.3860	1.83	1.0
$H_2O$	0.0564	0.1893	0.1085	2.50	1.0

REFINED COMPOSITION:  $|Na_{6.528}Ca_{1.472}(H_2O)_{12}H_8|$  [Si_{10.25}Al_{9.75}O₄₀] Tvedalen, Langesund District, Norway

> CRYSTAL DATA:  $I\overline{4}2d$  (No. 122) a = 13.21 Å b = 13.21 Å c = 6.622 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.03

REFERENCE: F. Mazzi, A. O. Larsen, G. Gottardi and E. Galli, Neues Jarhb. Mineral. Monatsh. 219–228 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
$Na^+$	0.3084	0.2500	0.1250	2.35	0.816
$Ca^{2+}$	0.3084	0.2500	0.1250	2.35	0.184
Si	0.0	0.0	0.0	0.84	0.284
$\mathrm{Si}^{4+}$	0.0	0.0	0.0	0.84	0.29
Si	0.1332	0.0536	0.3789	0.78	0.292
$\mathrm{Si}^{4+}$	0.1332	0.0536	0.3789	0.78	0.205
Al	0.0	0.0	0.0	0.84	0.189
$Al^{3+}$	0.0	0.0	0.0	0.84	0.237
Al	0.1332	0.0536	0.3789	0.78	0.238
$Al^{3+}$	0.1332	0.0536	0.3789	0.78	0.265
0	0.25	0.1037	0.375	1.16	0.271
$O^{2-}$	0.25	0.1037	0.375	1.16	0.729
0	0.0917	0.4497	0.1094	1.71	0.271
$O^{2-}$	0.0917	0.4497	0.1094	1.71	0.729
0	0.4369	0.3674	0.0210	1.64	0.271
$O^{2-}$	0.4369	0.3674	0.0210	1.64	0.729
$H_2O$	0.2500	0.3652	0.3750	3.36	1.0
$H_2O$	0.1280	0.2434	0.0545	6.02	0.25
Η	0.2500	0.4272	0.3750	0.11	1.0

Occupancy of second  $Si^{4+}$  site has been corrected from 0.265 to 0.205.

REFINED COMPOSITION:	Na ₁ Poo	₁₆ Ca ₁₆ (H ₂ na, India	$O)_{64} $ [Si ₇₂	Al ₄₈ O ₂₄₀ ]		
CRYSTAL DATA:	$Fdd$ $a =$ $\alpha =$ X-ra	2 (No. 43) 18.4049 Å 90° ay single cr	b = 56.0 $\beta = 90^{\circ}$ rystal refir	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 6.54 $= 90^{\circ}$ $_{w} = 0.0$	443 Å 052
REFERENCE:	G. A Acto	Artioli, J. a <i>Cryst.</i> C	V. Smith a 2 <b>42</b> 937–94	and J. J. F 42 (1986).	luth,	
At	om	x	y	z	$B_{\rm iso}$	occ
Na	a.	0 96736	0 76089	0.63172	1 48	1.0
Ca	1.	0.22807	0.82737	0.88068	0.91	1.0
Si	1	0.75000	0.75000	0.00000	0.51	1.0
Si	2	0.15499	0.76432	0.87210	0.48	1.0
Si	3	0.90188	0.81979	0.65040	0.50	1.0
Si	4	0.08794	0.84688	0.65213	0.50	1.0
Si	5	0.00435	0.83180	0.27740	0.53	1.0
Al	1	0.78689	0.78025	0.61310	0.50	1.0
Al	2	0.03630	0.80211	0.89287	0.52	1.0
Al	3	0.95155	0.86233	0.89294	0.51	1.0
0	1	0.76818	0.77289	0.86482	1.03	1.0
Ō	2	0.02298	0.80800	0.15228	0.98	1.0
0	3	0.98498	0.85319	0.12809	1.18	1.0
0	4	0.82365	0.80837	0.59682	0.70	1.0
0	5	0.07262	0.77385	0.86425	0.72	1.0
0	6	0.16644	0.85935	0.67096	0.83	1.0
0	7	0.84335	0.75866	0.51529	1.00	1.0
0	8	0.09631	0.82339	0.79447	0.93	1.0
0	9	0.88933	0.84183	0.80185	0.98	1.0
0	10	0.95568	0.80062	0.75319	1.06	1.0
Ο	11	0.20947	0.78462	0.95950	0.86	1.0
0	12	0.02193	0.86358	0.71805	1.00	1.0
Ο	13	0.93735	0.82799	0.43383	1.09	1.0
О	14	0.18020	0.75695	0.64166	1.06	1.0
О	15	0.07638	0.83892	0.41273	0.99	1.0
Н	11	0.0450	0.7813	0.322	0.7	1.0
Н	12	0.0881	0.7679	0.420	0.9	1.0
H	21	0.7773	0.8037	0.018	1.0	1.0
H	22	0.8085	0.8232	0.004	2.7	1.0
H	31	0.2274	0.8560	0.247	2.1	1.0
H	32	0.1685	0.8438	0.260	1.2	1.0
H	41	0.8072	0.8702	0.387	0.6	1.0
H	42	0.8615	0.8525	0.359	2.0	1.0
0	21	0.05347	0.76839	0.37684	1.67	1.0
0	22	0.78167	0.81598	0.07685	2.83	1.0
0	23	0.20069	0.84820	0.18338	2.46	1.0
0	24	0.81793	0.85687	0.36556	2.05	1.0

- REFINED COMPOSITION:  $|Ca_4(H_2O)_{12}|$  [Si₁₂Al₈O₄₀] Bombay, India
  - CRYSTAL DATA: C1c1 (No. 9) unique axis **b**, cell choice 1 a = 6.5222 Å b = 18.9678 Å c = 9.8398 Å  $\alpha = 90^{\circ}$   $\beta = 109.972^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.031$ 
    - REFERENCE: J. V. Smith, J. J. Pluth, G. Artioli and F. K. Ross, in *Proceedings of the 6th International Zeolite Conference, Reno 1983*, Ed. by D. H. Olson and A. Bisio (Butterworth: Guildford) 842–850 (1984).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.16217	0.14321	0.05204	0.76	1.0
Si $1$	0.5	0.37057	0.0	0.44	1.0
Si $2$	0.22996	0.33185	0.20022	0.43	1.0
Si 3	0.54002	0.08259	0.33102	0.42	1.0
Al 1	0.93441	0.46209	0.09971	0.45	1.0
Al 2	0.35577	0.21663	0.43387	0.43	1.0
O 1	0.5425	0.03146	0.4608	0.85	1.0
O 2	0.4471	0.04597	0.1174	0.66	1.0
O 3	0.3834	0.15127	0.3157	0.77	1.0
O 4	0.1153	0.19942	0.4684	0.79	1.0
O 5	0.3536	0.29954	0.3584	0.63	1.0
O 6	0.0863	0.27133	0.0907	0.80	1.0
O 7	0.4143	0.35860	0.1343	0.91	1.0
O 8	0.0764	0.39545	0.2150	0.89	1.0
O 9	0.7889	0.11007	0.3566	0.82	1.0
O 10	0.6603	0.43692	0.0339	0.92	1.0
$H_2O 1$	0.8906	0.0803	0.1082	2.22	1.0
$H_2O~2$	0.9080	0.3263	0.4407	2.33	1.0
$H_2O 3$	0.5787	0.4454	0.3742	1.81	1.0

REFINED COMPOSITION:	$ (H_2O)_{20} $ [Si	$[_{68}O_{136}]$		
CRYSTAL DATA:	$P1 2_1/c 1  (Normalized of the second se$	o. 14) un $b = \beta = \beta$ eld refine	nique axi 22.376 Å 151.515° ement, <i>R</i> e	is <b>b</b> , cell choice 1 c = 25.092  Å $\gamma = 90^{\circ}$ $e_{\text{exp}} = 0.075, R_{\text{wp}} = 0.14, R_{\text{I}} = 0.065$
REFERENCE:	M. D. Shann Nature <b>353</b>	ion, J. L 417–420	. Casci, I (1991).	P. A. Cox and S. J. Andrews,
	Atom	r	11	z
	Si 1	0.640	$9 \\ 0 1717$	~ 0 324
	Si 2	0.040 0.473	$0.1111 \\ 0.1970$	0.738
	Si 3	0.028	0.2218	0.500
	Si 4	0.228	0.0010	0.178
	Si 5	0.226	0.0039	0.048
	Si 6	0.412	0.1280	0.108
	Si 7	0.421	0.1200	0.308
	Si 8	0.666	0.1299	0.737
	Si 9	0.654	0.1237	0.924
	Si 10	0.606	0.1816	0.496
	Si 11	0.604	0.1838	0.109
	Si 12	0.456	0.1822	0.536
	Si 13	0.451	0.1837	0.917
	Si 14 Si 15	0.035	0.1941	0.100
	51 15 Si 16	0.038 0.022	0.2909 0.2154	0.400
	Si 10 Si 17	0.033	$0.2134 \\ 0.2175$	0.507
	$O_1$	0.031 0.242	0.2175	0.121
	$0^{1}$	0.242 0.550	0.005 0.2367	0.284
	$\stackrel{\circ}{\mathrm{O}}$ $\stackrel{\circ}{3}$	0.870	0.1734	0.434
	0 4	0.242	0.194	0.614
	O 5	0.588	0.133	0.349
	O 6	0.553	0.141	0.228
	O 7	0.579	0.168	0.741
	O 8	0.533	0.159	0.818
	O 9	0.002	0.2773	0.526
	O 10	-0.006	0.2429	0.423
	0 11	0.001	0.003	0.083
	O 12	0.350	0.0523	0.269
	013	0.318	0.0626	0.066
	014 015	0.075	0.0011	0.757
	0.15 0.16	0.001 0.240	0.0000 0.162	0.911
	$O_{10}$ $O_{17}$	0.240 0.944	0.103 0.1761	0.023
	0.18	0.244	0.152	0.833
	O 19	0.873	0.102 0.146	1.031
	O 20	0.508	0.133	0.409
	O 21	0.535	0.134	0.116
	O 22	0.533	0.137	0.619
	O 23	0.563	0.138	0.935

continued...

 $\ldots$  continued from previous page

Atom	x	y	z
O 24	0.521	0.2479	0.440
O~25	0.526	0.2499	0.587
O 26	0.555	0.163	0.531
O 27	0.509	0.167	0.006
O 28	0.838	0.178	0.605
O 29	0.837	0.180	0.221
O 30	0.223	0.176	0.414
O 31	0.219	0.176	0.793
O 32	0.026	0.2544	0.640
O 33	0.037	0.2734	0.345
O 34	0.036	0.2360	0.2480
$H_2O~1$	0.233	0.037	0.568
$H_2O 2$	0.39	0.016	0.917
$H_2O 3$	0.08	0.044	0.268
$H_2O 4$	-0.03	0.037	0.313
$H_2O~5$	0.01	0.065	0.61

No temperature factors or occupancies were reported.

REFINED COMPOSITION:	$ Na_{66.8} ^{\dagger} [Si_{115.6}Al_{20.4}O_{272}]$ Mt. Adamson, Northern Victoria Land, Antarctica					
CRYSTAL DATA:	$Cmce$ $a = 1$ $\alpha = 9$ X-ray	e (No. 64 .3.698 Å 90.0° y single cr	b) b = 25 $\beta = 90$ rystal ref	5.213 Å 0.0° inement,	$c = 2$ $\gamma = 9$ $R_{\rm F} =$	22.660 Å 90.0° 0.1195, $R_{\rm w} = 0.0968$
REFERENCE:	A. Al Eur.	berti, G. <i>J. Miner</i>	Vezzalin val. <b>8</b> 69–	i, E. Gal 75 (1996)	li and ).	S. Quartieri,
A	Atom	x	y	z	$B_{\rm iso}$	occ
S	Si 1	0.0	0.0804	0.1973	1.18	0.85
S	Si 2	0.0	0.1784	0.2828	1.47	0.85
	Si 3	0.0	0.2884	0.2204	1.39	0.85
9	Si 4	0.0	0.3841	0.3023	1.34	0.85
9	Si 5	0.0	0.4818	0.2235	1.68	0.85
9	Si 6	0.2102	0.0023	0.316	1.95	0.85
9	Si 7	0.1934	0.0978	0.1253	1.34	0.85
S	Si 8	0.2122	0.1948	0.3174	1.11	0.85
S	Si 9	0.2143	0.3111	0.1846	1.32	0.85
S	Si 10	0.1873	0.4049	0.3752	1.18	0.85
S	Si 11	0.1151	0.0634	0.0009	1.53	0.85
A	Al 1	0.0	0.0804	0.1973	1.18	0.15
A	Al 2	0.0	0.1784	0.2828	1.47	0.15
A	Al 3	0.0	0.2884	0.2204	1.39	0.15
A	Al 4	0.0	0.3841	0.3023	1.34	0.15
A	Al 5	0.0	0.4818	0.2235	1.68	0.15
A	Al 6	0.2102	0.0023	0.316	1.95	0.15
A	Al 7	0.1934	0.0978	0.1253	1.34	0.15
A	Al 8	0.2122	0.1948	0.3174	1.11	0.15
A	Al 9	0.2143	0.3111	0.1846	1.32	0.15
A	Al 10	0.1873	0.4049	0.3752	1.18	0.15
A	Al 11	0.1151	0.0634	0.0009	1.53	0.15
(	D 1	0.0	0.0208	0.2214	3.92	1.0
(	D 2	0.0969	0.0897	0.1594	5.84	1.0
(	) 3	0.0	0.1213	0.2499	3.76	1.0
(	) 4	0.0955	0.1833	0.3238	2.63	1.0
(	) 5	0.0	0.2249	0.2361	3.11	1.0
(	J 6	0.0928	0.304	0.181	2.87	1.0
(	J7	0.0	0.3225	0.2802	2.53	1.0
(	58 28	0.084	0.395	0.3443	6.37	1.0
(	J 9	0.0	0.4225	0.2462	6.55	1.0
(	J 10	0.0928	0.492	0.1818	3.74	1.0

0.228

0.2242

0.2381

0.1754

0.2329

0.2381

0.25

0.1576

0.0598

0.4586

0.0893

0.2564

0.1829

0.3553

0 11

O~12

O 13

O 14

O~15

O~16

 $\rm O~17$ 

continued...

2.66

3.61

5.9

3.0

3.16

2.03

2.79

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.135

0.3504

0.3559

0.0555

0.3357

0.1332

0.25

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
O 18	0.25	0.329	0.25	1.89	1.0
O 19	0.25	0.005	0.25	5.66	1.0
O 20	0.0	0.0807	0.0048	2.82	1.0
O 21	0.1276	0.0	0.0	3.26	1.0
O 22	0.1627	0.4084	0.4406	5.34	1.0
Na 1	0.0	0.386	0.999	1.7	0.48
$\operatorname{Na} 2$	0.0	0.183	0.43	4.6	0.77
Na 3	0.0	0.263	0.996	3.9	0.45
Na 4	0.0	0.081	0.404	6.5	0.64
Na~5	0.067	0.281	0.421	9.1	0.59
Na 6	0.121	0.458	0.019	3.9	0.24
$\operatorname{Na}7$	0.0	0.192	0.071	11.0	0.57
Na 8	0.151	0.349	0.994	6.6	0.4
Na 9	0.0	0.39	0.103	8.9	0.63
Na 10	0.12	0.268	0.558	9.4	0.56
$Na \ 11$	0.193	0.271	0.473	12.3	0.36
Na $12$	0.0	0.301	0.064	8.9	0.51

In editions of the *International Tables For Crystallography* published after 1995, space group symbol *Cmce* replaces *Cmca*.

[†]Na atoms have been used to represent the average scattering curve for the unresolved cations and water in the channels which, from chemical analysis, amount to Na_{2.5}K_{0.2}Mg_{3.1}Ca_{4.9}(H₂O)₉₃ per unit cell. The refinement accounts for only 59% of these extraframework electrons.

# REFINED COMPOSITION: $|C_{36}|$ [Si₈₈O₁₇₆]

CRYSTAL DATA:	Fmmm (No. 6	9)	
	a = 22.232  Å	$b=15.058~{\rm \AA}$	c=13.627 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cr	ystal refinement,	$R_{\rm w} = 0.125$

REFERENCE: B. Marler, N. Dehnbostel, H. H. Eulert, H. Gies and F. Liebau, J. Inclusion Phenomena 4 339–349 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.3745	0.1635	0.3103	1.66	1.0
Si $2$	0.2798	0.5000	0.5000	2.05	1.0
Si 3	0.2950	0.3270	0.0000	2.84	1.0
Si 4	0.5000	0.1051	0.6156	0.32	1.0
Si $5$	0.3173	0.5000	0.2831	2.29	1.0
O 1	0.3356	0.3282	0.9056	5.13	1.0
O 2	0.4427	0.1462	0.3374	1.97	1.0
O 3	0.3520	0.4050	0.2525	10.11	1.0
O 4	0.2702	0.4329	0.0000	12.79	1.0
O 5	0.3197	0.5000	0.5937	3.4	1.0
O 6	0.3667	0.2500	0.2500	17.13	1.0
O 7	0.0000	0.0000	0.1392	2.05	1.0
O 8	0.5000	0.1155	0.5000	0.39	1.0
O 9	0.2500	0.0000	0.2500	1.82	1.0
O 10	0.2500	0.2500	0.0000	9.95	1.0
C 1	0.5000	0.4489	0.5700	19.11	1.0
C 2	0.4659	0.3547	0.5000	10.11	1.0
C 3	0.0000	0.0000	0.5000	32.37	1.0

- REFINED COMPOSITION: |KMgCa_{1.32}O_{16.04}| [Si_{12.6}Al_{5.4}O₃₆] Poia Creek, Adamello, Italy
  - CRYSTAL DATA:  $P\overline{6}m2$  (No. 187) a = 13.331 Å b = 13.291 Å c = 7.593 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.058,  $R_w = 0.038$ 
    - REFERENCE: A. Alberti, G. Cruciani, E. Galli and G. Vezzalini, Zeolites 17 457–461 (1996).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0007	0.2334	0.2089	0.92	0.7
Si $2$	0.0923	0.4236	0.5	0.71	0.7
Al 1	0.0007	0.2334	0.2089	0.92	0.3
Al 2	0.0923	0.4236	0.5	0.71	0.3
O 1	0.0243	0.3486	0.3213	2.21	1.0
O 2	0.0961	0.9039	0.2558	1.72	1.0
O 3	0.8738	0.1262	0.2603	2.5	1.0
O 4	0.0103	0.2718	0.0	2.46	1.0
O 5	0.2286	0.7714	0.5	2.38	1.0
O 6	0.4570	0.5430	0.5	2.01	1.0
Κ	0.0	0.0	0.5	2.37	1.0
Mg	0.3333	0.6667	0.0	1.62	1.0
$\operatorname{Ca} 1$	0.6667	0.3333	0.3947	2.25	0.32
$\operatorname{Ca} 2$	0.6667	0.3333	0.2812	6.61	0.34
O 7	0.3333	0.6667	0.2676	2.10	1.0
O 8	0.2446	0.7554	0.0	3.86	0.38
O 9	0.1670	0.5266	0.0	5.97	0.48
O 10	0.7635	0.2365	0.5	6.43	1.0
O 11	-0.4369	0.4369	0.1881	10.2	1.0
O 12	0.2310	0.2310	0.0	2.6	0.17

# REFINED COMPOSITION: [Al₁₆P₁₆O₆₄]

CRYSTAL DATA: Imm2 (No. 44) a = 18.3549 Å b = 18.3206 Å c = 5.0530 Å  $\alpha = 90.0^{\circ}$   $\beta = 90.0^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.044$ ,  $R_{\rm wp} = 0.059$ 

REFERENCE: D. E. Akporiaye, H. Fjellvåg, E. N. Halvorsen, T. Haug, A. Karlsson, and K. P Lillerud, J. Chem. Soc., Chem. Commun. 1553–1554 (1996).

Atom	x	y	z
Al 1	0.5	0.2867	0.0
Al 2	0.6179	0.5	0.604
Al 3	0.7205	0.1659	0.528
P 1	0.5	0.3795	0.527
P 2	0.7221	0.5	0.081
P 3	0.3554	0.7691	0.068
O 1	0.5	0.3073	-0.3398
O 2	0.5	0.3556	0.2413
O 3	0.4353	0.2154	0.0247
O 4	0.6491	0.5	0.9332
O 5	0.6738	0.5	0.3272
O 6	0.5724	0.4185	0.5300
O 7	0.6709	0.1950	0.8099
O 8	0.6977	0.1764	0.1912
O 9	0.8081	0.2030	0.5110
O 10	0.7376	0.0718	0.5281

Refined from simulated annealing and low-resolution powder X-ray diffraction. Temperature factors and occupancies were not provided. REFINED COMPOSITION:  $|K_{5.37}(H_2O)_9|$  [Be_{3.51}Si_{5.52}O₁₈]

CRYSTAL DATA:  $P3_2$  (No. 145) a = 10.0928 Å b = 10.0928 Å c = 7.6264 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement, R = 0.0596

REFERENCE: K. O. Kongshaug, H. Fjellvåg, K. P. Lillerud, T. E. Gier, G. D. Stucky and A. K. Cheetham, Private communication (2000).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.5818	0.2893	0.7241	1.03	0.58
Be $1$	0.5818	0.2893	0.7241	1.03	0.42
Si $2$	0.2899	0.5811	0.0599	0.71	0.53
Be $2$	0.2899	0.5811	0.0599	0.71	0.47
Si 3	0.0007	0.4976	0.2277	1.03	0.73
$Be\ 3$	0.0007	0.4976	0.2277	1.03	0.28
O 1	0.68	0.3710	0.5540	1.58	1.0
O 2	0.312	0.6910	0.8820	2.45	1.0
O 3	0.465	0.1070	0.6810	1.66	1.0
O 4	0.349	0.4560	0.0180	2.21	1.0
O 5	0.107	0.4640	0.1020	1.97	1.0
O 6	0.469	0.3560	0.7720	1.74	1.0
K 11	0.005	0.4620	0.7200	3.95	0.44
K $12$	-0.006	0.5270	0.7180	4.50	0.56
K 2	0.185	0.0750	0.7140	20.53	0.79
$H_2O 1$	0.115	0.1710	0.0510	9.24	1.0
$H_2O\ 2$	0.136	0.3270	0.5840	15.00	1.0
$H_2O$ 3	-0.138	0.1890	-0.0790	14.21	1.0

REFINED COMPOSITION:	$ Ca_8(H_2O)_{16} $ [Si ₁₆ Al ₁₆ O ₆₀ (OH) ₈ ]
	Taurus Mountains, Turkey

CRYSTAL DATA: C12/c1 (No. 15) unique axis **b**, cell choice 1 a = 21.555 Å b = 8.761 Å c = 9.304 Å  $\alpha = 90^{\circ}$   $\beta = 91.55^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.07

REFERENCE:	N. Engel and K. Yvon,
	Z. Kristallogr. <b>169</b> 165–175 (1984).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.35586	0.1991	0.0444	0.93	1.0
Si 1	0.06729	0.1832	0.2896	0.53	1.0
Si $2$	0.23983	0.0077	0.4621	0.46	1.0
Al 1	0.1161	0.0844	0.6006	0.56	1.0
Al 2	0.1999	0.3162	0.2858	0.51	1.0
O 1	0.0695	0.0181	0.2162	0.73	1.0
O 2	0.0725	0.1719	0.4626	0.84	1.0
O 3	0.1222	0.2883	0.2295	0.89	1.0
O 4	0.1722	0.0363	0.0250	0.86	1.0
O 5	0.2081	0.4669	0.4096	0.71	1.0
O 6	0.2345	0.1550	0.3605	0.84	1.0
O 7	0.2340	0.3599	0.1221	0.76	1.0
O 8	0.0	0.2632	0.2500	0.63	1.0
OH	0.3523	0.2673	0.2918	1.11	1.0
$H_2O~1$	0.0712	0.5050	0.0159	2.62	1.0
$H_2O 2$	0.4541	0.3070	0.0800	1.72	1.0

REFINED COMPOSITION:	Na _{9.} Rock	₆₈ K _{50.51} C Island I	Ca _{26.75} Ba Dam, Was	$_{1.06}(\mathrm{H}_{2}\mathrm{O})$	) ₄₅₂   [S U.S.A	i _{520.12} Al _{151.88} O ₁₃₄₄ ] 
CRYSTAL DATA:	$Im\overline{3}n$ $a = 3$ $\alpha = 9$ X-ray	n (No. 2 35.093 Å 90° y single c	$\begin{array}{l} 29)\\ b=3\\ \beta=9\\ \text{rystal rel} \end{array}$	5.093 Å 0° finement,	$c = 3$ $\gamma =$ $R = 0$	35.093 Å 90° ).14
REFERENCE:	E. K Scier	. Gordon <i>ice</i> <b>154</b> 1	, S. Sams 1004–100'	son and $V_7$ (1966).	W. B. I	Kamb,
At	tom	x	y	z	$B_{\rm iso}$	occ
N	a 1	0.1788	0 1788	0.1788	2.4	0.11
N	a 2	0.2543	0.2543	0.0	$\frac{2.1}{3.0}$	0.11
N	a 3	0.3975	0.3975	0.1445	5.5	0.11
K	1	0.1788	0.1788	0.1788	2.4	0.574
K	2	0.2543	0.2543	0.0	3.0	0.574
K	3	0.3975	0.3975	0.1445	5.5	0.574
Ca	a 1	0.1788	0.1788	0.1788	2.4	0.304
Ca	a 2	0.2543	0.2543	0.0	3.0	0.304
Ca	a 3	0.3975	0.3975	0.1445	5.5	0.304
Ba	a 1	0.1788	0.1788	0.1788	2.4	0.012
Ba	a 2	0.2543	0.2543	0.0	3.0	0.012
Ba	a 3	0.3975	0.3975	0.1445	5.5	0.012
Si	1	0.3137	0.25	0.1863	0.47	0.774
Si	2	0.4021	0.25	0.0979	0.46	0.774
Si	3	0.3132	0.2498	0.0979	0.48	0.774
Si	4	0.4558	0.1072	0.0443	0.54	0.774
Si	5	0.4019	0.1782	0.0448	0.45	0.774
Si	6	0.3126	0.1785	0.0446	0.40	0.774
Si	7	0.2592	0.1073	0.0445	0.36	0.774
Si	8	0.1708	0.1076	0.0441	0.44	0.774
Al	l 1	0.3137	0.25	0.1863	0.47	0.226
Al	12	0.4021	0.25	0.0979	0.46	0.226
Al	13	0.3132	0.2498	0.0979	0.48	0.226
Al	14	0.4558	0.1072	0.0443	0.54	0.226
Al	15	0.4019	0.1782	0.0448	0.45	0.226
Al	16	0.3126	0.1785	0.0446	0.40	0.226
A	17	0.2592	0.1073	0.0445	0.36	0.226
A	18	0.1708	0.1076	0.0441	0.44	0.226
0	1	0.1635	0.0933	0.0	1.4	1.0
0	2	0.2679	0.0968	0.0	1.3	1.0
0	3	0.3041	0.1886	0.0	1.4	1.0
0	4	0.4092	0.1900	0.0	1.8	1.0
0	0 6	0.4484	0.0952	0.0	1.0	1.0
0	07	0.4489	0.3794	0.0	1.8	1.0
0	1	0.0713	0.0713	0.1010	1.4	1.0
0	ð	0.4308	0.4308	0.2322	1.9 1 5	1.0
0	9 10	0.1437	0.1437	0.0040	1.0 1.6	1.0
0	10 11	0.2000	0.2000	0.1900	1.0 1 7	1.0
0	тт	0.4000	0.2000	0.0030	T.1	T.0

continued...

 $\ldots$  continued from previous page

A .				р	
Atom	x	y	z	$B_{\rm iso}$	occ
O 12	0.4299	0.4299	0.0548	2.0	1.0
O 13	0.2152	0.1211	0.0496	1.2	1.0
O 14	0.2870	0.1414	0.0582	1.8	1.0
O 15	0.3573	0.1672	0.0525	1.5	1.0
O 16	0.4278	0.1417	0.0573	2.3	1.0
O 17	0.3002	0.2163	0.0693	1.9	1.0
O 18	0.4148	0.2142	0.0710	1.9	1.0
O 19	0.3576	0.2623	0.0909	1.6	1.0
O 20	0.3080	0.2351	0.1419	1.5	1.0
$H_2O~1$	0.140	0.140	0.140	5.7	1.0
$H_2O 2$	0.217	0.217	0.217	4.2	1.0
$H_2O~3$	0.209	0.209	0.053	6.2	1.0
$H_2O4$	0.348	0.348	0.200	5.5	1.0
$H_2O~5$	0.350	0.350	0.082	11.5	1.0
$H_2O_6$	0.220	0.220	0.140	15.0	1.0
$H_2O~7$	0.139	0.139	0.217	15.0	1.0
$H_2O 8$	0.334	0.275	0.0	15.0	1.0
$H_2O9$	0.422	0.285	0.0	15.0	1.0
$H_{2}O 10$	0.292	0.5	0.0	15.0	1.0
$H_2O 11$	0.367	0.367	0.0	15.0	1.0
$H_2O 12$	0.178	0.0	0.0	15.0	1.0
$H_{2}O 13$	0.270	0.0	0.0	15.0	1.0
$H_2O~14$	0.458	0.0	0.0	15.0	1.0

REFINED COMPOSITION:	$ K_2Ca_{1.648}(H_2O)_{12} $ [Si _{10.7} Al _{5.3} O ₃₂ ]
	Casal Brunori, Rome, Italy

- CRYSTAL DATA:  $P1 2_1/m 1$  (No. 11) unique axis **b**  a = 9.865 Å b = 14.300 Å c = 8.668 Å  $\alpha = 90^{\circ}$   $\beta = 124.20^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.057$ 
  - REFERENCE: R. Rinaldi, J. J. Pluth and J. V. Smith, Acta Cryst. B30 2426–2433 (1974).

Atom	x	y	z	$B_{\rm iso}$	occ
Κ	0.8480	0.2500	0.2076	2.4	1.0
Ca	0.6080	0.6262	0.4401	2.14	0.412
Si $1$	0.7362	0.0248	0.2805	1.08	0.669
Si $2$	0.4206	0.1409	0.0019	1.06	0.669
Si 3	0.0604	0.0078	0.2844	1.11	0.669
Si 4	0.1204	0.1396	0.0421	1.14	0.669
Al 1	0.7362	0.0248	0.2805	1.08	0.331
Al 2	0.4206	0.1409	0.0019	1.06	0.331
Al 3	0.0604	0.0078	0.2844	1.11	0.331
Al 4	0.1204	0.1396	0.0421	1.14	0.331
O 1	0.1335	0.0976	0.2289	2.04	1.0
O 2	0.6445	0.5766	0.1878	1.94	1.0
O 3	0.6100	0.1130	0.1728	1.89	1.0
O 4	0.0254	0.9154	0.1494	1.85	1.0
O 5	0.8957	0.0440	0.2713	2.06	1.0
O 6	0.3022	0.3738	0.0783	2.32	1.0
O 7	0.7872	0.4795	0.4982	1.9	1.0
O 8	0.5814	0.7500	0.0616	1.94	1.0
O 9	0.0665	0.2500	0.0196	2.12	1.0
$H_2O 1$	0.7551	0.7500	0.4733	7.8	1.0
$H_2O~2$	0.1552	0.7500	0.4382	7.3	1.0
$H_2O 3$	0.3208	0.8525	0.1740	8.8	1.0
$H_2O~4$	0.5085	0.2500	0.4384	18.7	1.0
$H_2O~5$	0.5	0.5	0.5	16.6	1.0

REFINED COMPOSITION:	$ Ba_2Ca_{0.6}(H_2O)_{12} $ [Si ₁₂ Al ₄ O ₃₂ ]
	Andreasberg, Hartz, Germany

- CRYSTAL DATA:  $P1 2_1/m 1$  (No. 11) unique axis **b**  a = 9.879 Å b = 14.139 Å c = 8.693 Å  $\alpha = 90^{\circ}$   $\beta = 124.81^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.039$ 
  - REFERENCE: R. Rinaldi, J. J. Pluth and J. V. Smith, Acta Cryst. B30 2426–2433 (1974).

Atom	x	y	z	$B_{\rm iso}$	occ
Ba	0.86290	0.25	0.19441	1.79	1.0
Ca	0.5869	0.6286	0.4799	0.0	0.15
Si $1$	0.7367	0.0248	0.2840	0.82	0.75
Si $2$	0.4214	0.1410	0.0136	0.77	0.75
Si 3	0.0577	0.0075	0.2898	0.78	0.75
Si 4	0.1216	0.1390	0.0375	0.85	0.75
Al 1	0.7367	0.0248	0.2840	0.82	0.25
Al 2	0.4214	0.1410	0.0136	0.77	0.25
Al 3	0.0577	0.0075	0.2898	0.78	0.25
Al 4	0.1216	0.1390	0.0375	0.85	0.25
O 1	0.1042	0.0896	0.1958	2.45	1.0
O 2	0.6470	0.5726	0.1679	1.80	1.0
O 3	0.6163	0.1186	0.1792	1.58	1.0
O 4	0.0050	0.9083	0.1711	2.05	1.0
O 5	0.9057	0.0515	0.2955	1.47	1.0
O 6	0.3137	0.3709	0.1017	1.84	1.0
O 7	0.7808	0.4856	0.4976	1.68	1.0
O 8	0.5885	0.75	0.0573	1.76	1.0
O 9	0.0661	0.25	0.0256	1.99	1.0
$H_2O~1$	0.8004	0.75	0.4889	5.5	1.0
$H_2O~2$	0.1148	0.75	0.4593	4.8	1.0
$H_2O$ 3	0.3027	0.8628	0.1324	5.8	1.0
$H_2O 4$	0.4611	0.75	0.5134	47.0	1.0
$H_2O~5$	0.5	0.5	0.5	35.0	1.0

REFINED COMPOSITION: $|Na_{2.88}Cs_{3.12}(H_2O)_{73.27}|$  $[Si_{35.95}Al_{12.05}O_{96}]$ CRYSTAL DATA: $Im\overline{3}m$  (No. 229)<br/>a = 15.031 Å<br/> $\alpha = 90^{\circ}$ b = 15.031 Å<br/> $\beta = 90^{\circ}$ <br/> $\gamma = 90^{\circ}$ <br/>X-ray Rietveld refinement,  $R_{wp} = 0.18$ ,  $R_F = 0.134$ REFERENCE:L. B. McCusker and Ch. Baerlocher,<br/>in Proceedings of the 6th International Zeolite Conference, Reno 1983,<br/>Ed. by D. H. Olson and A. Bisio (Butterworth: Guildford) 812–822 (1984).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.2768	0.2768	0.2768	6.3	0.180
$\mathbf{Cs}$	0.0	0.0	0.3554	0.3	0.260
Si	0.25	0.1042	0.3958	3.2	0.749
Al	0.25	0.1042	0.3958	3.2	0.251
O 1	0.2107	0.0	0.3834	5.6	1.0
O 2	0.1652	0.1652	0.3654	5.6	1.0
$H_2O 1$	0.0749	0.2096	0.2096	5.5	0.204
$H_2O 2$	0.0542	0.0542	0.2756	15.0	0.504
$H_2O$ 3	0.0636	0.1180	0.1735	15.0	0.305
$H_2O 4$	0.0	0.0	0.4295	15.0	0.717
$H_2O~5$	0.0	0.0	0.0	15.0	0.70

REFINED COMPOSITION:	$ Li_{11.6}Na_{0.192}K_{1.2}Ca_{5.5}(H_2O)_{38}  [Be_{24}P_{24}O_{96}]$
	Custer, S. Dakota, U.S.A.

- CRYSTAL DATA: *I*23 (No. 197) a = 13.781 Å b = 13.781 Å c = 13.781 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.035$ 
  - REFERENCE: R. C. Rouse, D. R. Peacor and S. Merlino, American Mineralogist 74 1195–1202 (1989).

Atom	x	y	z	$B_{\rm iso}$	occ
Li 1	0.3615	0.0357	0.0301	3.66	0.15
Li 2	0.3013	0.3013	0.3013	1.89	1.0
Na	0.3615	0.0357	0.0301	3.66	0.008
Κ	0.3615	0.0357	0.0301	3.66	0.05
Ca	0.3615	0.0357	0.0301	3.66	0.229
Be	0.4207	0.1210	0.2675	0.76	1.0
Р	0.2771	0.1240	0.4224	0.71	1.0
O 1	0.2246	0.2178	0.3914	0.95	1.0
O 2	0.3781	0.1245	0.3766	1.16	1.0
O 3	0.3791	0.0329	0.2041	1.18	1.0
O 4	0.2160	0.0383	0.3889	1.16	1.0
$H_2O 1$	0.3851	0.3851	0.3851	3.08	1.0
$H_2O 2$	0.4768	0.0	0.0	1.68	0.5
$H_2O 3$	0.2171	0.1095	0.0714	4.0	0.5
$H_2O4$	0.2459	0.0765	0.0504	6.58	0.5
REFINED COMPOSITION:  $|Rb_{24}(D_2O)_{3.6}|$  [Be₂₄As₂₄O₉₆]

- CRYSTAL DATA: I23 (No. 197) a = 14.001 Å b = 14.001 Å c = 14.001 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ neutron  $R_{\rm wp} = 0.041$ , X-ray  $R_{\rm wp} = 0.145$ 
  - REFERENCE: J. B. Parise, D. R. Corbin, T. E. Gier, R. L. Harlow, L. Abrams and R. B. Von Dreele, *Zeolites* **12** 360–368 (1992). And J. B. Parise, Private communication (1994).

Atom	x	y	z	$B_{\rm iso}$	occ
$\operatorname{Rb} 1$	0.5	0.0	0.0	4.89	1.0
$\operatorname{Rb} 2$	0.1903	0.1903	0.1903	7.74	1.0
$\operatorname{Rb} 3$	0.3716	0.3716	0.3716	7.74	0.87
Rb 4	0.244	0.0	0.0	7.74	0.25
Be	0.2173	0.9311	0.3717	4.34	1.0
As	0.27446	0.12749	0.42737	0.79	1.0
O 1	0.2296	0.2349	0.3988	1.5	1.0
O 2	0.3882	0.1265	0.3899	0.95	1.0
O 3	0.2852	0.1055	0.5429	4.42	1.0
O 4	0.2094	0.0467	0.3679	1.34	1.0
$D_2O 1$	0.244	0.0	0.0	4.74	0.10
$D_2O 2$	0.066	0.066	0.066	4.74	0.23
$D_2O 3$	0.441	0.441	0.441	4.74	0.07

REFINED COMPOSITION:	$ Ca_{16}(H_2O)_{18.72}  [(Be(OH)_2)_8Si_{32}Al_{16}O_{104}]$
	Pizzo Marcio, Val Vigezzo, Italy

- CRYSTAL DATA: I 4/m cm (No. 140) a = 18.33 Å b = 18.33 Å c = 9.16 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm obs} = 0.034$ 
  - REFERENCE: G. Giuseppetti, F. Mazzi, C. Tadini and E. Galli, Neues Jahrb. Mineral. Monatsh. 7 307–314 (1991).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.1769	0.1769	0.25	1.34	1.0
Si $1$	0.1044	0.2810	0.0	0.95	1.0
Si $2$	0.1159	0.0408	0.0	0.79	1.0
Be	0.2619	0.2381	0.0000	1.42	1.0
Al	0.2177	0.0000	0.25	0.87	1.0
O 1	0.1353	0.3647	0.0000	1.26	1.0
O 2	0.1641	0.0579	0.1457	1.26	1.0
O 3	0.0579	0.2673	0.1461	1.74	1.0
O 4	0.0451	0.0936	0.0000	1.66	1.0
O 5	0.1725	0.2246	0.0	1.18	1.0
O 6	0.2935	0.2065	0.1512	1.34	1.0
Η	0.324	0.176	0.145	2.37	1.0
$H_2O~1$	0.409	0.091	0.154	11.05	0.49
$H_2O\ 2$	0.375	0.079	0.0	10.26	0.27
$H_2O~1$	0.445	0.055	0.264	17.37	0.41

O6 is a terminal oxygen, where the framework is not fully connected.

REFINED COMPOSITION:	$ K_4N $	$[a_{12}(H_2O)]$	$_{20.7}$ [Si ₂₈	$\operatorname{Zn}_8O_{72}$ ]		
CRYSTAL DATA:	C1m	1 (No. 8)	unique a	xis <b>b</b> , cel	l choic	e 1
	a = c	7.238 Å	b = 40.	56 Å	c = 7.	308 Å
	$\alpha =$	90°	$\beta = 91$	.8°	$\gamma = 90$	0°
	X-ray	y Rietveld	l refineme	ent, $R_{\rm exp}$	= 0.23	8, $R_{\rm wp} = 0.164, R_{\rm I} = 0.090$
DEEDEMOE	съ		п a.			
REFERENCE:	C. R	onrig and	H. Gles,	34 63 6	5 (1005	
	Ange	ew. Chem.	, <i>m</i> . ea.	<b>J</b> <del>4</del> 0J-0	5 (1990	<i>)</i> ).
А	tom	x	y	z	$B_{\rm iso}$	occ
Ν	la 1	-0.141	0.0	0.224	1.97	1.0
Ν	la 2	-0.164	0.0	0.795	1.97	1.0
Ν	la 3	-0.002	0.2469	0.84	1.97	1.0
Ν	la 4	0.05	0.1309	0.574	1.97	1.0
K	C	0.063	0.3865	0.442	1.97	1.0
S	i 1	0.317	0.0382	0.308	0.79	1.0
S	i 2	0.299	0.0379	0.72	0.79	1.0
S	i 3	0.572	0.0671	0.017	0.79	1.0
S	i 4	-0.195	0.1277	-0.024	0.79	1.0
S	i 5	0.755	0.1991	0.096	0.79	1.0
S	i 6	0.038	0.2185	0.397	0.79	1.0
S	i 7	0.467	0.2105	0.388	0.79	1.0
Z	n 1	0.0	0.0605	0.0	0.79	1.0
Z	n 2	0.7484	0.1832	0.6786	0.79	1.0
С	) 1	0.377	0.0	0.298	1.18	1.0
С	) 2	0.317	0.052	0.515	1.18	1.0
С	) 3	0.111	0.0427	0.224	1.18	1.0
C	) 4	0.467	0.0603	0.205	1.18	1.0
C	) 5	0.365	0.0	0.735	1.18	1.0
C	) 6	0.086	0.042	0.773	1.18	1.0
C	) 7	0.433	0.0609	0.844	1.18	1.0
Ŭ	8	0.7478	0.043	0.004	1.18	1.0
	) 9	-0.002	0.1084	0.01	1.18	1.0
	) 10	0.626	0.1058	0.022	1.18	1.0
	) 11	-0.203	0.1399 0.1279	0.100 0.760	1.18	1.0
	) 12	0.764 0.727	0.1370	0.702	1.10	1.0
	) 13	0.737	0.2124 0.2189	0.000	1.10	1.0
	) 14	-0.079	0.2102 0.2066	0.204 0.102	1.10	1.0
	) 16	-0.020	0.2000	0.132 0.544	1.10	1.0
	) 17	-0.025 0.521	0.1515	0.54	1.10	1.0
Č	) 18	0.021 0.247	0.2091	0.346	1.10	1.0
	) 19	0.023	0.2549	0.485	1.18	1.0
H	[ ₂ 0 1	-0.1	0.0753	0.501	4.74	1.15
H	$[_{2}02$	0.257	0.2093	0.898	4.74	1.15
Н	$\bar{[}_{2}O3$	0.299	0.1398	0.775	4.74	1.15
Н	$[_{2}04]$	0.21	0.1324	0.293	4.74	1.15
Н	$[_{2}O 5$	0.746	0.0	0.487	4.74	1.15

### REFINED COMPOSITION: |C_{17.6}| [Si₂₄O₄₈]

- CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 14.018 Å b = 13.612 Å c = 7.418 Å  $\alpha = 90^{\circ}$   $\beta = 102.12^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_1 = 0.099$ 
  - REFERENCE: B. Marler, A. Grünewald-Lüke and H. Gies, Microporous and Mesoporous Materials 26 49–59 (1998).

Atom	x	y	z	$B_{\rm iso}$	occ
Si 1	0.6021	0.1135	0.4515	2.13	1.0
$Si\ 2$	0.7308	0.1133	0.8427	1.89	1.0
Si 3	0.6111	0.2237	0.0859	1.89	1.0
O 1	0.5	0.1473	0.5	3.08	1.0
O 2	0.5966	0.0	0.3917	2.61	1.0
O 3	0.6869	0.1288	0.6265	2.76	1.0
O 4	0.6239	0.1784	0.2882	26.06	1.0
O 5	0.7551	0.0	0.8826	24.48	1.0
O 6	0.8826	0.1749	0.9047	2.37	1.0
O 7	0.6414	0.1465	0.9575	2.84	1.0
O 8	0.5	0.2477	0.0	2.53	1.0
C 1	0.422	0.477	0.432	22.9	0.63
C 2	0.489	0.414	0.428	18.16	0.63
C 3	0.943	0.0	0.277	18.95	0.31
C 4	0.967	0.0	0.63	16.58	0.31
C 5	0.858	0.097	0.358	30.79	0.63

## REFINED COMPOSITION: [Si₃₁O₆₄]

CRYSTAL DATA: C12/m1 (No. 12) unique axis **b**, cell choice 1 a = 9.659 Å b = 20.461 Å c = 9.831 Å  $\alpha = 90^{\circ}$   $\beta = 96.58^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.06

REFERENCE: S. Vortmann, B. Marler, H. Gies and P. Daniels, *Microporous Materials* 4 111–121 (1995).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	-0.00071	0.32074	0.34243	0.96	0.969
Si $2$	0.40984	0.07574	0.12008	1.21	0.969
Si $3$	0.25048	0.26603	0.21513	1.37	0.969
Si 4	0.15487	0.15272	0.01508	1.69	0.969
O 1	0.0	0.34053	0.5	1.76	1.0
O 2	0.0	0.12655	0.0	1.94	1.0
O 3	0.151	0.29265	0.3211	2.07	1.0
O 4	0.16628	0.21447	0.11538	2.59	1.0
O 5	0.25098	0.09473	0.07707	2.22	1.0
O 6	0.31018	0.32663	0.12877	2.43	1.0
Ο7	-0.11737	0.26658	0.30066	2.6	1.0
O 8	0.42048	0.0	0.15383	2.3	1.0
O 9	-0.03047	0.38601	0.25539	2.53	1.0
O 10	0.5	0.09471	0.0	2.68	1.0

REFINED COMPOSITION:	$\left[\mathrm{Si}_{36}\mathrm{O}_{72}\right]$					
CRYSTAL DATA:	$P1 2_1/a 1 (1)$ $a = 13.112$ $\alpha = 90^{\circ}$ DLS refiner	No. 14) u Å $b =$ $\beta =$ nent.	inique ax 12.903 Å = 113.50°	is <b>b</b> , cell channel $c = 12$ . $\gamma = 90$	oice 3 407 Å °	
REFERENCE:	H. Gies and J. Rius, Z. Kristallogr. <b>210</b> 475–480 (1995).					
	Atom	r	11	7.		
	Si 1	0 3003	9 0 1257	~ 0.1207		
	Si 2	0.3005 0.2975	0.1207 0.1210	0.1207 0.3594		
	Si 2	0.0627	0.1268	0.3183		
	Si 4	0.9222	0.1899	0.0622		
	Si 5	0.0007	0.2581	0.4892		
	Si 6	0.2992	0.8890	0.1088		
	${ m Si}$ 7	0.2864	0.8847	0.3504		
	Si 8	0.0468	0.8885	0.3340		
	Si 9	0.9254	0.8006	0.0773		
	O 1	0.1789	0.1393	0.0177		
	O 2	0.3410	0.0078	0.1248		
	O 3	0.3869	0.1999	0.0963		
	O 4	0.2960	0.1544	0.2447		
	O 5	0.1930	0.1528	0.3686		
	O 6	0.3934	0.1688	0.4555		
	O 7	0.3082	0.0070	0.3699		
	O 8	0.0446	0.0110	0.3542		
	O 9	0.0011	0.2062	0.3720		
	O 10	0.0111	0.1359	0.1779		
	O 11	0.9756	0.2048	0.9673		

O 12

O 13

O 14

O~15

O 16

O 17

O 18

0.8142

0.1123

0.9967

0.2787

0.3906

0.1721

0.9673

0.1180

0.3247

0.1694

0.8539

0.8156

0.8541

0.8607

0.0063

0.5507

0.5780

0.2222

0.0936

0.3608

0.2007

# REFINED COMPOSITION: [P₂₈Al₂₈O₁₁₂]

CRYSTAL DATA:	$P\overline{4}n2$ (No. 118)	)		
	a = 13.620  Å	$b=13.620~{\rm \AA}$	$c=21.649~{\rm \AA}$	
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$	
	X-ray single cry	stal refinement,	$R = 0.059, R_{\rm w} =$	0.076; At $T = 200$ K.

REFERENCE: G. W. Noble, P. A. Wright, P. Lightfoot, R. E. Morris, K. J. Hudson, Å. Kvick and H. Graafsma, *Angew. Chem.*, *Int. ed.* **36** 81–83 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
P 1	0.3905	0.1197	0.1332	1.60	1.0
P 2	0.1100	0.1207	0.1892	1.69	1.0
P 3	0.2094	-0.1143	0.0563	1.70	1.0
P 4	0.2953	-0.2047	0.2500	1.73	1.0
Al 1	0.2022	0.1119	0.0597	1.76	1.0
Al 2	0.1156	-0.1114	0.1885	1.85	1.0
Al 3	0.3900	-0.1082	0.1346	1.96	1.0
Al 4	0.2950	0.2050	0.2500	1.57	1.0
O 1	0.3220	0.1410	0.0821	3.0	1.0
O 2	0.3706	0.1832	0.1872	3.3	1.0
O 3	0.3763	0.0132	0.1538	2.4	1.0
O 4	0.4928	0.1360	0.1110	2.5	1.0
O 5	0.1959	-0.0099	0.0369	3.7	1.0
O 6	0.1260	0.1403	0.1220	2.6	1.0
Ο7	0.1812	0.1848	-0.0039	3.1	1.0
O 8	0.1737	0.1878	0.2267	2.5	1.0
O 9	0.1332	0.0152	0.2036	2.5	1.0
O 10	0.3141	-0.1304	0.0715	3.8	1.0
O 11	0.1439	-0.1372	0.1105	2.9	1.0
O 12	0.0057	0.1434	0.2061	2.5	1.0
O 13	0.1906	-0.1879	0.2353	2.8	1.0
O 14	0.3577	-0.1789	0.1965	4.0	1.0

$_{4}N_{5.04}$ [Mg _{2.4} Al _{13.6} P ₁₆ O ₆₄ ]
4

- CRYSTAL DATA: P 4/m nc (No. 128) a = 14.322 Å b = 14.322 Å c = 10.424 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray synchrotron single crystal refinement,  $R_{\rm F} = 0.094$ ,  $wR_2 = 0.313$ 
  - REFERENCE: V. Patinec, P. A. Wright, P. Lightfoot, R. A. Aitken and P. A. Cox, J. Chem. Soc., Dalton Trans. 22 3909–3911 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.2689	0.1091	0.0	1.66	0.85
Al 2	0.3907	0.8907	0.75	2.45	0.85
$Mg\ 1$	0.2689	0.1091	0.0	1.66	0.15
$Mg\ 2$	0.3907	0.8907	0.75	2.45	0.15
P 1	0.6101	0.8899	0.75	2.45	1.0
P 2	0.2666	0.8863	0.0	1.89	1.0
O 1	0.2414	0.9886	0.0	3.0	1.0
O 2	0.3209	0.8603	0.8826	3.87	1.0
O 3	0.5093	0.8722	0.7865	3.87	1.0
O 4	0.175	0.8339	0.0	3.4	1.0
O 5	0.6683	0.8619	0.8614	5.05	1.0
N 1	0.5595	0.6718	0.0547	23.7	0.09
N 2	0.5368	0.3621	0.0	23.7	0.09
N 3	0.4221	0.5146	0.2956	23.7	0.09
N 4	0.4938	0.5105	0.7902	23.7	0.09
C 1	0.4937	0.7371	1.0	23.7	0.09
C 2	0.6187	0.3376	0.0918	23.7	0.09
C 3	0.4966	0.4748	0.3812	23.7	0.09
C 4	0.4092	0.5505	0.7258	23.7	0.09
C 5	0.4451	0.32	0.0477	23.7	0.09
C 6	0.4066	0.348	0.1815	23.7	0.09
C 7	0.3685	0.4473	0.2101	23.7	0.09
C 8	0.4508	0.605	0.2332	23.7	0.09
C 9	0.5145	0.5906	0.1159	23.7	0.09
$C \ 10$	0.646	0.6501	0.9782	23.7	0.09
$C \ 11$	0.648	0.5692	0.8802	23.7	0.09
C 12	0.581	0.5662	0.7643	23.7	0.09
C 13	0.5025	0.4061	0.7672	23.7	0.09
C 14	0.5593	0.3481	0.8665	23.7	0.09

REFINED COMPOSITION:  $|(C_{22}H_{50}N_2)_3|$  [Al₃₆P₃₆O₁₄₄]

- CRYSTAL DATA:  $R\overline{3}$  (No. 148) hexagonal setting a = 12.726 Å b = 12.726 Å c = 30.939 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement at 200 K.  $R_{\rm F} = 0.0757$ 
  - REFERENCE: G. W. Noble, P. A. Wright and Å. Kvick, J. Chem. Soc., Dalton Trans. 4485–4490 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.7533	0.7572	0.2954	1.30	1.0
Al 2	0.5762	0.9023	0.2165	1.71	1.0
P 1	0.5778	0.9043	0.1144	1.53	1.0
P 2	0.7568	1.0013	0.2914	1.08	1.0
O 1	0.6138	0.9393	0.1617	2.75	1.0
O 2	0.5341	0.7532	0.2251	2.76	1.0
O 3	0.7928	0.9072	0.2939	3.05	1.0
O 4	0.4612	0.9280	0.2310	2.81	1.0
O 5	0.7014	0.9959	0.2472	2.66	1.0
O 6	0.8644	1.1224	0.2968	2.75	1.0
O 7	0.6689	0.9831	0.3267	3.64	1.0
O 8	0.6563	0.0092	0.0856	2.70	1.0
Ν	0.0000	0.0000	0.1025	5.43	1.0
C 1	0.0000	0.0000	0.1842	7.76	1.0
C 2	-0.0415	0.0827	0.1662	10.66	1.0
C 3	-0.0415	0.0787	0.1177	11.13	1.0
C 4	-0.0312	0.0351	0.0556	17.02	1.0
C 5	0.0000	0.0000	0.0241	14.90	1.0
H 1	0.0000	0.0000	0.2147	0.0	1.0
H 2	0.0103	0.1631	0.1757	0.0	1.0
H 3	-0.1222	0.0567	0.1762	0.0	1.0
H 4	0.0090	0.1580	0.1069	0.0	1.0
H 5	-0.1226	0.0498	0.0498	0.0	1.0
H 6	0.0075	0.1208	0.0540	0.0	1.0
H7	-0.1164	0.0017	0.0540	0.0	1.0
H 8	0.0851	0.0322	0.0249	0.0	1.0
H 9	-0.0211	0.0263	-0.0015	0.0	1.0

#### REFINED COMPOSITION: [Mg_{4.8}Al_{19.2}P₂₄O₉₆]

- CRYSTAL DATA: P 4/n (No. 85) origin at centre  $\overline{1}$  a = 18.7732 Å b = 18.7732 Å c = 9.4537 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray synchrotron single crystal refinement,  $R_{\rm p} = 0.0539$ ,  $wR_{\rm wp} = 0.1422$ 
  - REFERENCE: P. A. Wright, M. J. Maple, A. M. Z. Slawin, V. Patinec, R. A. Aitken, S. Welsh and P. A. Cox, J. Chem. Soc., Dalton Trans. 1243–1248 (2000).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.06412	0.66568	0.08090	2.04	0.8
Al 2	0.95577	0.83599	0.84220	2.13	0.8
Al 3	0.94930	0.43481	0.33580	1.99	0.8
$Mg\ 1$	0.06412	0.66568	0.08090	2.04	0.2
$Mg\ 2$	0.95577	0.83599	0.84220	2.13	0.2
$Mg \ 3$	0.94930	0.43481	0.33580	1.99	0.2
P 1	0.06413	0.55768	0.33630	2.12	1.0
P 2	0.94979	0.66685	0.83780	2.12	1.0
P 3	0.06624	0.83420	0.09420	2.15	1.0
O 1	0.05740	0.62430	0.24630	3.78	1.0
O 2	0.07540	0.58070	0.48780	3.73	1.0
O 3	0.12730	0.51280	0.29030	3.67	1.0
O 4	0.99500	0.51620	0.32390	3.8	1.0
O 5	0.98490	0.65670	0.98110	3.6	1.0
O 6	0.99740	0.63590	0.72250	3.6	1.0
O 7	0.87790	0.62920	0.84020	3.9	1.0
O 8	0.93760	0.74420	0.80680	4.1	1.0
O 9	0.99790	0.84490	0.01270	3.88	1.0
O 10	0.12970	0.86300	0.01460	3.62	1.0
O 11	0.05990	0.87030	0.23630	4.14	1.0
O 12	0.07950	0.75560	0.12070	3.97	1.0

- REFINED COMPOSITION: |C₃₂N₁₆| [Al₃₂Co₃₂P₆₄O₂₅₆]
  - CRYSTAL DATA: P 4/n nc (No. 126) origin at centre  $\overline{1}$ a = 19.0654 Å b = 19.0654 Å c = 27.594 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm F} = 0.098$ ,  $R_{\rm w} = 0.26$ 
    - REFERENCE: X. Bu, P. Feng and G. D. Stucky, Science 278 2080–2085 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.4567	0.1672	0.5127	2.30	0.50
Co 1	0.4567	0.1672	0.5127	2.30	0.50
Al 2	0.3317	0.0477	0.8051	2.40	0.50
$\operatorname{Co} 2$	0.3317	0.0477	0.8051	2.40	0.50
Al 3	0.3269	-0.0423	0.5995	2.30	0.50
Co 3	0.3269	-0.0423	0.5995	2.30	0.50
Al 4	0.4015	-0.1712	0.9551	2.40	0.50
Co 4	0.4015	-0.1712	0.9551	2.40	0.50
P 1	0.3358	0.0490	0.5055	2.60	1.0
P 2	0.3335	0.0501	0.6916	2.10	1.0
P 3	0.3381	-0.0486	0.8941	2.40	1.0
P 4	0.3991	-0.1636	0.5484	2.40	1.0
O 1	0.3443	0.0224	0.7421	3.00	1.0
O 2	0.3817	0.1116	0.4947	4.80	1.0
O 3	0.3797	-0.1151	0.9041	4.50	1.0
O 4	0.3798	-0.1174	0.5918	3.90	1.0
O 5	0.3495	-0.0085	0.6576	4.30	1.0
O 6	0.3491	-0.0278	0.8419	3.80	1.0
Ο7	0.3475	-0.1555	0.0081	3.90	1.0
O 8	0.3524	0.0209	0.5559	3.90	1.0
O 9	0.3808	0.1121	0.6815	4.90	1.0
O 10	0.5292	0.1415	0.4681	4.30	1.0
O 11	0.3969	-0.2397	0.5644	4.50	1.0
O 12	0.2391	-0.0627	0.5963	4.80	1.0
O 13	0.2585	0.0743	0.6842	3.20	1.0
O 14	0.4306	0.2596	0.5031	4.30	1.0
O 15	0.3519	-0.0073	0.4685	4.30	1.0
O 16	0.4888	0.1397	0.5740	4.50	1.0
Ν	0.4831	0.0187	0.4150	6.10	1.0
C 1	0.4727	0.0323	0.3615	7.70	1.0
C 2	0.4080	0.1047	0.3607	2.20	1.0

REFINED COMPOSITION:	$ C_{16}N_{16}O_{12} $	[Ga ₂₄ Co ₂₄ P ₄₈ O	192
----------------------	------------------------	------------------------------------------------------	-----

- CRYSTAL DATA:  $P\overline{3}1c$  (No. 163) a = 17.8356 Å b = 17.8356 Å c = 27.1816 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement,  $R_{\rm F} = 0.070$ ,  $R_{\rm w} = 0.201$ 
  - REFERENCE: X. Bu, P. Feng and G. D. Stucky, Science **278** 2080–2085 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
$\operatorname{Ga} 1$	-0.1059	0.2593	0.5978	3.10	1.0
$\operatorname{Ga} 2$	-0.3132	-0.0696	0.5392	2.80	1.0
Co 3	-0.3324	0.1607	0.6925	1.80	1.0
Co 4	0.1597	0.4754	0.4858	2.30	1.0
P 1	0.0636	0.3015	0.5490	2.00	1.0
P 2	-0.2758	0.0833	0.6104	2.40	1.0
P 3	0.3445	0.4963	0.4890	2.40	1.0
P 4	-0.1572	0.3339	0.6866	2.20	1.0
O 1	-0.1815	0.1465	0.6031	8.50	1.0
O 2	-0.0993	0.3059	0.6604	3.70	1.0
O 3	-0.3021	0.0832	0.6645	5.40	1.0
O 4	-0.4440	0.1312	0.6708	3.90	1.0
O 5	0.1005	0.3966	0.5389	3.50	1.0
O 6	0.0043	0.2744	0.5940	2.90	1.0
O 7	-0.2905	-0.0069	0.5983	3.80	1.0
O 8	0.2840	0.5324	0.4864	4.20	1.0
O 9	0.3446	0.4533	0.4400	3.40	1.0
O 10	-0.2789	-0.1458	0.5616	3.90	1.0
O 11	-0.3289	0.1432	0.7592	4.60	1.0
O 12	0.1071	0.4363	0.4219	4.00	1.0
O 13	-0.2515	0.2760	0.6719	4.00	1.0
O 14	0.1302	0.5642	0.5001	3.50	1.0
O~15	0.3173	0.4293	0.5305	4.30	1.0
O 16	-0.2357	0.0127	0.4954	4.00	1.0
N 1	-0.3333	0.3333	0.5967	4.30	1.0
N 2	0.0266	0.5103	0.5912	4.40	1.0
C 3	0.0863	0.5395	0.6361	10.90	1.0
C 4	0.3333	0.6667	0.5770	17.50	1.0
O 17	-0.1496	0.1913	0.5275	10.30	1.0

- REFINED COMPOSITION: |C₃₀N₂₄| [Ga₃₆Zn₃₆P₇₂O₂₈₈]
  - CRYSTAL DATA:  $R\overline{3}$  (No. 148) hexagonal setting a = 18.0804 Å b = 18.0804 Å c = 41.9511 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray single crystal refinement,  $R_{\rm F} = 0.045$ ,  $R_{\rm w} = 0.140$ 
    - REFERENCE: X. Bu, P. Feng and G. D. Stucky, Science **278** 2080–2085 (1997).

Atom	x	y	z	$B_{\rm iso}$	occ
$Zn \ 1$	0.8424	0.3247	-0.0100	1.90	1.0
$Zn \ 2$	0.5111	0.8371	0.1286	1.70	1.0
$Ga\ 3$	0.7579	0.0668	0.0283	1.70	1.0
$\operatorname{Ga} 4$	0.0998	0.3663	0.0679	2.20	1.0
P 5	0.1544	0.4958	0.1257	1.70	1.0
P 6	0.8467	0.5083	-0.0071	1.80	1.0
P7	0.9384	0.2394	0.0315	1.60	1.0
P 8	0.6378	0.9116	0.0709	1.80	1.0
O 1	0.9897	0.2715	0.0634	2.70	1.0
O 2	0.8712	0.1447	0.0378	2.80	1.0
O 3	0.7166	0.0023	0.0655	2.90	1.0
O 4	0.8693	0.4399	0.0021	2.80	1.0
O 5	0.8991	0.2943	0.0229	3.00	1.0
O 6	0.0990	0.4105	0.1077	3.30	1.0
O 7	0.6173	0.9034	0.1071	2.80	1.0
O 8	0.1818	0.3362	0.0595	3.60	1.0
O 9	0.4685	0.7195	0.1183	3.70	1.0
O 10	0.5324	0.8575	0.1724	3.90	1.0
O 11	0.6965	0.1221	0.0207	3.10	1.0
O 12	0.4312	0.8690	0.1134	3.20	1.0
O 13	0.7589	0.9997	-0.0051	2.80	1.0
O 14	0.7192	0.2499	-0.0127	3.50	1.0
O~15	0.1045	0.4472	0.0383	3.30	1.0
O 16	0.9003	0.3389	-0.0512	3.50	1.0
N 1	0.3333	0.6667	0.0655	5.20	1.0
N $2$	0.5103	0.0289	0.0608	4.70	1.0
C 1	0.3333	0.6667	0.1050	4.20	1.0
C 2	0.5501	0.0936	0.0891	13.20	1.0
C 3	0.6667	0.3333	0.0461	9.90	1.0

## REFINED COMPOSITION: [Si₁₄O₂₈]

- CRYSTAL DATA:  $P2_1$  (No. 4) unique axis **b**  a = 11.1527 Å b = 5.002 Å c = 13.667 Å  $\alpha = 90^{\circ}$   $\beta = 100.633^{\circ}$   $\gamma = 90^{\circ}$ Electron diffraction, and X-ray powder,  $R_{\rm w} = 0.0971$ ,  $R_{\rm p} = 0.0887$ 
  - REFERENCE: P. Wagner, O. Terasaki, S. Ritsch, J. G. Nery, S. I. Zones, M. E. Davis and K. Hiraga, J. Phys. Chem. B 103 8245–8250 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.2558	0.3385	0.1869	1.50	1.0
$\mathrm{Si}\ 2$	0.3963	0.3355	0.3874	5.05	1.0
$Si\ 3$	0.4323	0.3363	0.6058	7.50	1.0
Si4	0.6337	0.338	0.8955	0.32	1.0
$\mathrm{Si}\ 5$	0.3516	0.4094	0.7996	0.32	1.0
Si 6	0.7451	0.4067	0.1181	0.24	1.0
$\mathrm{Si}\ 7$	0.9952	0.3947	0.0657	1.11	1.0
O 1	0.282	0.3816	0.3036	3.55	1.0
O 2	0.3294	0.5403	0.1315	0.16	1.0
O 3	0.1138	0.3692	0.1504	0.08	1.0
O 4	0.2936	0.0386	0.162	1.89	1.0
O 5	0.3565	0.3572	0.4942	0.95	1.0
O 6	0.4574	1.0463	0.3752	9.95	1.0
O 7	0.502	0.5462	0.3807	3.47	1.0
O 8	0.343	0.3596	0.6825	5.76	1.0
O 9	0.4891	0.3747	0.8557	0.16	1.0
O 10	0.6629	0.3845	0.0099	0.16	1.0
O 11	0.2652	0.2098	0.8435	5.76	1.0
O 12	0.3071	0.7112	0.8097	4.26	1.0
O 13	0.8812	0.341	0.1139	0.16	1.0
O 14	0.0061	0.1947	0.9774	6.47	1.0

### REFINED COMPOSITION: [Si₃₂O₆₄]

CRYSTAL DATA:  $P12_1/m1$  (No. 11) unique axis **b**  a = 11.4853 Å b = 21.9458 Å c = 7.3881 Å  $\alpha = 90.0^{\circ}$   $\beta = 94.702^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.0892$ ,  $R_{\rm wp} = 0.1058$ 

REFERENCE: P. Wagner, S. I. Zones, M. E. Davis and R. C. Medrud, Angew. Chem., Int. ed. **38** 1269–1272 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.27227	0.97791	0.93601	-0.35	1.0
$Si\ 2$	0.13548	0.62930	0.10193	-0.18	1.0
Si 3	0.23886	0.67904	0.47825	1.12	1.0
Si 4	0.39323	0.56890	0.59794	0.15	1.0
Si $5$	0.03652	0.68184	0.74254	1.27	1.0
Si 6	0.05149	0.04087	0.76211	0.91	1.0
$\mathrm{Si}\ 7$	0.11053	0.06798	0.36508	-0.47	1.0
Si 8	0.35948	0.02838	0.29204	0.31	1.0
O 1	0.22578	0.91806	0.02742	0.87	1.0
O 2	0.32885	0.96241	0.75474	2.61	1.0
O 3	0.36382	0.01059	0.08089	2.88	1.0
O 4	0.16115	0.02349	0.89856	1.28	1.0
O 5	0.02146	0.59436	0.15514	-0.33	1.0
O 6	0.19913	0.66360	0.27348	0.77	1.0
Ο7	0.09682	0.67737	0.94529	3.58	1.0
O 8	0.27877	0.75000	0.49498	1.01	1.0
O 9	0.34544	0.63729	0.55819	2.04	1.0
O 10	0.13244	0.66902	0.60239	1.72	1.0
O 11	0.36967	0.53179	0.41218	0.69	1.0
O 12	0.53084	0.57271	0.65389	1.53	1.0
O 13	0.93509	0.63319	0.70903	2.04	1.0
O 14	0.98407	0.75000	0.71105	2.39	1.0
O 15	0.96479	0.98471	0.73380	1.16	1.0
O 16	0.09791	0.06329	0.57827	0.69	1.0
O 17	0.24371	0.06267	0.32726	2.88	1.0

# REFINED COMPOSITION: $|C_{43.84}|$ [Si₆₄O₁₂₈]

- CRYSTAL DATA:  $I 4_1/a \, md$  (No. 141) origin at centre (2/m)a = 10.2387 Å b = 10.2387 Å c = 34.3829 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.225$ ,  $R_{\rm F} = 0.100$ 
  - REFERENCE: L. B. McCusker, J. Appl. Cryst. **21** 305–310 (1988).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.2843	0.2500	0.1182	0.08	1.0
Si $2$	0.2811	0.0000	0.0000	0.16	1.0
Si 3	0.1539	0.2500	0.0349	0.08	1.0
Si 4	0.1510	0.2500	0.1954	0.24	1.0
O 1	0.0000	0.2500	0.2072	1.03	1.0
O 2	0.2165	0.1201	0.2131	1.03	1.0
O 3	0.2297	0.2500	0.0754	0.32	1.0
O 4	0.1689	0.2500	0.1493	0.55	1.0
O 5	0.0000	0.2500	0.043	1.5	1.0
O 6	0.1913	0.1219	0.010	0.63	1.0
O 7	0.3729	0.1229	0.125	1.66	1.0
C 1	0.124	-0.126	0.125	7.9	0.3
C 2	0.000	-0.250	0.073	7.9	0.3
C 3	0.000	-0.126	0.099	7.9	0.3
C 4	0.000	-0.003	0.103	7.9	0.46
C 5	0.115	-0.151	0.086	7.9	0.53
C 6	0.000	-0.077	0.145	7.9	0.47

CRYSTAL DATA:	$P\overline{4}3n$ (No. 218)	)	
	a=8.848 Å	$b=8.848~{\rm \AA}$	$c=8.848~{\rm \AA}$
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray Rietveld	refinement, $R_{\rm wp}$	$= 0.091, R_{\rm F} = 0.047$
DEFEDENCE			1 1

REFERENCE: J. Felsche, S. Luger and Ch. Baerlocher, Zeolites 6 367–372 (1986).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.1504	0.1504	0.1504	3.71	0.75
Si	0.25	0.0	0.5	0.79	1.0
Al	0.25	0.5	0.0	1.18	1.0
0	0.1366	0.4338	0.1490	1.5	1.0
$H_2O$	0.3753	0.3753	0.3753	3.08	1.0

REFINED COMPOSITION:	$ Ca_8(H_2O)_8 $ [Si ₄ Al ₈ O ₂₄ ] Synthetic material
CRYSTAL DATA:	$ \begin{array}{l} I\overline{4}3m \mbox{ (No. 217)} \\ a = 8.825 \mbox{ \AA } b = 8.825 \mbox{ \AA } c = 8.825 \mbox{ \AA } \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \mbox{ X-ray single crystal refinement, } R_{\rm w} = 0.012 \end{array} $
REFERENCE:	K. Sahl,

Z. Kristallogr. **152** 13–21 (1980).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.1434	0.1434	0.1434	0.75	1.0
Si	0.25	0.5	0.0	0.49	0.3333
Al	0.25	0.5	0.0	0.49	0.6667
0	0.1407	0.1407	0.4220	0.94	1.0
OH	0.3845	0.3845	0.3845	0.93	1.0
Η	0.328	0.328	0.328	0.0	1.0

REFINED COMPOSITION:	$ \mathrm{Na_8Cl_2}  \; [\mathrm{Si_8Al_2Be_2O_{24}}]$
	Ilimaussaq, South Greenland

CRYSTAL DATA:  $I\overline{4}$  (No. 82) a = 8.640 Å b = 8.640 Å c = 8.873 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.030$ 

REFERENCE:	I. Hassan and H. D. Grundy,
	Canadian Mineralogist <b>29</b> 385–390 (1991).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.1563	0.1972	0.1818	1.48	1.0
Cl	0.0	0.0	0.0	1.85	1.0
Si	0.0127	0.2533	0.4958	0.58	1.0
Al	0.0	0.5	0.75	0.6	1.0
Be	0.0	0.5	0.25	0.77	1.0
O 1	0.1504	0.1343	0.4417	0.97	1.0
O 2	0.3472	0.0385	0.6488	0.94	1.0
O 3	0.4256	0.1486	0.1377	0.95	1.0

### REFINED COMPOSITION: [Si₁₆O₃₂]

CRYSTAL DATA:  $P\overline{1}$  (No. 2) a = 11.4114 Å b = 11.5268 Å c = 7.3770 Å  $\alpha = 94.661^{\circ}$   $\beta = 96.206^{\circ}$   $\gamma = 104.892^{\circ}$ X-ray Rietveld refinement,  $R_{\rm p} = 0.0995$ ,  $R_{\rm wp} = 0.1188$ 

REFERENCE: P. Wagner, S. I. Zones, M. E. Davis and R. C. Medrud, Angew. Chem., Int. ed. **38** 1269–1272 (1999).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.36019	0.35630	0.61106	1.04	1.0
Si $2$	0.41221	0.42852	0.21918	1.49	1.0
Si 3	0.14209	0.64205	0.40966	1.72	1.0
Si 4	0.36181	0.85678	0.57148	2.06	1.0
Si $5$	0.13396	0.44151	0.67151	1.52	1.0
Si 6	0.23859	0.56731	0.04636	1.77	1.0
Si $7$	0.46001	0.75796	0.92351	2.31	1.0
Si 8	0.55968	0.87468	0.30376	1.76	1.0
O 1	0.36502	0.37709	0.40067	1.87	1.0
O 2	0.23168	0.36461	0.67114	0.89	1.0
O 3	0.47018	0.45770	0.73017	3.15	1.0
O 4	0.37472	0.22510	0.64375	2.07	1.0
O 5	0.30673	0.47043	0.10734	2.60	1.0
O 6	0.44890	0.32523	0.09908	2.49	1.0
Ο7	0.22725	0.77005	0.50790	1.84	1.0
O 8	0.16588	0.54074	0.53230	2.01	1.0
O 9	0.17639	0.61558	0.20899	2.46	1.0
O 10	0.00178	0.64477	0.39598	1.13	1.0
O 11	0.43707	0.85788	0.39827	3.01	1.0
O 12	0.35217	0.99191	0.62479	1.61	1.0
O 13	0.43055	0.81119	0.73707	2.31	1.0
O 14	0.13629	0.50548	0.87315	1.20	1.0
O 15	0.33382	0.67945	0.98040	2.47	1.0
O 16	0.52218	0.86584	0.08546	1.83	1.0

REFINED COMPOSITION:	$ Na_{1.76}Ca_4(H_2O)_{29.4} $ [Si _{25.68} Al _{10.32} O ₇₂ ] Iceland
CRYSTAL DATA:	C12/m1 (No. 12) unique axis <b>b</b> , cell choice 1 a = 13.64 Å $b = 18.24$ Å $c = 11.27$ Å

 $\begin{array}{l} \alpha = 10.04 \ \mathrm{M} & 0 = 10.24 \ \mathrm{M} & 0 = 11.24 \\ \alpha = 90^{\circ} & \beta = 128.0^{\circ} & \gamma = 90^{\circ} \\ \mathrm{X}\text{-ray single crystal refinement, } R = 0.123 \end{array}$ 

REFERENCE:	E. Galli,
	Acta Cryst. <b>B27</b> 833–841 (1971).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.5055	0.0659	0.0392	4.28	0.22
Ca	0.2805	0.0	0.0949	2.15	1.0
Si $1$	0.4830	0.3042	0.2420	0.46	0.5
Si $2$	0.2653	0.3097	0.2619	0.33	0.73
Si 3	0.1892	0.0893	0.4846	0.40	0.73
Si 4	0.1124	0.3166	0.5013	0.43	1.0
Si $5$	0.0	0.2610	0.0	0.42	0.5
Al 1	0.4830	0.3042	0.2420	0.46	0.5
Al 2	0.2653	0.3097	0.2619	0.33	0.27
Al 3	0.1892	0.0893	0.4846	0.40	0.27
Al 5	0.0	0.2610	0.0	0.42	0.5
O 1	0.4645	0.2911	0.0842	1.40	1.0
O 2	0.1164	0.3162	0.1189	1.38	1.0
O 3	0.0512	0.2661	0.3516	2.03	1.0
O 4	0.0638	0.1199	0.3226	1.41	1.0
O 5	0.2935	0.2308	0.3453	2.01	1.0
O 6	0.3001	0.3796	0.3714	1.76	1.0
O 7	0.3406	0.3162	0.1914	1.40	1.0
O 8	0.3157	0.1119	0.5024	1.78	1.0
O 9	0.1863	0.0	0.4876	1.75	1.0
O 10	0.0	0.3509	0.5	1.15	1.0
$H_2O~1$	0.1347	0.0776	0.1067	7.45	0.84
$H_2O~2$	0.3306	0.1258	0.1013	4.71	0.91
$H_2O$ 3	0.3691	0.0	0.3549	3.58	0.85
$H_2O$ 4	0.5124	0.0	0.2416	9.98	1.0
$H_2O~5$	0.4028	0.5	0.1632	4.72	1.0
$H_2O 6$	0.1712	0.5	0.1040	10.16	1.0

REFINED COMPOSITION:	$ Ca_8(H_2O)_{55.52} $ [Si ₅₆ Al ₁₆ O ₁₄₄ ]
	Villanova-Monteleone, Sardinia, Italy

- CRYSTAL DATA: Fmmm (No. 69) a = 13.599 Å b = 18.222 Å c = 17.863 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.082$ 
  - REFERENCE: E. Galli and A. Alberti, Bull. Soc. Fr. Minéral. Crystallogr. **98** 11–18 (1975).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.5	0.0	0.2910	3.23	1.0
Si $1$	0.3857	0.3072	0.3769	0.78	0.778
Si 3	0.3013	0.4112	0.5	0.85	0.778
Si $4$	0.3883	0.1833	0.5	0.83	0.778
Si $5$	0.25	0.25	0.25	1.04	0.778
Al 1	0.3857	0.3072	0.3769	0.78	0.222
Al 3	0.3013	0.4112	0.5	0.85	0.222
Al 4	0.3883	0.1833	0.5	0.83	0.222
Al 5	0.25	0.25	0.25	1.04	0.222
O 1	0.3175	0.3046	0.3018	2.46	1.0
O 3	0.3721	0.2321	0.4251	3.07	1.0
O 4	0.3577	0.3802	0.4239	2.87	1.0
O 7	0.5	0.3141	0.3493	2.1	1.0
O 8	0.3135	0.1129	0.5	2.37	1.0
O 9	0.3100	0.5	0.5	2.44	1.0
O 10	0.5	0.1495	0.5	2.13	1.0
$H_2O 1$	0.395	0.098	0.313	4.9	0.2
$H_2O~2$	0.5	0.128	0.303	7.8	0.8
$H_2O 3$	0.459	0.0	0.423	3.3	0.37
$H_2O 4$	0.376	0.0	0.390	13.0	0.45
$H_2O~5$	0.459	0.5	0.339	4.5	0.43
$H_2O~6$	0.368	0.5	0.312	10.8	0.62
$H_2O~7$	0.321	0.056	0.288	9.1	0.2

REFINED COMPOSITION:	$\begin{array}{l}  \mathrm{Na}_{9.812}\mathrm{K}_{1.912}\mathrm{Mg}_{0.032}\mathrm{Ca}_{1.52}(\mathrm{H}_{2}\mathrm{O})_{58.56}  \; [\mathrm{Si}_{55.58}\mathrm{Al}_{16.42}\mathrm{O}_{144}] \\ \mathrm{Capo \; Pula, \; Sardinia, \; Italy} \end{array}$					
CRYSTAL DATA:	$Amn \\ a = \\ \alpha = \\ \mathbf{v}$	na (No. 13.643 Å 90°	$\begin{array}{c} 63) \ \mathbf{cab} \\ b = 1 \\ \beta = 9 \end{array}$	setting 8.200 Å 90°	$c = 1$ $\gamma = 9$	7.842 Å 90°
	X-ra	y single o	crystal re	efinement	$, R_{\rm w} =$	0.067
REFERENCE:	E. C Bull	alli and . Soc. Fr	A. Alber . <i>Minéra</i>	ti, l. Crystal	logr. <b>9</b> 8	<b>3</b> 331–340 (1975).
At	om	x	y	z	$B_{\rm iso}$	occ
Na	a 1	0.25	0.0	0.0417	10.05	0.521
Na	a 11	0.25	0.0	0.4558	3.82	0.442
Na	a 2	0.0482	0.0624	0.0446	12.98	0.101
Na	a 21	0.0369	0.0634	0.4792	18.26	0.181
Na	a 3	0.1611	0.0	0.2386	15.68	0.181
Κ	1	0.25	0.0	0.0417	10.05	0.102
Κ	11	0.25	0.0	0.4558	3.82	0.086
Κ	2	0.0482	0.0624	0.0446	12.98	0.02
Κ	21	0.0369	0.0634	0.4792	18.26	0.035
Κ	3	0.1611	0.0	0.2386	15.68	0.035
M	g 1	0.25	0.0	0.0417	10.05	0.001
M	g 11	0.25	0.0	0.4558	3.82	0.001
M	g 21	0.0369	0.0634	0.4792	18.26	0.001
M	g 3	0.1611	0.0	0.2386	15.68	0.001
Ca	ñ 1	0.25	0.0	0.0417	10.05	0.08
Ca	a 11	0.25	0.0	0.4558	3.82	0.068
Ca	a 2	0.0482	0.0624	0.0446	12.98	0.016
Ca	a 21	0.0369	0.0634	0.4792	18.26	0.028
Ca	a 3	0.1611	0.0	0.2386	15.68	0.028
Si	1	0.1356	0.3037	0.1245	1.19	0.772
Si	2	0.1363	0.3122	0.3724	1.21	0.772
Si	3	0.0512	0.4110	0.2433	1.21	0.772
Si	4	0.1386	0.1846	0.2541	1.05	0.772
Si	5	0.0	0.2399	0.0	1.40	0.772
Al	1	0.1356	0.3037	0.1245	1.19	0.228
Al	2	0.1363	0.3122	0.3724	1.21	0.228
Al	3	0.0512	0.4110	0.2433	1.21	0.228
Al	4	0.1386	0.1846	0.2541	1.05	0.228
Al	5	0.0	0.2399	0.0	1.40	0.228
0	1	0.0699	0.2937	0.0495	2.86	1.0
0	11	0.0664	0.3136	0.4475	2.73	1.0
0	3	0.1195	0.2338	0.1806	2.95	1.0
0	31	0.1247	0.2331	0.3299	2.32	1.0
0	4	0.1062	0.3806	0.1677	3.13	1.0
0	41	0.1060	0.3810	0.3188	3.01	1.0
0	7	0.25	0.3104	0.0971	2.76	1.0
0	71	0.25	0.3219	0.4007	2.21	1.0
0	8	0.0656	0.1142	0.2550	2.54	1.0
0	9	0.0546	0.5	0.2435	2.79	1.0

continued...

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
O 10	0.25	0.1508	0.2540	2.13	1.0
$H_2O~1$	0.1911	0.1160	0.0519	10.3	0.49
$H_2O~11$	0.0894	0.0824	0.4356	8.1	0.41
$H_2O 2$	0.25	0.1259	0.0557	2.3	0.32
$H_2O~21$	0.25	0.1313	0.4421	9.3	0.91
$H_2O 3$	0.1750	0.0	0.1764	7.4	0.38
$H_2O 31$	0.2177	0.0	0.3221	6.0	0.46
$H_2O 4$	0.0915	0.0	0.1217	13.7	0.50
$H_2O~41$	0.1479	0.0	0.3869	14.2	0.50
$H_2O~5$	0.2174	0.5	0.0917	2.9	0.20
$H_2O~51$	0.1966	0.5	0.4154	8.0	0.42
$H_2O~6$	0.1251	0.5	0.0607	8.1	0.83
$H_2O~61$	0.0814	0.5	0.4349	11.4	0.50
$H_2O 8$	0.25	0.5	0.1615	19.9	0.50
$H_2O 81$	0.25	0.5	0.3615	1.2	0.50

### REFINED COMPOSITION: |C₅₂N₄F_{2.84}| [Si₆₄O₁₂₈]

- CRYSTAL DATA:  $P12_1/n1$  (No. 14) unique axis **b**, cell choice 2 a = 12.9594 Å b = 21.7919 Å c = 13.5980 Å  $\alpha = 90.0^{\circ}$   $\beta = 101.855^{\circ}$   $\gamma = 90.0^{\circ}$ X-ray single crystal refinement,  $R_{\rm F_{obs}} = 0.0811$ ,  $wR_{\rm F^2} = 0.1657$ 
  - REFERENCE: M. A. Camblor, M.-J. Diaz-Cabanas, J. Perez-Pariente, S. J. Teat, W. Clegg, I. J. Shannon, P. Lightfoot, P. A. Wright and R. E. Morris, Angew. Chem., Int. Ed. **37** 2122–2126 (1998).

Atom	x	y	z	$B_{\rm iso}$	occ
Si 1	0.59105	0.16686	0.20389	0.77	1.0
Si 2	0.6351	0.16809	0.44152	1.0	1.0
Si 3	0.69632	0.57232	-0.0374	0.84	1.0
Si 4	0.66614	0.49124	0.13311	0.74	1.0
Si 5	0.6625	0.29875	0.21813	0.88	1.0
Si 6	0.6889	0.30373	0.44861	0.88	1.0
Si 7	0.5039	0.4046	0.1951	1.17	1.0
Si 8	0.4663	0.09638	0.52554	0.93	1.0
Si 9	0.7777	0.55142	0.33339	0.92	1.0
$Si \ 10$	0.36884	0.00001	0.37794	0.65	1.0
Si 11	0.1541	0.50214	0.35464	0.94	1.0
Si 12	0.8221	0.38557	0.1683	1.05	1.0
Si 13	0.5381	0.41447	0.424	1.6	1.0
Si 14	0.8892	0.37328	0.55406	0.85	1.0
Si 15	0.3487	0.46238	0.503	1.26	1.0
Si 16	0.9363	0.44089	0.3693	1.29	1.0
O 1	0.638	0.5326	0.0329	1.07	1.0
O 2	0.5926	0.166	0.3221	1.91	1.0
O 3	0.9008	0.4015	0.2708	2.76	1.0
O 4	0.6618	0.236	0.4841	1.5	1.0
O 5	0.5436	0.145	0.493	1.74	1.0
O 6	0.7546	0.3237	0.1668	1.41	1.0
O 7	0.7534	0.4429	0.1182	1.72	1.0
O 8	0.6365	0.2305	0.1751	1.24	1.0
O 9	0.4366	0.4154	0.4794	1.84	1.0
O 10	0.9431	0.3958	0.4641	1.61	1.0
O 11	0.3965	0.1321	0.5894	1.04	1.0
O 12	0.5605	0.4591	0.1489	1.64	1.0
O 13	0.6119	0.6022	-0.1252	1.48	1.0
O 14	0.7357	0.1251	0.4725	2.05	1.0
O~15	0.4869	0.4187	0.3065	2.12	1.0
O 16	0.3942	0.0661	0.4285	1.48	1.0
O 17	0.7114	0.5353	0.2244	1.73	1.0
O 18	0.6618	0.1137	0.1752	2.38	1.0
O 19	0.4741	0.1588	0.1421	1.82	1.0
O 20	0.5929	0.3488	0.4575	1.65	1.0
O 21	0.5313	0.0435	0.5938	1.82	1.0
O 22	0.255	0.4651	0.4069	2.14	1.0
O 23	0.7727	0.5288	-0.0852	2.43	1.0
O 24	0.6977	0.5644	0.4059	2.37	1.0

continued...

 $\ldots$  continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
O~25	0.1585	0.5697	0.4003	2.08	1.0
O 26	0.7033	0.2962	0.3361	1.78	1.0
O 27	0.558	0.3389	0.1887	1.64	1.0
O 28	0.8602	0.498	0.3767	1.93	1.0
O 29	0.0522	0.466	0.3707	2.84	1.0
O 30	0.3415	0.0086	0.2609	2.31	1.0
O 31	0.7965	0.3253	0.5173	1.73	1.0
O 32	0.6054	0.4709	0.4705	2.92	1.0
Ν	0.2428	0.7703	0.155	6.4	1.0
C 1	0.3457	0.7267	0.1737	2.68	1.0
C 2	0.5292	0.7219	0.1601	13.5	1.0
C 3	0.3687	0.7103	0.2776	9.16	1.0
C 4	0.4504	0.6122	0.2391	6.16	1.0
C 5	0.4773	0.6709	0.2948	7.66	1.0
C 6	0.2674	0.8296	0.2124	8.29	1.0
C 7	0.5595	0.7035	0.2696	10.82	1.0
C 8	0.3194	0.6723	0.1102	10.26	1.0
C 9	0.4313	0.2629	0.1453	7.9	1.0
$C \ 10$	0.425	0.63	0.1223	11.76	1.0
$C \ 11$	0.1602	0.7437	0.1979	16.19	1.0
$C \ 12$	0.5153	0.6654	0.1113	12.48	1.0
C~13	0.2111	0.7845	0.0455	14.84	1.0
F 1	0.7395	0.404	0.2683	1.97	0.317
F 2	0.6632	0.4191	0.3659	1.97	0.262
F 3	0.6473	0.414	0.2743	1.97	0.131

REFINED COMPOSITION:	$ Na_{4.23}K_{0.167}Mg_{0.167}Ca_{3.74} $ [Al _{12.32} Si _{67.68} O ₁₆₀ ]
	Mt. Adamson, N. Victoria Land, Antarctica

CRYSTAL DATA: Cmcm (No. 63) a = 9.747 Å b = 23.880 Å c = 20.068 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement, R = 0.071,  $R_{\rm w} = 0.068$ 

```
REFERENCE: E. Galli, S. Quartieri, G. Vezzalini, A. Alberti and M. Franzini,
American Mineralogist 82 423–429 (1997).
```

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0	0.4524	0.3281	1.01	0.846
Al 1	0.0	0.4524	0.3281	1.01	0.154
Si 2	0.0	0.5440	0.4396	1.18	0.846
Al 2	0.0	0.5440	0.4396	1.18	0.154
Si 3	0.7919	0.3604	0.3728	1.28	0.846
Al 3	0.7919	0.3604	0.3728	1.28	0.154
Si 4	0.7917	0.6392	0.4694	1.13	0.846
Al 4	0.7917	0.6392	0.4694	1.13	0.154
Si 5	0.0	0.1806	0.4414	1.07	0.846
Al 5	0.0	0.1806	0.4414	1.07	0.154
Si 6	0.0	0.7321	0.4365	1.01	0.846
Al 6	0.0	0.7321	0.4365	1.01	0.154
Si 7	0.0	0.2697	0.3272	1.15	0.846
Al 7	0.0	0.2697	0.3272	1.15	0.154
Si 8	0.0	0.8252	0.3289	1.02	0.846
Al 8	0.0	0.8252	0.3289	1.02	0.154
O 1	0.0	0.4692	0.25	3.41	1.0
O 2	0.0	0.5113	0.3679	3.97	1.0
O 3	0.1367	0.4160	0.3453	3.74	1.0
O 4	0.0	0.5	0.5	5.66	1.0
O 5	0.8630	0.5836	0.4415	3.97	1.0
O 6	0.1958	0.3583	0.4512	5.04	1.0
O 7	0.6325	0.3623	0.3488	3.16	1.0
O 8	0.8661	0.3057	0.3415	3.47	1.0
O 9	0.3663	0.6374	0.4453	2.34	1.0
O 10	0.8655	0.6932	0.4377	3.03	1.0
O 11	0.0	0.2124	0.3685	2.93	1.0
O 12	0.0	0.7751	0.4970	3.09	1.0
O 13	0.0	0.7648	0.3656	2.39	1.0
O 14	0.0	0.2515	0.25	3.28	1.0
O~15	0.0	0.8123	0.25	4.01	1.0
Na 1	0.0	0.0458	0.4442	0.7	0.03632
$Na\ 2$	0.0	0.0403	0.25	1.6	0.05564
Na 3	0.3578	0.4603	0.25	9.2	0.07573
Na 4	0.1457	0.0399	0.3495	9.5	0.05718
$Na\ 5$	0.0	0.6982	0.25	9.5	0.04327
Na 6	0.0	0.9509	0.4405	9.5	0.04327
$\operatorname{Na} 7$	0.9089	0.1288	0.25	9.5	0.04327
Na 8	0.3519	0.4804	0.4598	8.2	0.02859

continued...

... continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
Na 9	0.0	0.9651	0.3547	4.1	0.02009
Na 10	0.0	0.5972	0.25	11.8	0.04327
Na 11	0.3056	0.1983	0.25	9.5	0.03709
$Na \ 12$	0.1901	0.0815	0.1907	8.7	0.01545
K 1	0.0	0.0458	0.4442	0.7	0.00142
K 2	0.0	0.0403	0.25	1.6	0.00218
K 3	0.3578	0.4603	0.25	9.2	0.00297
K 4	0.1457	0.0399	0.3495	9.5	0.00224
K 5	0.0	0.6982	0.25	9.5	0.00170
K 6	0.0	0.9509	0.4405	9.5	0.00170
K7	0.9089	0.1288	0.25	9.5	0.00170
K 8	0.3519	0.4804	0.4598	8.2	0.00112
K 9	0.0	0.9651	0.3547	4.1	0.00079
K 10	0.0	0.5972	0.25	11.8	0.00170
K 11	0.3056	0.1983	0.25	9.5	0.00145
K $12$	0.1901	0.0815	0.1907	8.7	0.00061
Mg 1	0.0	0.0458	0.4442	0.7	0.00142
Mg 2	0.0	0.0403	0.25	1.6	0.00218
Mg 3	0.3578	0.4603	0.25	9.2	0.00297
Mg 4	0.1457	0.0399	0.3495	9.5	0.00224
Mg~5	0.0	0.6982	0.25	9.5	0.00170
Mg 6	0.0	0.9509	0.4405	9.5	0.00170
Mg 7	0.9089	0.1288	0.25	9.5	0.00170
Mg 8	0.3519	0.4804	0.4598	8.2	0.00112
Mg 9	0.0	0.9651	0.3547	4.1	0.00079
Mg 10	0.0	0.5972	0.25	11.8	0.00170
Mg 11	0.3056	0.1983	0.25	9.5	0.00145
Mg 12	0.1901	0.0815	0.1907	8.7	0.00061
Ca 1	0.0	0.0458	0.4442	0.7	0.03205
$\operatorname{Ca} 2$	0.0	0.0403	0.25	1.6	0.04909
$Ca\ 3$	0.3578	0.4603	0.25	9.2	0.06682
Ca 4	0.1457	0.0399	0.3495	9.5	0.05045
$Ca\ 5$	0.0	0.6982	0.25	9.5	0.03818
Ca 6	0.0	0.9509	0.4405	9.5	0.03818
$\operatorname{Ca} 7$	0.9089	0.1288	0.25	9.5	0.03818
Ca 8	0.3519	0.4804	0.4598	8.2	0.02523
Ca 9	0.0	0.9651	0.3547	4.1	0.01773
$Ca \ 10$	0.0	0.5972	0.25	11.8	0.03818
$Ca \ 11$	0.3056	0.1983	0.25	9.5	0.03273
Ca 12	0.1901	0.0815	0.1907	8.7	0.01364

Real symmetry is probably C 2/c m. The Na, K, Mg and Ca cations share the same sites in the ratio (Na_{0.51}K_{0.02}Mg_{0.02}Ca_{0.45}).

REFINED COMPOSITION:	$ Na_4Ca_{11.2}Sr_{0.8}(H_2O)_{24} $ [Si ₂₀ Al ₂₀ O ₈₀ ]
	Death Valley, California, U.S.A.

- CRYSTAL DATA: Pncn (No. 52) **bca** setting a = 13.088 Å b = 13.052 Å c = 13.229 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Neutron single crystal refinement,  $R_{\rm F^2} = 0.048$ 
  - REFERENCE: J. J. Pluth, J. V. Smith and Å. Kvick, Zeolites 5 74–80 (1985).

Atom	x	y	z	$B_{\rm iso}$	occ
Na	0.0582	0.50360	0.36141	1.22	0.5
$\operatorname{Ca} 1$	0.0582	0.50360	0.36141	1.22	0.5
$\operatorname{Ca} 2$	0.49939	0.47837	0.49952	1.34	0.9
$\operatorname{Sr}$	0.49939	0.47837	0.49952	1.34	0.1
Si $1$	0.25	0.25	0.6885	0.51	1.0
Si $2$	0.11291	0.69558	0.50065	0.51	1.0
Si $3$	0.3082	0.38501	0.37805	0.49	1.0
Al 1	0.25	0.75	0.69049	0.48	1.0
Al 2	0.11939	0.30543	0.49655	0.5	1.0
Al 3	0.30947	0.62405	0.38045	0.51	1.0
O 1	0.16863	0.31051	0.61839	0.97	1.0
O 2	0.15818	0.69179	0.61444	0.95	1.0
O 3	0.31248	0.33136	0.75655	0.97	1.0
O 4	0.31152	0.65725	0.76318	0.98	1.0
O 5	0.00216	0.63793	0.50143	0.74	1.0
O 6	0.1838	0.6298	0.42414	1.02	1.0
Ο7	0.19038	0.38476	0.41668	1.0	1.0
O 8	0.10438	0.81313	0.46106	0.94	1.0
O 9	0.11829	0.18031	0.45256	1.03	1.0
O 10	0.35586	0.49928	0.38346	0.72	1.0
O 20	0.12597	0.50192	0.18859	2.09	1.0
O 21	0.39173	0.49760	0.63937	2.19	1.0
O 22	0.0	0.64972	0.75	2.37	1.0
O 23	0.0	0.34436	0.75	2.19	1.0
H 1	0.15914	0.43727	0.66171	2.71	1.0
H 2	0.15747	0.55922	0.66161	2.95	1.0
H 3	0.37012	0.43800	0.67748	3.1	1.0
H 4	0.37158	0.55535	0.68126	3.1	1.0
H 5	0.04695	0.69037	0.71194	3.65	1.0
H 6	0.05008	0.30291	0.71828	4.19	1.0

# REFINED COMPOSITION: $|C_{5.1}|$ [Si₂₄O₄₈]

CRYSTAL DATA:	$Cmc2_1$ (No. 36	6)	
	$a=13.859~{\rm \AA}$	b=17.420 Å	c=5.038 Å
	$\alpha=90^\circ$	$\beta = 90^{\circ}$	$\gamma=90^{\circ}$
	X-ray single cr	ystal refinement,	$R_{\rm w} = 0.056$

REFERENCE:	B. Marler,
	Zeolites <b>7</b> 393–397 (1987).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0000	0.2737	0.25	0.67	1.0
Si $2$	0.0000	0.3768	0.7465	0.58	1.0
Si 3	0.2951	0.0482	0.2265	0.80	1.0
Si 4	0.2055	0.2112	0.1445	0.58	1.0
O 1	0.0923	0.4268	0.6977	1.47	1.0
O 2	0.0942	0.2224	0.2068	1.90	1.0
O 3	0.2712	0.3789	0.6639	1.88	1.0
O 4	0.2288	0.4800	0.0234	1.05	1.0
O 5	0.2705	0.2584	0.3535	1.48	1.0
O 6	0.0	0.3062	0.5441	1.60	1.0
O 7	0.0	0.3450	0.0493	1.45	1.0
C 1	0.5	0.5195	0.1363	22.11	0.575
C 2	0.5	0.5124	0.3458	22.11	0.7

- CRYSTAL DATA:  $Fm\overline{3}m$  (No. 225) a = 31.62 Å b = 31.62 Å c = 31.62 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ Single Crystal X-ray Refinement.  $R_{\rm p} = 0.065$ ,  $R_{\rm wp} = 0.156$ 
  - REFERENCE: H. Effenberger, G. Giester, W. Krause and H.-J. Bernhardt, American Mineralogist 83 607–617 (1998).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.10993	0.18083	0.24967	0.92	0.5
Al 1	0.10993	0.18083	0.24967	0.92	0.5
$\mathrm{Si}\ 2$	0.05044	0.12239	0.19243	0.95	0.5
Al 2	0.05044	0.12239	0.19243	0.95	0.5
O 1	0.0674	0.15559	0.23003	1.51	1.0
O 2	0.21169	0.21169	0.13239	1.37	1.0
O 3	0.21022	0.21022	0.40798	1.32	1.0
O 4	0.1464	0.1464	0.26611	1.72	1.0
O 5	0.14402	0.14402	0.05687	2.08	1.0
O 6	0.0772	0.0772	0.19159	2.01	1.0
O 7	0.11259	0.20286	0.0	2.05	1.0
$Ca\ 1$	0.09965	0.09965	0.09965	2.04	1.0
$\operatorname{Ca} 2$	0.20984	0.20984	0.20984	1.23	1.0
Κ	0.17945	0.27909	0.0	2.68	0.125
$Ca\ 3$	0.17945	0.27909	0.0	2.68	0.125
$\operatorname{Sr}$	0.17945	0.27909	0.0	2.68	0.125
Ba	0.17945	0.27909	0.0	2.68	0.125
Cu	0.07339	0.07339	0.0	2.31	1.0
OH 1	0.04506	0.04506	0.10539	2.16	1.0
OH 2	0.28335	0.28335	0.28335	1.29	1.0
Cl	0.0	0.0	0.0	0.87	0.224
O 8	0.041	0.0	0.0	5.37	0.181
O 9	0.0262	0.0262	0.0262	3.95	0.243
O 10	0.1467	0.1467	0.1467	9.71	1.0
O 11	0.0159	0.1842	0.0	8.76	0.305
O 12	0.2087	0.2339	0.0	3.71	0.5
O 13	0.0085	0.1316	0.3048	10.42	0.22
O 14	0.13599	0.13559	0.13559	5.68	1.0
O 15	0.0336	0.0336	0.2642	7.9	0.195
O 16	0.0714	0.0888	0.3105	7.9	0.189
O 17	0.0514	0.1204	0.3298	16.82	0.4

### REFINED COMPOSITION: [Si₁₇O₃₄]

- CRYSTAL DATA:  $P\overline{4}$  (No. 81) a = 13.045 Å b = 13.045 Å c = 5.034 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray Rietveld refinement,  $R_{\rm wp} = 0.125$ ,  $R_{\rm p} = 0.102$ 
  - REFERENCE: C. C. Freyhardt, R. F. Lobo, S. Khodabandeh, J. E. Lewis, Jr.,
    M. Tsapatsis, M. Yoshikawa, M. A. Camblor, M. Pan, M. M. Helmkamp,
    S. I. Zones and M. E. Davis, J. Am. Chem. Soc. 118 7299–7310 (1996).

Atom	x	y	z	$B_{\rm iso}$	occ
Si $1$	0.0000	0.0000	0.5000	1.03	1.0
$\mathrm{Si}\ 2$	0.1991	0.0485	0.7568	1.03	1.0
Si 3	0.8341	0.2830	0.7444	1.03	1.0
$\mathrm{Si}\;4$	0.6512	0.1468	0.7630	1.03	1.0
$\mathrm{Si}\ 5$	0.5182	0.12278	0.2656	1.03	1.0
O 34	0.7159	0.2492	0.7089	1.97	1.0
O 32	0.8867	0.2442	0.0133	1.97	1.0
O 35	0.8253	0.4062	0.748	1.97	1.0
O 24	0.7243	0.0464	0.7842	1.97	1.0
O 55	0.5000	0.0000	0.243	1.97	1.0
O 12	0.0746	0.0195	0.7489	1.97	1.0
O 54	0.5575	0.1441	0.5614	1.97	1.0
O 45	0.5998	0.1581	0.0521	1.97	1.0
O 23	0.9048	0.2340	0.5175	1.97	1.0

### REFINED COMPOSITION: |(H₂O)₄₂| [Al₁₈P₁₈O₇₂]

- CRYSTAL DATA:  $P6_3$  (No. 173) a = 18.9752 Å b = 18.9752 Å c = 8.1044 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 120^{\circ}$ X-ray Rietveld refinement,  $R_{exp} = 0.108$ ,  $R_{wp} = 0.141$ ,  $R_{F} = 0.086$ 
  - REFERENCE: L. B. McCusker, Ch. Baerlocher, E. Jahn and M. Bülow, Zeolites 11 308–313 (1991).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.385	-0.001	0.239	0.24	1.0
Al 2	0.474	-0.173	0.204	0.24	1.0
Al 3	0.654	0.169	0.198	0.24	1.0
P 1	0.550	-0.001	0.358	0.79	1.0
P 2	0.311	-0.185	0.320	0.79	1.0
P 3	0.507	0.185	0.309	0.79	1.0
O 1	0.470	0.001	0.339	1.5	1.0
O 2	0.431	0.009	0.037	1.5	1.0
O 3	0.322	-0.112	0.223	1.5	1.0
O 4	0.430	0.111	0.255	1.5	1.0
O 5	0.540	-0.074	0.264	1.5	1.0
O 6	0.619	0.072	0.278	1.5	1.0
O 7	0.512	-0.231	0.280	1.5	1.0
O 8	0.378	-0.206	0.280	1.5	1.0
O 9	0.474	-0.175	-0.015	1.5	1.0
O 10	0.311	-0.168	0.500	1.5	1.0
O 11	0.575	0.195	0.198	1.5	1.0
O 12	0.739	0.236	0.315	1.5	1.0
$H_2O~1$	0.339	0.005	0.465	2.13	1.0
$H_2O~2$	0.290	0.002	0.160	2.13	1.0
$H_2O$ 3	0.314	0.130	-0.028	7.11	1.0
$H_2O~4$	0.248	0.055	-0.288	10.03	1.0
$H_2O~5$	0.193	0.045	-0.566	10.03	1.0
$H_2O~6$	0.319	0.189	-0.539	7.11	1.0
$H_2O~7$	0.100	0.053	-0.534	10.03	1.0

REFINED COMPOSITION:	$ \mathrm{Rb}_{44}\mathrm{K}_4(\mathrm{H}_2) $	$O)_{14} [Si_{96}Z]$	$n_{24}O_{240}$ ]		
CRYSTAL DATA:	$P4_12_12$ (No. a = 9.8837 A $\alpha = 90^{\circ}$ X-ray Rietve	92) Å $b = 9.8$ $\beta = 90^{\circ}$ eld refineme	837 Å $c$ $\gamma$ nt, $R_{\rm exp} =$	= 73.6 $= 90^{\circ}$ 0.099,	5505 Å $R_{\rm wp} = 0.147,  R_{\rm F} = 0.069$
REFERENCE:	L. B. McCus and M. E. D	sker, R. W. Davis, <i>Micro</i>	Grosse-Ku porous Mat	nstleve terials	e, Ch. Baerlocher, M. Yoshikawa, 6 295–309 (1996).
Ata Si 1 Si 2 Si 2 Si 3 Si 4 Si 4 Si 4 Si 6 Zn Si 1 Si 1 Si 1 Si 1 Zn Si 1 Si 1 Si 1 Si 1 Si 1 Si 1 Si 1 Si 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{c} y \\ 0.14097 \\ 0.36647 \\ 0.54161 \\ 0.45059 \\ 0.22908 \\ 0.59382 \\ 0.26960 \\ 0.37616 \\ 0.15641 \\ 0.14462 \\ 0.35246 \\ 0.23519 \\ 0.36294 \\ 0.29059 \\ 0.50334 \\ 0.21588 \\ 0.17140 \\ -0.01758 \\ 0.18145 \\ 0.39943 \\ 0.47477 \\ 0.37695 \\ 0.53146 \\ 0.37488 \\ 0.55290 \\ 0.24075 \\ 0.11791 \\ 0.61905 \\ 0.72981 \\ 0.34871 \\ 0.39098 \\ 0.14092 \\ 0.27261 \\ 0.27261 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.20211 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.202011 \\ 0.2$	z 0.04647 0.03339 0.04577 0.04531 0.01951 0.03688 0.07855 0.11695 0.11374 0.13017 0.13429 0.16979 0.20263 0.22953 0.24691 0.03997 0.06759 0.04349 0.03360 0.04014 0.04195 0.01106 0.04608 0.02615 0.04576 -0.00018 0.01974 0.01426 0.04654 0.02255 0.09506 0.09257 0.12267	$B_{iso}$ 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.79 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1	0  cc $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$
0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.02001\\ 0.19440\\ 0.24422\\ 0.14632\\ -0.00248\\ 0.33967\\ 0.32063\end{array}$	$\begin{array}{c} 0.12391\\ 0.11787\\ 0.12539\\ 0.15157\\ 0.12264\\ 0.15616\\ 0.12528\end{array}$	$1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ 1.97 \\ $	1.0 1.0 1.0 1.0 1.0 1.0 1.0

continued...

 $\ldots$  continued from previous page

x	y	z	$B_{\rm iso}$	occ
0.36760	0.38136	0.18320	1.97	1.0
0.20338	0.09310	0.18492	1.97	1.0
0.33256	0.36743	0.21848	1.97	1.0
0.18986	0.14876	0.21931	1.97	1.0
0.08186	0.37815	0.23040	1.97	1.0
0.00301	0.00830	0.11980	2.92	0.875
0.16907	0.36207	0.08261	2.92	0.875
0.41652	0.41652	0.00000	2.92	0.75
0.41652	0.41652	0.00000	2.92	0.25
0.07877	0.07877	0.00000	2.92	1.0
0.64934	0.84320	0.03976	2.92	0.875
0.40656	0.13336	0.04950	2.92	0.75
0.32838	0.13511	0.03545	2.92	0.25
0.83939	0.69102	0.08693	2.92	0.75
0.86257	0.61323	0.07771	2.92	0.25
0.62218	0.62218	0.00000	2.92	0.25
0.62218	0.62218	0.00000	2.92	0.75
0.53776	0.56878	0.08892	2.92	0.375
0.56914	0.90441	0.07753	2.92	1.25
	$\begin{array}{c} x\\ 0.36760\\ 0.20338\\ 0.33256\\ 0.18986\\ 0.08186\\ 0.00301\\ 0.16907\\ 0.41652\\ 0.41652\\ 0.07877\\ 0.64934\\ 0.40656\\ 0.32838\\ 0.83939\\ 0.86257\\ 0.62218\\ 0.62218\\ 0.53776\\ 0.56914 \end{array}$	$\begin{array}{cccc} x & y \\ 0.36760 & 0.38136 \\ 0.20338 & 0.09310 \\ 0.33256 & 0.36743 \\ 0.18986 & 0.14876 \\ 0.08186 & 0.37815 \\ 0.00301 & 0.00830 \\ 0.16907 & 0.36207 \\ 0.41652 & 0.41652 \\ 0.41652 & 0.41652 \\ 0.41652 & 0.41652 \\ 0.07877 & 0.07877 \\ 0.64934 & 0.84320 \\ 0.40656 & 0.13336 \\ 0.32838 & 0.13511 \\ 0.83939 & 0.69102 \\ 0.86257 & 0.61323 \\ 0.62218 & 0.62218 \\ 0.62218 & 0.62218 \\ 0.53776 & 0.56878 \\ 0.56914 & 0.90441 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

REFINED COMPOSITION:	$ Na_{28.48}(H_2O)_{49} $	0.76 [Si ₅₆ Zn ₁₆ O ₁₄ ]	44]		
CRYSTAL DATA:	$Fdd2 \text{ (No. 43)}$ $a = 39.88 \text{ Å}$ $\alpha = 90^{\circ}$ X-ray Rietveld	b = 10.326 Å $\beta = 90^{\circ}$ refinement, $R_{exp}$	$c = 10$ $\gamma = 9$ $\rho = 0.24$	0.219 Å $_{0^{\circ}}^{0^{\circ}}$ 8, $R_{\rm wp} = 0.16$	52, $R_{\rm I} = 0.100$
REFERENCE:	C. Röhrig, H. C. Zeolites 14 498	Gies and B. Marl –503 (1994).	ler,		
A	tom x	y $z$	$B_{\rm iso}$	occ	

<i>u</i>	g	$\sim$	$D_{1SO}$	000
0.1269	0.201	0.059	1.58	0.89
0.2549	0.069	0.762	1.58	0.89
0.0	0.0	0.0	1.86	1.0
0.0718	0.4537	0.565	1.86	1.0
0.0868	0.1622	0.571	1.86	1.0
0.0904	0.4481	0.855	1.86	1.0
0.05488	0.1640	0.856	1.86	1.0
0.0087	0.1255	0.910	0.87	1.0
0.0319	0.464	0.589	0.87	1.0
0.0850	0.054	0.955	0.87	1.0
0.0809	0.3082	0.519	0.87	1.0
0.0572	0.120	0.670	0.87	1.0
0.0610	0.3481	0.887	0.87	1.0
0.0902	0.488	0.702	0.87	1.0
0.1228	0.142	0.641	0.87	1.0
0.0836	0.081	0.435	0.87	1.0
0.0889	0.299	0.213	5.53	1.23
0.25	0.75	0.124	5.53	1.3
0.2237	0.627	0.436	5.53	1.23
	$\begin{array}{c} 0.1269\\ 0.2549\\ 0.0\\ 0.0718\\ 0.0868\\ 0.0904\\ 0.05488\\ 0.0087\\ 0.0319\\ 0.0850\\ 0.0850\\ 0.0809\\ 0.0572\\ 0.0610\\ 0.0902\\ 0.1228\\ 0.0836\\ 0.0889\\ 0.25\\ 0.2237\end{array}$	$\begin{array}{cccc} x & y \\ 0.1269 & 0.201 \\ 0.2549 & 0.069 \\ 0.0 & 0.0 \\ 0.0718 & 0.4537 \\ 0.0868 & 0.1622 \\ 0.0904 & 0.4481 \\ 0.05488 & 0.1640 \\ 0.0087 & 0.1255 \\ 0.0319 & 0.464 \\ 0.0850 & 0.054 \\ 0.0850 & 0.054 \\ 0.0809 & 0.3082 \\ 0.0572 & 0.120 \\ 0.0610 & 0.3481 \\ 0.0902 & 0.488 \\ 0.1228 & 0.142 \\ 0.0836 & 0.081 \\ 0.0889 & 0.299 \\ 0.25 & 0.75 \\ 0.2237 & 0.627 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x$ $y$ $z$ $D_{150}$ $0.1269$ $0.201$ $0.059$ $1.58$ $0.2549$ $0.069$ $0.762$ $1.58$ $0.0$ $0.0$ $0.0$ $1.86$ $0.0718$ $0.4537$ $0.565$ $1.86$ $0.0868$ $0.1622$ $0.571$ $1.86$ $0.0904$ $0.4481$ $0.855$ $1.86$ $0.0904$ $0.4481$ $0.855$ $1.86$ $0.0904$ $0.4481$ $0.856$ $1.86$ $0.0904$ $0.4481$ $0.856$ $1.86$ $0.0087$ $0.1255$ $0.910$ $0.87$ $0.0319$ $0.464$ $0.589$ $0.87$ $0.0850$ $0.054$ $0.955$ $0.87$ $0.0809$ $0.3082$ $0.519$ $0.87$ $0.0572$ $0.120$ $0.670$ $0.87$ $0.0610$ $0.3481$ $0.887$ $0.87$ $0.0902$ $0.488$ $0.702$ $0.87$ $0.1228$ $0.142$ $0.641$ $0.87$ $0.0836$ $0.081$ $0.435$ $0.87$ $0.0836$ $0.299$ $0.213$ $5.53$ $0.25$ $0.75$ $0.124$ $5.53$ $0.2237$ $0.627$ $0.436$ $5.53$
## REFINED COMPOSITION: $|Ca_4(H_2O)_{16}| [Be_{12}P_8O_{32}(OH)_8]$ Weinebene Pass, Koralpe, Austria

- CRYSTAL DATA: C1c1 (No. 9) unique axis **b**, cell choice 1 a = 11.897 Å b = 9.707 Å c = 9.633 Å  $\alpha = 90^{\circ}$   $\beta = 95.76^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.044$ 
  - REFERENCE: F. Walter, Eur. J. Mineral. 4 1275–1283 (1992).

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.1124	0.0853	0.3718	1.32	1.0
Be $1$	-0.3006	0.8817	0.1613	0.65	1.0
$\mathrm{Be}\;2$	-0.1925	0.3821	0.3460	0.78	1.0
$\operatorname{Be} 3$	0.0014	0.5184	0.2517	0.66	1.0
P 1	0.2785	0.0985	0.1409	0.54	1.0
P 2	-0.2780	0.0992	0.3606	0.71	1.0
01	-0.0939	0.6163	0.1650	0.87	1.0
O 2	0.2150	0.7795	0.6971	0.97	1.0
O 3	0.2388	0.9725	0.2213	0.71	1.0
O 4	0.2431	0.9230	0.4847	0.89	1.0
O 5	0.2853	0.7213	0.3029	1.02	1.0
O 6	0.2573	0.5836	0.5177	0.91	1.0
O 7	0.0943	0.6210	0.3323	1.25	1.0
O 8	0.2597	0.4676	0.2905	0.99	1.0
OH 9	0.0638	0.4212	0.1442	1.08	1.0
OH 10	-0.0622	0.4263	0.3603	1.04	1.0
$H_2O~1$	-0.5254	0.6453	0.1881	1.85	1.0
$H_2O~2$	0.4918	0.3807	0.3780	2.20	1.0
$H_2O 3$	0.4905	0.3629	0.0437	2.09	1.0
$H_2O~41$	0.2250	0.7474	0.0035	2.19	0.55
$H_2O$ 42	0.1950	0.7323	0.0061	1.74	0.45

REFINED COMPOSITION:		$ \begin{aligned} & \mathrm{Na}_{0.5}\mathrm{K}_{0.5}\mathrm{Ca}_{5.5}\mathrm{Ba}_{3.5}\mathrm{S}_3(\mathrm{OH})_{12}  \ [\mathrm{Si}_{11}\mathrm{Al}_9\mathrm{O}_{41}(\mathrm{OH})_2] \\ &\mathrm{Candoglia}, \ \mathrm{Italy} \end{aligned} $						
CRYSTAL DATA:	$P\overline{6}2$ $a =$ $\alpha =$ X-ra	m (No. 18 13.511 Å 90° ay single c	b = 13.5 $\beta = 90^{\circ}$ rystal refin	611  Å	c = 7.4 $\gamma = 12$ c = 0.10	62 Å 0° 0		
REFERENCE:	CE: S. Merlino, Acta Cryst. <b>B30</b> 1262–1266 (1974).							
At	om	x	y	z	$B_{\rm iso}$	occ		
Na	ι	0.4988	0.2743	0.0	2.42	0.083		
K	1	0.0	0.0	0.5	2.04	0.125		
K	2	0.3932	0.0	0.5	1.78	0.125		
Ca	l	0.4988	0.2743	0.0	2.42	0.917		
Ba	. 1	0.0	0.0	0.5	2.04	0.875		
Ba	. 2	0.3932	0.0	0.5	1.78	0.875		
S		0.5200	0.5200	0.0	1.3	1.0		
Si	1	0.2666	0.1336	0.2178	0.8	0.60		
Si	2	0.4380	0.3008	0.5	0.4	0.56		
Si	3	0.66667	0.33333	0.3970	0.4	0.11		
Al	1	0.2666	0.1336	0.2178	0.8	0.40		
Al	2	0.4380	0.3008	0.5	0.4	0.44		
Al	3	0.66667	0.33333	0.3970	0.4	0.39		
Ο	1	0.296	0.145	0.0	0.2	1.0		
0	2	0.392	0.215	0.317	1.4	1.0		
0	3	0.216	0.0	0.294	0.8	1.0		
0	4	0.170	0.170	0.275	1.0	1.0		
0	5	0.399	0.399	0.5	2.2	1.0		
Ο	6	0.580	0.378	0.5	1.3	1.0		

O7

OH 7

OH 8

OH 9

 $\rm OH\;10$ 

OH 11

0.66667

0.66667

0.421

0.492

0.599

0.591

Si3, Al3, and the attached O7, are disordered over two positions, with the individual site occupancies being only 0.5. O7 is an OH⁻ when the T3 site is vacant, and an oxygen when T3 is occupied.

0.33333

0.33333

0.402

0.606

0.553

0.499

0.170

0.170

-0.049

0.074

-0.158

0.154

0.5

0.5

0.25

0.25

0.25

0.25

3.0

3.0

0.9

2.6

1.6

2.9

- - CRYSTAL DATA: P1c1 (No. 7) unique axis b, cell choice 1 a = 6.700 Å b = 13.972 Å c = 10.039 Å  $\alpha = 90^{\circ}$   $\beta = 111.07^{\circ}$   $\gamma = 90^{\circ}$ Neutron single crystal refinement at T = 13K,  $R_{\rm w} = 0.045$

```
REFERENCE: Å. Kvick, G. Artioli and J. V. Smith,
Z. Kristallogr. 174 265–281 (1986).
```

Atom	x	y	z	$B_{\rm iso}$	occ
Ca	0.05134	0.21654	0.42364	0.44	1.0
Si 1	0.34121	0.14798	0.98083	0.25	1.0
Si 2	0.71051	0.03650	0.19124	0.26	1.0
Si 3	0.40911	0.12450	0.69431	0.22	1.0
Si 4	0.02736	0.47598	0.43748	0.22	1.0
Si 5	0.36039	0.37327	0.96046	0.24	1.0
Si 6	0.74211	0.49757	0.62097	0.24	1.0
Al 1	0.0	0.00710	0.0	0.21	1.0
Al 2	0.39614	0.35598	0.65361	0.21	1.0
O 1	0.10689	0.10638	0.94844	0.54	1.0
O 2	0.85591	0.04834	0.09817	0.58	1.0
O 3	0.19153	0.07642	0.59056	0.48	1.0
O 4	0.50365	0.10778	0.13425	0.41	1.0
O 5	0.43489	0.11736	0.86004	0.65	1.0
O 6	0.61915	0.07317	0.67971	0.46	1.0
Ο7	0.84451	0.06416	0.35574	0.44	1.0
O 8	0.33904	0.26252	-0.00394	0.64	1.0
O 9	0.39913	0.23277	0.63939	0.47	1.0
O 10	0.16380	0.42664	0.98834	0.47	1.0
O 11	0.83032	0.48293	0.49303	0.49	1.0
O 12	0.17154	0.38236	0.49904	0.42	1.0
O 13	0.57911	0.41154	0.08345	0.48	1.0
O 14	0.36053	0.39320	0.80583	0.54	1.0
O~15	0.62998	0.40026	0.64000	0.48	1.0
O 16	0.93634	0.47014	0.26478	0.40	1.0
O 100	0.98759	0.24929	0.17041	0.97	0.774
O 101	0.04165	0.27602	0.20621	3.79	0.182
H 11	0.95821	0.19582	0.10667	3.0	0.825
H~12	0.03505	0.30007	0.12817	3.55	0.883
H~13	0.05913	0.34986	0.21315	4.47	0.157
O 20	0.90310	0.23331	0.61844	0.89	1.0
H 21	0.87936	0.18305	0.67456	3.25	1.0
H 22	0.81676	0.28638	0.62799	2.36	1.0
O 30	0.70811	0.29016	0.32835	0.94	0.978
H 31	0.59175	0.27280	0.34773	3.00	0.482
H 32	0.65286	0.33338	0.39098	3.38	0.417
H 33	0.66062	0.32229	0.23748	2.31	1.001
O 40	0.36920	0.15938	0.36919	1.23	0.887
O 41	0.33283	0.12668	0.35814	1.35	0.128

continued...

## $\ldots$ continued from previous page

Atom	x	y	z	$B_{\rm iso}$	occ
H 41	0.39007	0.14373	0.28329	2.50	0.910
H 42	0.49359	0.13517	0.44553	2.88	0.704
H 43	0.45146	0.15376	0.40785	15.99	0.314
H 51	0.90889	0.20607	0.91977	1.42	0.098
H 52	0.87863	0.31721	0.90312	4.90	0.119
O 50	0.81646	0.25961	0.92491	1.42	0.119

REFINED COMPOSITION:  $|N_8C_{42.656}|$  [Al₂₅Zn₇P₃₂O₁₂₈]

CRYSTAL DATA:	Pbca (No. 61)		
	a = 14.226  Å	$b=15.117~{\rm \AA}$	c=17.557 Å
	$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
	X-ray single cry	vstal refinement,	$R_{\rm w} = 0.069$

REFERENCE: B. Marler, J. Patarin and L. Sierra, Microporous Materials 5 151–159 (1995).

Atom	x	y	z	$B_{\rm iso}$	occ
Al 1	0.0532	0.7242	0.3410	1.56	0.639
Al 2	0.5553	0.9022	0.4377	1.56	0.794
Al 3	0.4234	0.6045	0.4306	1.56	0.814
Al 4	0.2111	0.8403	0.5378	1.56	0.877
${\rm Zn} \ 1$	0.0532	0.7242	0.3410	1.69	0.361
$Zn \ 2$	0.5553	0.9022	0.4377	1.69	0.206
$Zn \ 3$	0.4234	0.6045	0.4306	1.69	0.186
Zn 4	0.2111	0.8403	0.5378	1.69	0.123
P 1	0.4499	0.4048	0.4262	2.25	1.0
P 2	0.5849	0.1002	0.4250	2.25	1.0
P 3	0.5607	0.7292	0.3412	2.25	1.0
P 4	0.2147	0.6608	0.4506	2.25	1.0
O 1	0.0432	0.0001	0.3975	3.46	1.0
O 2	-0.5552	-0.0084	0.6006	3.46	1.0
O 3	0.0523	-0.1605	0.3570	3.46	1.0
O 4	-0.0558	0.3285	0.3629	3.46	1.0
O 5	-0.0494	-0.3296	0.3703	3.46	1.0
O 6	0.0279	0.1831	0.3709	3.46	1.0
Ο7	0.1970	0.1063	0.4270	3.46	1.0
O 8	-0.3063	0.1053	0.4351	3.46	1.0
O 9	-0.4573	0.1168	0.5049	3.46	1.0
O 10	0.0359	0.1174	0.5247	3.46	1.0
O 11	0.3383	0.1058	0.5102	3.46	1.0
O 12	-0.0722	0.2158	0.2574	3.46	1.0
O 13	0.3486	0.1715	0.3817	3.46	1.0
O 14	0.2528	0.2463	0.4864	3.46	1.0
O 15	0.1399	-0.1002	0.4770	3.46	1.0
O 16	-0.1496	0.1936	0.3819	3.46	1.0
Ν	0.3047	0.9264	0.2574	4.41	1.0
C 1	0.2179	0.9808	0.2397	12.44	1.333
C 2	0.3954	0.9835	0.2517	12.44	1.333
C 3	0.3024	0.8446	0.2023	12.44	1.333
C 4	0.3006	0.8984	0.3392	12.44	1.333

REFINED COMPOSITION: [Si₄O₈] Ellora, Hyderabad, India

> CRYSTAL DATA:  $P4_12_12$  (No. 92) a = 4.97 Å b = 4.97 Å c = 6.94 Å  $\alpha = 90^{\circ}$   $\beta = 90^{\circ}$   $\gamma = 90^{\circ}$ X-ray single crystal refinement,  $R_{\rm w} = 0.044$

<b>REFERENCE</b> :	W. A. Dollase,
	Z. Kristallogr. <b>121</b> 369–377 (1965).

Atom	x	y	z	$B_{\rm iso}$	occ
Si	0.30004	0.30004	0.0000	0.83	1.0
0	0.23976	0.10324	0.17844	1.55	1.0

REFINED COMPOSITION:	[Si ₁₂ O ₂ Synthet	4] tic mate	rial			
CRYSTAL DATA:	$P4_{3}2_{1}2$ $a = 7.4$ $\alpha = 90^{\circ}$ X-ray s	(No. 96 6 Å , ingle cr	b = 7. $\beta = 9$ ystal ref	46 Å 0° finement	$c = \\ \gamma = \\ z, R_{hk0}$	8.61 Å 90° = 0.129, $R_{hhl} = 0.098$
REFERENCE:	J. Shropshire, P. P. Keat and P. A. Vaughan, Z. Kristallogr. <b>112</b> 409–413 (1959).					
	Atom	x	y	z	$B_{\rm iso}$	occ
	Si 1	0.326	0.120	0.248	2.34	1.0
	Si 2	0.410	0.410	0.000	2.34	1.0
	O 1	0.445	0.132	0.400	2.34	1.0
	O 2	0.117	0.123	0.296	2.34	1.0

O 3 0.344 0.297 0.143 2.34 1.0

 $B_{\rm iso}$  is the average of  $B_{hk0} = 1.47$  Å² and  $B_{hhl} = 3.22$  Å².

0.9686 0.0680 0.2860

 $0.1711 \quad 0.1770 \quad 0.1050$ 

0.2148

1.9

5.0

0.4

0.0739

1.0

1.0

1.0

REFINED COMPOSITION:	[Si ₁₂ O ₂₄ ] Mogan formation, Gran Canaria, Canary Islan						
CRYSTAL DATA:	$I12/a$ $a = 8$ $\alpha = 9$	u 1 (No. 1 .758 Å 0°	5) uniqu $b = 4.8$ $\beta = 90$	e axis <b>b</b> , 76 Å .08°	$\begin{array}{l} \text{cell ch} \\ c = 1 \\ \gamma = 9 \end{array}$	oice 3 0.715 Å 0°	
REFERENCE:	G. Miehe and H. Graetsch, <i>Eur. J. Mineral.</i> <b>4</b> 693–706 (1992).						
	Atom	x	y	z	$B_{\rm iso}$	occ	
	Si 1	0.2500	0.9908	0.0000	3.2	1.0	
	Si 2	0.0115	0.2533	0.1678	0.5	1.0	

0.8657

 $O\ 1$ 

 $O\ 2$ 

O 3

Å

REFINED COMPOSITION:	[Si ₃ O Dextr	6] ro-rotator	ry synthe	tic mater	rial	
CRYSTAL DATA:	$P3_{2}23$ $a = 4$ $\alpha = 9$ X-ray	l (No. 15 .916 Å 00° single ci	b = 4.9 $\beta = 90$ rystal ref.	916 Å )° inement,	$c = 5$ $\gamma = 1$ $R_{\rm w} = 1$	.4054 120° 0.016
REFERENCE:	L. Le Amer	vien, C. ' ican Mir	T. Prewit neralogist	tt and D. 65 920–	J. We 930 (19	idner, 980).
	Atom	x	y	z	$B_{\rm iso}$	occ
	Si	0.5303	0.0000	0.6667	0.62	1.0
	0	0.5865	0.7331	0.7142	1.05	1.0

Coordinates were transformed from the old setting of space group  $P3_221$  to the new setting, using the transformation (1 - x, 1 - y, 5/6 - z).

REFINED COMPOSITION:	[Si ₄₈ O ₉₆ ] From the Steinbach meteorite, Harvard Museum, U.S.A.							
CRYSTAL DATA:	$\begin{array}{ll} C1c1 \ (\text{No. 9}) \ \text{unique axis } \mathbf{b}, \ \text{cell choice 1} \\ a = 18.524 \ \text{\AA} & b = 5.0032 \ \text{\AA} & c = 23.810 \ \text{\AA} \\ \alpha = 90^{\circ} & \beta = 105.82^{\circ} & \gamma = 90^{\circ} \\ \text{X-ray single crystal refinement, } R_{\rm w} = 0.069 \end{array}$							
REFERENCE:	W. A. Dollase and W. H. Baur, American Mineralogist <b>61</b> 971–978 (1976).							
	Atom	x	y	z	$B_{\rm iso}$	occ		
	Si 1	0.5507	0.541	0.5642	0.9	1.0		
	Si 2	0.7036	0.947	0.7374	1.2	1.0		
	Si 3	0.4198	0.549	0.6225	0.7	1.0		
	Si 4	0.5751	0.043	0.7955	1.1	1.0		
	Si 5	0.9247	0.548	0.6971	0.8	1.0		
	Si 6	0.7643	0.944	0.5386	0.9	1.0		
	Si 7	0.8023	0.449	0.7661	0.8	1.0		
	Si 8	0.6453	0.041	0.6027	0.7	1.0		
	Si 9	0.8531	0.463	0.9016	1.0	1.0		
	$Si \ 10$	0.9493	0.966	0.9358	1.0	1.0		
	Si 11	0.7244	0.559	0.9605	0.9	1.0		
	Si 12	0.5697	0.549	0.8702	1.1	1.0		
	O 1	0.5749	0.351	0.8182	1.2	1.0		
	O 2	0.5707	0.840	0.8476	1.5	1.0		
	O 3	0.7315	0.138	0.4851	1.8	1.0		
	O 4	0.7509	0.644	0.5152	1.7	1.0		
	O 5	0.4155	0.352	0.6741	2.9	1.0		
	O 6	0.4127	0.852	0.6434	1.9	1.0		
	07	0.8773	0.164	0.9213	1.8	1.0		
	08	0.9160	0.668	0.9361	2.4	1.0		
	O 9	0.7741	0.145	0.7538	1.8	1.0		
	O 10	0.7336	0.643	0.7402	2.2	1.0		
	011	0.6195	0.341	0.5847	1.2	1.0		
	0 12	0.5811	0.843	0.5661	1.9	1.0		
	0 13	0.4966	0.511	0.6062	2.7	1.0		
	0 14	0.3533	0.489	0.5005	1.0	1.0		
	0.15	0.6498	0.005	0.0/11	1.8	1.0		
	$\begin{array}{c} 0 \ 10 \\ 0 \ 17 \end{array}$	0.0524	0.996	0.7805	2.0	1.0		
	$O_{10}$	0.8030	0.499	0.1328	1.ð 2.6	1.0		
	$O_{10}$	0.0001	0.000	0.0000 0 7200	⊿.U 1 Q	1.0		
	0 20	0.0002	0.995	0.1990	1.0 2.0	1.0		
	$O_{20}$	0.0309	0.011	0.9200	∠.9 1 /	1.0		
	$0^{21}$	0.5521	0.392	0.0000	1.4 9.9	1.0		
	$\begin{array}{c} 0 & 22 \\ 0 & 23 \end{array}$	0.0 0 7252	0.400	0.5	$\frac{2.2}{2.3}$	1.0		
	O 24	0.7744	0.521	0.9155	1.5	1.0		